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Abstract—In this paper, we introduce a novel approach to
identify salient object regions in videos via object proposals. The
core idea is to solve the saliency detection problem by ranking
and selecting the salient proposals based on object-level saliency
cues. Object proposals offer a more complete and high-level
representation, which naturally caters to the needs of salient
object detection. As well as introducing this novel solution for
video salient object detection, we reorganize various discrimina-
tive saliency cues and traditional saliency assumptions on object
proposals. With object candidates, a proposal ranking and voting
scheme, based on various object-level saliency cues, is designed
to screen out nonsalient parts, select salient object regions, and
to infer an initial saliency estimate. Then a saliency optimization
process that considers temporal consistency and appearance
differences between salient and nonsalient regions is used to
refine the initial saliency estimates. Our experiments on public
datasets (SegTrackV2, Freiburg-Berkeley Motion Segmentation
Dataset, and Densely Annotated Video Segmentation) validate
the effectiveness, and the proposed method produces significant
improvements over state-of-the-art algorithms.

Index Terms—Object proposals, object-level saliency cues,
salient region detection, video saliency.

I. INTRODUCTION

ALIENCY detection is an active area of computer vision
research. With the development of object-based computer
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vision applications, intensive research has been carried out
for salient object detection to identify the most important or
noticeable object regions [1], [2], [61]. Those methods try to
highlight the whole salient object regions, which diverge from
the early saliency prediction algorithms that focus on locating
human eye fixations [3]. Generally, salient object detection
models generate large and smoothly connected salient areas.
In this paper, we proposed a novel video salient object detec-
tion algorithm toward locating primary salient objects in
dynamic scenes. It produces a gray-scale saliency map for each
video frame, where brighter pixels indicate higher saliency
values.

Traditional salient object detection models for videos are
mainly based on bottom-up mechanisms. These models uti-
lize various low-level features (e.g., color and motion) and
heuristics (e.g., feature contrast between region/pixels and
the surrounding area) [2], [5], [8]. Although these bottom-
up saliency models achieve inspiring results, they still have
several limitations. In particular, they do not yield consistent
saliency values for a complete salient object or for the whole
background, especially when an object has multiple compo-
nents or the background is cluttered. This phenomenon arises
because bottom-up techniques take pixels or superpixels as
basic units to infer saliency. From the perspective of human
perception, it would be more natural to work on the com-
plete object level. Pixel or superpixel level mechanisms lack
of object-level features, thus they cannot completely meet the
goal of locating salient object regions. However, this problem
has not yet to be addressed in existing algorithms.

To bridge the gap between low-level saliency cues and
object-level salient object detection, we explore salient object
detection based on object-level cues namely object proposal.
For an input image, object proposal methods generate a set
of category-independent object candidates which are likely to
include the object of interest. Thus, those object candidates
are able to cover entire objects in the image with excellent
accuracy [34]. With candidates for an object in hand, vari-
ous traditional saliency cues can be extracted and reorganized
to improve the saliency estimates. Recently, Zhang et al. [6]
grouped superpixels to form the potential local salient regions
and construct a local saliency measure with the reconstruc-
tion errors. However, the key idea of the suggested model is
leveraging object-level information for detecting salient object.
Based on this, the proposed model reorganizes various saliency
cues and heuristics. Besides, our model detects saliency in
dynamic scenes, while Zhang et al. [6] concentrated more on
detecting salient objects from static images.
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Fig. 1. Illustration of our object proposal-based video saliency detection
approach. The two frames in the first row are the original frames from the
horsesO1 and people05 videos in the FBMS dataset [44]. Several object pro-
posals extracted from the frames are shown in the second row, and the third
row shows the final saliency maps obtained using our method.

We develop a new video salient object detection approach
using object proposals. We redefine and extract traditional
saliency stimuli from object proposals, re-examine tradi-
tional saliency assumptions based on object-like regions, and
translate the saliency detection into a unified, concise and
straightforward process of ranking and selecting object pro-
posals. Some examples of our object proposal video saliency
detection are presented in Fig. 1. Our experimental evalua-
tion on several well-known benchmarks clearly demonstrates
the benefits of object-level saliency detection over the pixel or
superpixel level approach. Our source code will be available
at http://github.com/shenjianbing/proposalsaliency.

In summary, our approach offers the main contributions.

1) This is a first work for exploiting video saliency detec-
tion via the use of object proposals, which treats the
saliency detection problem as an automatic and unified
object candidate ranking and voting process.

2) New object proposal ranking and voting schemes are
designed by reorganizing various traditional saliency
stimuli and assumptions on object level.

3) The proposed method bridges the gap between low-level
features and high-level object priors for salient object
detection and achieves promising results.

IEEE TRANSACTIONS ON CYBERNETICS

II. RELATED WORK

Recently, salient object detection has attracted a lot of
interests in the computer vision community. Unlike attention
prediction approaches that focus on predicting observer fixa-
tion, salient object detection models aim to extract the entire
salient object in a scene [4]. This new tendency is driven by
the development of several object-based vision applications,
including object recognition [10], image and video segmenta-
tion [3], [4], [9], [50], [57], and visual tracking [46]. In this
section, we discuss the context of the existing literature in
three aspects: 1) image saliency detection; 2) video saliency
detection; and 3) object proposal segmentation.

A. Image Saliency Detection

Existing saliency detection approaches for still images can
be grouped into two main categories: bottom-up models and
top-down models. The top-down models aim to find instances
of specific categories that are frequently observed in the scene
(e.g., bicycles, faces, humans, and cars) [10]. Therefore, they
only hardly generalize to arbitrary scenes and objects.

In contrast, bottom-up methods rely on low-level visual
features such as intensity, color, textural information to esti-
mate saliency. In the bottom-up methods, the contrast-based
“center-surround” approach is widely used to infer saliency
maps based on the hypothesis that humans pay more atten-
tion to regions that strongly contrast with their surround-
ings [5], [8], [11], [42]. For example, Wang et al. [12] used
the distinguishable and selective components for the distinc-
tive contrast calculation, and incorporate them into the saliency
detection framework. Whereas the contrast-based methods
have the limitations that the obtained saliency maps tend
to highlight high-contrast edges and darken object centers.
To solve this issue, some tasks exploit a background prior
to enhance saliency prediction [13]. The background prior
encodes the assumption that humans typically look at the
center of an image and neglect boundary information. These
methods demonstrates that the background prior of bound-
ary is effective. However, since the background prior takes
the image boundary as background, it tends to fail when the
object occupies a large area and touches image boundaries.
Some other methods include introducing external information.
Wang et al. [14] added near-infrared images as on regu-
lar RGB images as the assistance to detect saliency. The
works in [15] and [16] used supervised method to incorporate
multi-instance into the detection procedure.

B. Video Saliency Detection

To detect saliency in dynamic scenes, most video saliency
methods are bottom-up [17]-[20]. These saliency models
generally compute local or global contrast of features of
input [2], [21], [22]. Kim et al. [2] explored spatial and
temporal salient regions based on frame patches by random
work with restart task. Huang er al. [22] extracted a set of
spatially and temporally coherent key-point trajectories, and
used a one-class support vector machine to remove consis-
tent motion trajectories to obtain dynamically salient objects.
Recently, more efforts tackle the video saliency problem as
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Our proposal-based video saliency detection method. (a) Input frame. (b) Object proposals from the frame in (a). (¢) Set of salient proposals are

selected via a ranking strategy, which utilizes spatial saliency stimuli (Section III-A) and motion saliency cues (Section III-B). (d) Corresponding masks for
salient proposals in (c). (e) We then transform these salient proposals (masks) into a saliency map by accounting for their pixel overlap. This voting procedure
described in Section III-C effectively produces an initial saliency estimation. (f) Our final saliency result via an optimization process described in Section IV.

separately generating spatial and temporal saliency maps and
then combining them into the spatiotemporal saliency maps.
Fang et al. [29] merged the spatial and temporal saliency
maps through an adaptive entropy-based uncertainty weight-
ing approach. Kim et al. [18] obtained saliency maps at three
different scales using the sum of absolute differences between
temporal gradient maps and computed a weighted sum of the
multiscale maps. In [30], a technique known as gradient flow
was introduced for video saliency detection.

Some methods are based on the frequency domain,
which focuses on extracting features of spectral domains.
Guo et al. [23] employed the phase spectrum of the quater-
nion Fourier transform (PQFT) to calculate spatiotemporal
saliency for video frames. Kim and Kim [20] introduced textu-
ral contrast into a multiscale framework, and used directional
coherence as the orientation contrast to the temporal domain
to retain the temporal consistency. A few of video saliency
methods are based on the sparsity theory, which considers the
small regions with high local contrast as meaningless noise.
Hou and Zhang [24] decomposed the spatial and temporal
tasks into a coding length increments task. Gao et al. [26]
decomposed the matrices of temporally aligned video frames
or robust principal component analysis into low-rank back-
ground matrices and sparse salient object matrices.

Most of the methods referred above are based on pixel or
superpixel level, e.g., Huang er al. [22] used the estimated
key-points, Liu et al. [25] and Zhou et al. [19] proposed
superpixel-based methods for spatio-temporal saliency calcu-
lation. Whereas, in the case of multicomponent salient objects
or cluttered backgrounds, these methods may not infer equal
saliency values for the whole salient objects or backgrounds.
Based on this observation, we build our approach on object-
like regions, which compensates for the disadvantages of
lacking object-level features in the previous works.

C. Object Proposal Segmentation

Object proposal methods, can output a set of image seg-
ments once given an input image, which directly generates
the object candidates that are likely to contain objects.
The problem has received intensive interests in recent
years [34]-[36], as it serves as an effective preprocessing

for other computer vision tasks such as unsupervised video
segmentation [37]-[39], supervised object detection [40], and
weakly supervised object localization [41]. Specifically, object
proposals are extracted as a set of image segments, each of
which is associated to a score encoding how likely it is to
contain an object.

IIT. OBJECT PROPOSALS-BASED
SALIENCY DETECTION

An overview of our approach is presented in Fig. 2. The
core premise of our algorithm is that salient object regions
are identified from hundreds or thousands of object propos-
als by considering several saliency cues at the object-level.
For object proposals, a ranking scheme is designed to select
salient object proposals based on spatial and temporal saliency
cues [Fig. 2(c)]. Furthermore, a voting procedure is intro-
duced to separate the foreground object regions from the
background, which effectively produces an initial saliency esti-
mation [Fig. 2(d) and (e), Section III]. As shown in Fig. 2(f),
the initial saliency map is refined by considering object
boundary refinement and temporal consistency to improve the
accuracy of prediction in ambiguous regions (Section IV).

Let I = {I1, I, ...} be the set of input frames. For the rth
frame [;, we apply the static region-ranking method to gen-
erate object proposal segmentations Py = {p},ptz, ...} [see
Fig. 2(b)]. The proposals are generated via [34], and each
frame would have hundreds of object candidates. Different
from over-segmented regions, these proposal segments are
more “object-like” as they have more distinct occlusion bound-
aries and their appearances are in obvious contrast with nearby
pixels. According to the objectness score from [34], which
represents how likely a proposal is to contain an object, we
select top 200 candidates for each frame. For each proposal
p! in frame /;, we compute a ranking score R(p}) according
to spatial and temporal saliency cues, which is defined as

RY)) =R (p)) + R (p}) (1)

where RF and RM refer to intraframe visual saliency and
motion saliency scores, respectively. Detailed descriptions of
RF and RM are provided in Sections III-A and III-B. We rank
the proposals Py according to their saliency scores R and select
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Saliency results generated by the top-ranked proposals with each individual prior score described in Section III. (a) Input frame. (b) Saliency results

by the proposal background prior, which is generated by accumulating all the proposals with their background scores (3). (c) Saliency results by applying
the center-surround contrast prior (4). (d) Saliency results only by considering motion contrast (7). (e) Saliency results by utilizing gradient summation (8).
(f) Our initial saliency results by using the combination scores of all priors (11).

salient object proposals. In Section III-C, all the salient pro-
posals are incorporated to obtain an initial saliency estimate
via an overlap strategy.

A. Spatial Saliency Analysis

A number of saliency priors have been proposed for saliency
detection, and the most widely used ones are the back-
ground prior and center-surround contrast prior [8], [13],
[31]-[33], [60]. However, in the previous works, both of
these two priors are computed in low-level units, such as
pixel or superpixel [47], [48], [54]. One obvious disadvan-
tage is that they fail to treat the salient area as an entirety,
since each prior only handles a fraction of the image. To
compute an intraframe saliency score, we extend traditional
low-level spatial saliency cues into the object level. We rede-
fine the background prior and center-surround appearance
contrast prior for object proposals. Furthermore, we incor-
porate the objectness score from [34], which represents how
likely a proposal is to contain a natural object, into our saliency
estimates. Our spatial saliency score R’ is formulated as

R (P}) = Forj (P) + Fog (p1) + Fent (p7) 2

where Fopj(p}) indicates the objectness score of [34], which
has been obtained during the process of extracting object seg-
mentation candidates. Fyg(p}) and Fene(p}) denote the back-
ground prior score and the center-contrast score, respectively.
All three terms are normalized to [0, 1].

1) Proposal Background Prior: The background regions
generally have a high probability of connecting with the
image boundaries, which is known as the background prior.
Zhu et al. [13] proposed a type of region-level background
prior called boundary connectivity. Boundary connectivity is
defined as the ratio of the perimeter of a region on the bound-
ary to the square root of its area. However, as stated in [13],
this measure might be difficult to compute on pixel or super-
pixel level. This is due to boundary connectivity is based
on object level or object segments and hard segmentation of
image itself is a difficult and unsolved problem. Zhu et al. [13]
used a soft formulation to compute boundary connectivity on
superpixel level.

Fortunately, such an approach is naturally suitable for object
proposals because the proposal represents a possible seg-
ment of an object. Then, we introduce a proposal background
prior score based on reorganized boundary connectivity, which
encodes the assumption that the segments around image frame
boundaries are more likely to belong to the background. The
background prior score Fy,, for proposal p? is defined as

_P;l (1Bnd(7;)

Fog(p}) = exp
Area(p})

3)

where Bnd(/;) denotes the boundary pixels of frame I;, and
Area(p}) is the number of pixels in segment p}. According
to this equation, if a proposal extensively touches the frame
boundaries, it will be assigned by a higher background prior
score, which indicates that it is less likely to be a salient object
proposal.

As shown in Fig. 2, the more this proposal connects to the
boundaries, the higher probability it is assigned to the back-
ground region. Even if the salient object is included in the
proposal for some cases in Fig. 2(b), the background part of
the proposal also occupies a larger ratio compared to the area
of the entire proposal in the frame. Conversely, the border
regions usually occupy a large area of the frame, thus there
is an inverse relationship between the proposal’s background
prior and its area. Saliency results according to the background
prior are shown in Fig. 3(b).

2) Proposal Center-Surround Contrast: Contrast prior-
based saliency methods usually investigate the relationship
between image regions and their neighborhoods. In our
method, the proposal contrast measures the confidence that
segment p} represents the same object as its surroundings in
the video frame. To this end, we compute a CIELab color
space histogram for proposal p}, and a 10-pixel dilated region
of p} as the neighboring region of the proposal. The contrast
score Fey for proposal p} is computed as

Feu(pl) =1 — exp(— X2 (Hist, (p), Hist, (Dil(p?)))) (4)

where Dil(p}) denotes the dilated region of proposal p},
and x2(p, Dil(p")) is the chi-squared distance between
Ll-normalized appearance histograms. The saliency results
using contrast score Fcpe can be seen in Fig. 3(c).
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B. Temporal Saliency Analysis

When dealing with video clips, motion provides a power-
ful cue for saliency detection in addition to appearance. That
is because pixels that abruptly change compared to their sur-
roundings often attract more attention. We design a motion
contrast-based saliency method. We first compute the optical
flow using the large displacement optical flow method [45].
To obtain more robust motion information, we smoothen the
initial optical-flow maps over the temporal domain. We then
formulate our motion saliency score as

RM(pl') = Mg (p}') + Mgra(p}!) + Meni () (5)

where My, is a motion contrast score, M4 is an optical-flow
gradient-based score, and M.y represents a motion consistency
score. Saliency results using motion score RM are illustrated
in Fig. 3(d).

1) Smoothing Optical-Flow: Salient objects may not
always move throughout the entire sequence. Unfortunately,
a static object will cause discontinuities and inaccuracies in
the standard optical-flow. To preserve temporal continuity and
obtain a more robust optical-flow estimation, we make use of
a Gaussian filter G that temporally smoothes the optical-flow
estimate o, in frame I; via

l 0. 1) x .
= Tz G601 x o0 ©
D i Orti
where [ indicates the number of adjacent frames considered in
this smooth process.

2) Motion Contrast-Based Saliency: The motion patterns of
foreground objects and the background are usually different.
We design a motion background contrast score Mpg(py) that
models this observation. A proposal, whose background prior
score Fpe computed via (3) is less than e~ !, will be treated as
background. Based on this, we compute the motion contrast
between each proposal and the background proposals BP.

Specifically, given the smoothed optical flow o, = (u, v)
between two consecutive frames I; and I;4 1, the motion distri-
bution of proposal p} is encoded by two descriptors: a normal-
ized histogram of the flow magnitude o€ = grad(v/u2 4 12),
and the distribution of flow orientation 0°' = arctan(v/u).
Based on the histogram Histy of motion feature flow =
{ograd, oori}, we compute the motion contrast score My, for
proposal p} with

Mg (p) = 1 — exp(— X2 (Histgo, (7). HistﬂOW(BP))>. 7

Note that this score relies on relative motion, thus it can be
applied to scenarios with a moving camera.

3) Motion Gradient Summation: The rationale behind
motion contrast is that the motion pattern of an object is
distinct from that of the background. This assumption can
also be exploited via the gradient of the optical-flow. Indeed,
distinct motion patterns cause velocity and orientation discon-
tinuities. That is, the optical-flow gradient will be large around
the salient object boundary. Therefore, we compute a motion
gradient score Myq(p}) by making use of the motion gradient
summation technique in [39]. This score is defined as the aver-
age Frobenius norm of optical flow gradient in the boundary

of object proposal p}

M) = llodllr = |3 3 (i vy)

=X,y J=X,y

= Jid+ ud o2 02 )

where o, = (i, v) is the smoothed optical flow of consecutive
frames I, and I;11, jy, and p, are optical flow gradients in
the x direction and v, and v, are those in the y direction.

According to the definition of the motion gradient score,
the higher value a pixel is, the greater the possibility it asso-
ciates with moving salient object boundary. Actually, due to
the approximation of optical flow computation, the gradient
of optical flow cannot correspond to magnitude values in the
boundaries of a moving object exactly. Therefore, we compare
the average optical-flow gradient magnitude at the proposal
boundary and in a dilated version of this boundary (10 pixels).
The saliency results using the optical-flow gradient magnitude
are shown in Fig. 3(e).

4) Object Proposal Consistency: It is clear that salient
object regions are consistent over time. Therefore, proposals
corresponding to salient objects should also remain temporally
consistent in adjacent frames. We define an interframe score
for each proposal p} in frame /;, based on the salient proposals
of the previous frame. Specifically, each object proposal p_,
for frame I;_; can be warped to frame I; according to the
forward optical flow. We then estimate the overlap between
proposal p} in frame /; and the warped object proposals. This
yields the temporal consistency score Mcn¢

lat_l p?
Moo (p7) = =L 17
en (1) Area(p])

©))
where p_ | denotes the warped regions of the proposal p} from
frame 7—1 to frame ¢ according to optical flow o,. Based on this
function, fractional proposals corresponding to the background
should be filtered out, while object proposals should remain
consistent over time.

Some co-saliency methods also infer the correspondence
between regions, such as [53], [55], and [59]. However, we
explore the relationship among object proposals in time axis,
instead of inferring the semantic or interclass correspondence.

C. Voting for Saliency

Given the different saliency scores described above, we can
compute a ranking score R(p}) for each proposal p} according
to (1). For each frame I;, we define the set of salient object
proposals as the 20% of proposals with the highest ranking
scores. We define Pts C P, as the subset of such high-rank pro-
posals, and m as the number of salient object proposals in Pf .
To transform the salient proposal subset to a saliency map, we
propose a voting scheme for inferring the saliency. A binary
mask /\/l; is generated for salient proposal p§ € PZS, where
Mﬁ(x) = 1 if pixel x in frame I; belongs to proposal pi, and 0
otherwise. For each pixel x, we compute the saliency value by
accumulating the binary masks of the selected proposals P,
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which is computed
1 A
O/(x) = — 1(x). 10
) = — ZM,(x) (10)

We further normalize this value to obtain our initial saliency

estimation as
. (0)
ng(x) —1— exp(— r(zx))

(1)

where ¢ is a constant parameter for normalizing the ini-
tial saliency maps. We validate the range of parameters in
Section V-B and set it as o = 3 through our experiments.

Examples of our initial saliency results are shown in
Figs. 3(f) and 4(b). We can find that the foreground and
background regions are clearly separated.

o

IV. SPATIOTEMPORAL SALIENCY REFINEMENT

Although this initial saliency is relatively accurate, some
ambiguities appear at the boundary of objects and temporal
consistency is unsatisfactory. We now introduce a saliency
refinement process to further improve our saliency estimates.

A. Object Boundary Refinement

Our first goal is to refine the saliency map to obtain
more accurate object boundaries. To this end, we first apply
SLIC [49] to extract superpixels R; = {r,l, rtz, ...} from frame
I, (about 500 superpixels for each frame). The initial saliency
S}“i(rﬁ) of superpixel rﬁ is computed as the averaged saliency
value of its pixels. Then superpixels R; are separated into three
distinct parts: 1) foreground (salient) regions F;; 2) background
(nonsalient) regions B;; and 3) uncertain regions U;

F, = {r{ | S}“i(r{) > high v,/ ¢ Rt}

B; = [rﬁ’ | S}ni<ri’) < tlov, Vrg’ € R,}
U =R —-F —-B (12)
where two thresholds 7MeM and 7!V are set at 0.8 and 0.2,
respectively. The detailed discussion of these two thresholds
are presented in Section V-B. We then follow a graph-based
approach to refine the saliency value of the uncertain regions.
Specifically, for each frame /,, we build an undirected
weighted graph using superpixels as nodes. This graph con-
tains an edge between any two adjacent superpixels (rf, ),
with the weight defined as the Euclidean distance between
features encoding the average CIELab color space and the
mean optical-flow magnitude. Furthermore, we compute the
geodesic distance d2°°(ri,r)) between any two superpixels
using the methods in [4] and [51]. We then add edges between
any two background superpixels and any two foreground
superpixels, with the weight set as zero. The saliency value of
each uncertain superpixel 7 € U; is then defined as

STy = 1- e"P(‘ max (171

1 €F;
x min dgeO(ry,rf)) (13)
1 €Dy

The rationale behind this equation is that the uncertain area
r{ should have a high saliency probability when it differs from
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Fig. 4.
Original video frames of Girl from SegTrack, with the frames ordered
according to time. (b) Initial saliency maps obtained via our object-based
saliency detection described in Section III. (c) Results of saliency refine-
ment (Section IV-A). (d) Final results exploiting temporal consistency
(Section IV-B).

Example of the spatiotemporal saliency refinement process. (a)

the background superpixels and is close to the foreground
ones. Fig. 4(c) shows an example of the resulting saliency
maps. It can be seen that the arms and legs of the Girl are
successfully highlighted.

B. Temporal Saliency Consistency

In order to further improve the temporal consistency of the
refined saliency estimates SR°f, we introduce a propagation
process as in [52] to propagate the per-frame saliency maps
over time. For the first frame /;, the location prior is initialized
with the refined proposal saliency map Slfef. For the following
frames, the saliency value of superpixel #/ is computed as:

oy ()l
Sz+1(’11+1> = -
Zi¢<’ b ’Jz+1>
with Ip(ri) = exp(—ograd(rf))
where ¢(rf,r§ 41) indicates the overlap between superpixel
ri warped by optical-flow and superpixel r],,, and o€ is
the same normalized histogram of flow magnitude as used
in Section III-B to compute the motion contrast score. This
process is performed as independent forward and backward
propagation steps, and the final result is the mean value of

these two steps. The results of the Girl example are shown in
Fig. 4(d), where the saliency results are more accurate.

) SRef(ri)

t t

(14)

V. EXPERIMENTAL RESULTS

The proposed object proposals-based video saliency method
automatically detects salient objects in video sequences. We
demonstrate the benefits of our approach on three benchmark
datasets and provide quantitative and qualitative comparisons
with nine state-of-the-art methods. We use the implementa-
tions provided by the authors of these methods and set their
free parameters so as to maximize their performance.

A. Experimental Settings

1) Datasets: We first evaluate our method on the
SegTrackV?2 dataset [58], which is an updated version of the
SegTrack dataset [56] with full pixel-level ground-truth (GT)
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annotations on multiple objects in each frame. The updated
SegTrackV?2 dataset totally introduces 14 sequences (Birdfall,
Cheetah, Girl, Monkeydog, Parachute, Penguin, Drifting Car,
Hummingbird, Frog, Worm, Soldier, Monkey, Bird of Paradise,
and BMX) that presents different challenges. We also evaluate
our approach on the well-known Freiburg—Berkeley Motion
Segmentation Dataset (FBMS) [44]. Finally, we challenge
the current Densely Annotated Video Segmentation (DAVIS)
dataset [7], which is designed for the task of video object
segmentation with 50 video clips with the binary labels.

2) Comparison Methods: We compare our approach with
three image saliency methods, frequency-tuned saliency
(IG) [11], saliency filter (SF) [5], and low rank (LR) [1], and
with six well-known video saliency techniques, self resem-
blance saliency detection (SD) [43], PQFT [23], space-time
saliency (TM) [19], gradient flow video saliency (GFS) [30],
and saliency-aware geodesic segmentation (SG) [4], video
saliency via spatiotemporal cues and uncertainty weighting
(US) [29].

3) Evaluation Metrics: We report the precision versus
recall curves (PR curves), F-score curves, and mean absolute
errors (MAEs) for evaluation. The precision value represents
the ratio of correctly assigned salient pixels to all the pixels in
the detected regions, while the recall rate is the percentage of
detected regions among the true positive samples. The curves
are averaged over each video sequence. The F-measure in [11],
considers both precision and recall, and can be computed as

(1 + B?) - Precision - Recall
~ B2 Precision + Recall

Fg (15)

We set g2 = 0.3 throughout our experiments. The MAE
in [5], is defined between a saliency map S and the binary GT
as MAE = (1/|1)) Zx [S(x) — GT(x)| , where |I| represents
the number of pixels and x stands for all image pixels.

B. Parameter Validation

The optimal parameter settings are used to achieve the best
performance considering the precision and MAE measures on
SegTrackV2 [58], FBMS [44], and DAVIS [7] datasets com-
prehensively. For the optical-flow and proposal segmentation
calculations in our method, we set the source codes as default
parameter settings provided by the authors, and the detailed
settings are referred to [34] and [44].

Fig. 5 shows some important parameter settings mentioned
in our method. In Fig. 5(a), we use the MAE measure to
describe the ratio of the number of voted top-ranked propos-
als in Section III-C. Voting too many proposals may introduce
more inaccurate proposals, which will negatively impact the
performance of the initial saliency estimate. While less voting
candidates tend to neglect several parts of the salient object,
then it is likely to lose the completeness of the detection. We
run each ratio of the set of salient object proposals for ranking
scores, and select top 20% of proposals with the highest rank-
ing scores. In Fig. 5(b), we use the precision rates of initial
saliency results to define two thresholds which separate fore-
ground and background thresholds in (12). With the increase
of the threshold, the precision of the initial saliency map gets
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Fig. 5. Validation of the parameters used in our method. (a) Ratio of the num-
ber of voted top-ranked proposals in Section III-C. (b) Evaluates the selection
strategy of two thresholds 7!°% and rP&h which separate initial saliency maps
into foreground and background parts (12). (c) Illustrates the number of adja-
cent frames of smoothing optical-flow involved in Section III-B1. (d) Constant
parameter of o in (11).

lower. Moreover, the precision decreases rapidly when we set
the precision value 7'°Y = 0.2. Similarly, when the thresh-
old exceeds the background threshold 7high — (0.8 the value
of gradient flow will level off. Fig. 5(c) illustrates the num-
ber of adjacent frames of smoothing optical-flow involved in
Section III-B1. Having a larger neighboring system for a cer-
tain frame, long-range motion information will be taken into
account, thus ignoring some unreliable optical flow estima-
tion. However, this possibly makes optical flow unreliable
and loses discriminative ability. When the number of adjacent
frames decreases, only considering the motion information
of few frames will be influenced by inaccurate optical flow
estimation. We set the number of adjacent frames as [ = 5
in (6). Fig. 5(d) shows the setting of the constant parame-
ter of o in (11), which determines the relative contrast of
initial saliency maps. We report the performance by varying
o ={0.5,1,2,3,4,5} with 0 =3 in our implementation.

C. Comparison on SegTrackV2

The results for experiments on SegTrackV2 [58] are shown
in Fig. 6. The PR curve (first column) and F-measure curve
(second column) of our method are clearly above baselines,
which indicates that our predicted saliency values are clos-
est to the GT. Similarly, we obtain a lower MAE value
(third column) than the baselines, indicating higher accuracy
of our method. In particular, our MAE value of 0.0426 in
SegTrackV2 is significantly lower than that of the second
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Visual comparison of previous approaches with our method and with GT on SegTrackV2. From left to right: representative frames of the input

videos, GT, our method, GFS [30], SG [4], IG [11], SF [5], SD [43], PQFT [23], and TM [19].

best method (SG [4] in this case). Some qualitative compar-
ison is shown in Fig. 7, and they clearly show the benefits
of our approach. Our saliency maps accurately highlight the
outline of the salient object thanks to object-level compu-
tation. Furthermore, due to our proposal selection process,
background noise is significantly reduced. Importantly, our
proposal-based saliency maps can even filter out cluttered
background regions.

In contrast, IG [11], SF [5], and LR [1] work with
still images. IG [11] exploits spatial frequencies to compute
saliency using color and lightness properties. SF [5] estimates
saliency from uniqueness and spatial distribution, which are
two important measurements in contrast-based approaches.
LR [1] models the background regions of the image as the
low-rank matrix, and the salient regions are treated as sparse
noises. While they all yield good results, they suffer from their
lack of motion information. As a consequence, they often fail
to accurately locate fast-moving objects. For instance, in the

Cheetah sequence, the background is cluttered, and the fore-
ground object does not stand out on appearance alone, which
represents a difficult scenario for these methods.

In contrast, GFS [30], SG [4], SD [43], PQFT [23], TM [19],
and US [4] make use of additional motion features to detect
spatiotemporally salient objects. GFS [30], based on the gra-
dient flow field and energy optimization, estimates salient
regions in videos. The proposed effective utilization of gra-
dient flow field information is robust to estimating the object
and background in complex scenes. SG [4] integrates spa-
tiotemporal edge maps and geodesic distances to compute
spatiotemporal saliency. The spatiotemporal edge maps con-
sist of spatial static edges within the same frame and motion
boundary edges estimated from neighboring frames. In Fig. 7,
SG tends to produce blurred object boundaries (Bird of
Paradise). SD [43] is a bottom-up approach that computes
local regression kernels as local descriptors to measure the
likeness of a pixel or voxel to its surroundings. In most
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Fig. 9. Visual comparison of previous approaches with our method and with GT on FBMS [44]. From left to right: representative frames of the input videos,
GT, our method, GFS [30], SG [4], IG [11], SF [5], SD [43], PQFT [23], and TM [19].

cases, SD can locate salient objects by accounting for tem-
poral information, but the saliency maps are low resolution
and some moving objects are assigned low saliency values
(Monkeydog). In PQFT [23], the motion features are com-
bined into a PQFT process to obtain spatiotemporal saliency
maps. However, this method only focuses on very local content
without highlighting the entire object (Monkeydog). The spa-
tiotemporally salient object estimation of TM [19] is based on
feature contrast and local priors. However, this method fails
to take the temporal coherence of the saliency map across
the video into consideration. Another limitation is that, for
complex motion patterns, the original contrast-based features
cannot correctly locate salient objects.

D. Comparison on FBMS Dataset

Results of our experiments on the FBMS dataset [44] are
shown in Fig. 8. The PR curve (first column) and F-measure
curve (second column) indicate that our method again achieves
better performance than the other tested methods. We obtain
the lowest MAE value (third column) compared to baselines.
In FBMS, our method obtains an MAE of 0.0495, which

is lower than that of other state-of-the-art saliency detec-
tion methods and indicates superior accuracy. Fig. 9 shows
some comparison results using our method and other methods.
The compared methods exhibit the drawback of the dark-
ness in the center of the salient object and a discontinuous
shape of the object. Our proposal selection process retains
the objectness of the salient object and decreases the noise
from cluttered backgrounds. IG [11] and SF [5] could not
precisely locate the salient object due to the lack of motion
information, and they underperformed due to the similarity
appearance of the foreground and background. For instance,
in the cars sequences, these two methods simply treated the
brightest region as the salient region, where their performance
was limited with complex scenes (cats and farm).

SG [4], SD [43], PQFT [23], and TM [19] were able to
locate the salient objects from the motion information but also
suffered from various drawbacks. SG [4] produced darkness
in the center of the salient object (farm) because the method
is calculated at the superpixel scale, a common problem with
superpixel-based methods. SD [43] and PQFT [23] showed
blurred object boundaries (farm), due to the failure to preserve
the semantic information of the object. Furthermore, the
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Fig. 11.

Visual comparison of previous approaches with our method and with GT on DAVIS [7]. From left to right: representative frames of the input videos,

GT, our method, GFS [30], SG [4], IG [11], SF [5], SD [43], PQFT [23], and TM [19].

temporal coherence was not maintained very well (rabbits).
TM [19] sometimes obtained the entire salient object mask
(rabbits and cats), but the complex color distributions and
high similarity between the foreground and background made
it difficult to locate the salient object and the noisy background
phenomenon persisted in some cases (farm).

E. Comparison on DAVIS Dataset

We also test our method on the DAVIS dataset [7]. The
quantitative and qualitative results are shown in Figs. 10
and 11. We obtain an MAE of 0.0884 in DAVIS dataset.
As demonstrated in Fig. 11, our proposal selection process
retains the completeness of the salient object and decreases the
noise from cluttered backgrounds. Compared to other methods,
the saliency detection methods IG [11], SF [5], SD [43], and
PQFT [23] were not able to show the accurate location of the
salient object because of the lack of motion information (bear
and rollerblade). SG [4] and GFS [30] were able to locate the
salient objects with monotonous appearance (bear and car-
shadow), but did not well on objects with various appearance

(rollerblade). TM [19] mainly outputs noisy in background
regions because of the clustered background (car-shadow).

F. Algorithm Validation

The runtime of the proposed algorithm costs 8.36 s for a
typical 320 x 420 frame, including average time of 3.92 s for
generating initial saliency map, 3.12 s for boundary refinement
and 1.32 s for temporal consistency calculation. The run-
time excludes the optical-flow computation and the proposal
extraction process, which are used as input. Our method can
locate salient objects with complex motion patterns, and high-
light more complete foreground objects than state-of-the-art
methods. Furthermore, our algorithm incorporates intraframe
saliency and motion cues and clearly distinguishes moving
salient objects from the background.

VI. CONCLUSION

We have presented a novel approach to video saliency detec-
tion using object proposals. Our overall aim was to make full
use of object-level representations such as object proposals to
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further improve video salient object detection models. We fol-
lowed a more intuitive approach at the object level. Rather
than individually calculating saliency values at small scales,
our method directly located candidate salient object proposals
via a more intuitive visual saliency analysis. Compared to the
state-of-the-art methods, our method accurately located com-
plete salient objects with complex motion patterns, even in
the presence of cluttered background. In our future work, we
will pay attention to extending this paper for stereo saliency
detection tasks (e.g., [60]) and event-driven studies (e.g., [62]).
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