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27 Abstract 

28 Background The dynamics of phosphorus (P) in the envi- 

29 ronment is important for regulating nutrient cycles innatural 

30 and managed ecosystems and an integral part in assessing 

31 biological resilience against environmental change. Organic 

P (Po) compounds play key roles in biological and ecosys- 32 

tems function in the terrestrial environment, being critical to 33 

cell function, growth and reproduction. 34 

Scope We asked a group of experts to consider the 35 

global  issues  associated  with  Po- in the terrestrial 36 
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37 environment, methodological strengths and weak- 

38 nesses, benefits to be gained from understanding the 

39 Po cycle, and to set priorities for Po research. 

40 Conclusions We identified seven key opportunities for 

41 Po research including: the need for integrated, quality 

42 controlled and functionally based methodologies; as- 

43 sessment of stoichiometry with other elements in organ- 

44 ic matter; understanding the dynamics of Po in natural 

45 and managed systems; the role of microorganisms in 

46 controlling Po cycles; the implications of nanoparticles 

47 in the environment and the need for better modelling 

48 and communication of the research. Each priority is 

49 discussed and a statement of intent for the Po research 
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50 community is made that highlights there are key contri- 

51 butions to be made toward understanding biogeochem- 

52 ical cycles, dynamics and function of natural ecosys- 

53 tems and the management of agricultural systems. 
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57 Abbreviations 

The importance of phosphorus and organic 86 

phosphorus 87 

The dynamics of phosphorus (P) in the terrestrial envi- 88 

ronment is critical for regulating nutrient cycling in both 89 

natural  and  managed  ecosystems. Phosphorus com- 90 

pounds fundamentally contribute to life on earth: being 91 

essential to cellular organization as  phospholipids, as 92 

chemical energy for  metabolism in the  form of ATP, 93 

genetic instructions for growth, development and cellu- 94 

5690 δ18OP Oxygen-18 isotope ratio lar function as nucleic acids, and as intracellular signal- 95 

621 16S rRNA 16S ribosomal Ribonucleic acid ling  molecules  (Butusov  and  Jernelöv 2013). Plant 96 

64 Al Aluminium growth is limited by soil P availability, so  turnover of 97 
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98 organic phosphorus (Po) represents a source of P for both Po and Pi in plant materials to soil. Inputs of P to 110 

99 ecosystem function and, critically, P supply affects crop soil through these processes may contribute Po directly 111 

100 production (Runge-Metzger 1995). Phosphorus defi- to soil or indirectly, following decomposition, accumu- 112 

101 ciency constrains the accumulation and turnover of plant lation, and stabilization of Po by microorganisms 113 

102 biomass and dictates community assemblages and bio- (Harrison 1982; Lang et al. 2016; Magid et al. 1996; 114 

103 diversity in a range of natural ecosystems (Attiwill and McGill and Cole 1981; Stewart and Tiessen 1987; Tate 115 

104 Adams 1993; McGill and Cole 1981). and Salcedo 1988). In its simplest definition, Po is any 116 

105 Chemically, P is a complex nutrient that exists in compound that contains an organic moiety in addition to 117 

106 many inorganic (Pi) and organic (Po) forms in the envi- P, while a wider definition would include phosphate 118 

107 ronment. Through the utilization of orthophosphate, which is associated with organic matter. Such discrete 119 

108 plants and other organisms drive the conversion of Pi Po compounds are categorized into similarly structured 120 

109 to Po. Death, decay and herbivory facilitate the return of forms and these forms and their relative lability in soil is 121 
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122 shown in Fig. 1, taken from Darch et al. (2014). The Po Extracellular phosphatase activity is induced under con- 154 

123 compounds, which are considered to be biologically ditions of P deficiency and is either associated with root 155 

124 relevant include monoesters, inositol phosphates, dies- cell walls or released directly into the rhizosphere 156 

125 ters and phosphonates. The relative lability and accu- (Richardson et al. 2009). 157 

126 mulation of these different groups varies in the environ- There have been a number of important advances in 158 

127 ment, but overall the labile monoesters and diesters tend our understanding of Po dynamics at the ecosystem and 159 

128 to be less prevalent and the inositol phosphates tend to rhizosphere scale in the past decade, with particular 160 

129 be less labile and accumulate in the environment (Darch advancement in understanding of plant-soil- 161 

130 et al. 2014). In general, soil organic P forms have a microorganism interactions and concomitant advances 162 

131 smaller affinity to the soil solid phase than inorganic P in techniques used to assess these dynamics. It is now 163 

132 forms and a large proportion of the P forms found in timely to start to consider how to integrate this informa- 164 

133 leachate are found to be in organic forms (Chardon and tion and extract further understanding of the dynamics 165 

134 Oenema 1995; Chardon et al. 1997; Espinosa et al. of Po in the managed and natural environment and this 166 

135 1999) and can therefore have large impacts on ecosys- will have a number of potentially important impacts on 167 

136 tem function (Sharma et al. 2017; Toor et al. 2003). All how we tackle some of the most pressing global issues 168 

137 Po compounds have a range of chemical bonds, and all of today. Here we summarise the state of the art of Po 169 

138 require specific catalytic enzymes to make them biolog- research and identify priorities for future research, 170 

139 ically available in the form of orthophosphate. The which will help meet these goals. 171 

140 hydrolysis of Po is mediated by the action of a suite of 

141 phosphatase enzymes which may have specificity for 

  

142 single compounds or broad specificity to a range of Establishing priorities for organic phosphorus 172 

143 compounds (George et al. 2007). Unlike for organic research 173 

144 nitrogen, there is no evidence for direct uptake of dis-   

145 solved Po compounds by biology, apart from the uptake There has been a large increase in the number of publi- 174 

146 of phosphonates by bacteria in marine systems cations in the Po research field in the last two decades, 175 

147 (Dyhrman et al. 2006). Plants and microbes possess a with ~400 publications in 2016, compared to 150 in 176 

148 range of phosphatases that are associated with various 2000. In September 2016 a workshop on Organic Phos- 177 

149 cellular functions, including; energy metabolism, nutri- phorus was held (https://op2016.com), gathering 178 

150 ent transport, metabolic regulation and protein activa- together 102 experts in the field of Po research from 23 179 

151 tion (Duff et al. 1994). However, it is the extracellular countries to identify research priorities. Contributors 180 

152 phosphatases released into the soil that are of particular were asked, in five groups, to consider the global 181 

153 importance for the mineralisation of soil Po. issues associated with Po, methodological strengths 182 
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Q3 Fig. 1 Organic phosphorus 

forms with generic and example 

structures and information on the 

relative lability and prevalence in 

soil. (Adapted from Darch et al. 

(Darch et al. 2014)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
183 and weaknesses, benefits to be gained from of important tools to help manage the environment more 202 

184 understanding the Po cycle, and priorities for Po effectively to either prevent or mitigate against some of 203 

185 research. The information from the five groups was the major global threats. A number of research priorities 204 

186 collected and the concepts, where consensus between were identified and grouped into specific opportunities 205 

187 at least two of the groups was reached, are summarized which are detailed below. The key opportunities to 206 

188 in Table 1. It is clear from this that research into Po has improve the effectiveness of Po research identified here 207 

189 the potential to have impacts on global biogeochemical are similar to those highlighted in Turner et al. (2005a, 208 

190 cycles of P both in natural and managed systems and 2005b), although it is clear that some progress has been 209 

191 will therefore potentially impact food security, agricul- made since that set of recommendations were made. 210 

192 tural sustainability, environmental pollution of both the However, the similarities and consistency between the 211 

193 aquatic and atmospheric environments and will be pro- outcomes of these two studies suggests we still have 212 

194 foundly affected by environmental change both in geo- some progress to make. A number of new priority areas 213 

195 political terms and through man-made climate change. were identified here that were not identified in Turner 214 

196 We are well placed to tackle these as there are a number et al. (2005a, 2005b), including the need for greater 215 

197 of strengths in the way the research is performed and the understanding of the metagenomics and functional mi- 216 

198 weaknesses are well understood. It was considered that crobial genes involved in organic P turnover, greater 217 

199 Po research will have a range of impactful outcomes on understanding of the impact of nanoparticles in the 218 

200 our understanding of how natural and agricultural sys- environment on organic P turnover and the need to 219 

201 tems work and has the potential to give society a number integrate the system more effectively in the form of 220 



 

 

 

 

 
 

Qt14:1 Table 1  Synthesis of expert opinions on the global issues associated with organic phosphorus, how the research community can potentially contribute to solutions to such issues, and 

identification of opportunities for research to allow this to happen 

t1:2 What are the global issues 

associated with Po? 

 

What are the 

methodological strengths 

and weaknesses? 

 

What are benefits of 

understanding dynamics 

of Po? 

 

What are the priorities for Po 

research? 

 

Opportunities in Po 

research 

 
  

 

t1:3 Food Security and agricultural 

sustainability 

Strengths Management of plant P 

nutrition 

• Use existing datasets more 

effectively 

General advances in the 

research model 

t1:4 Po has a role as a source of P 

for agricultural crops 

Strong collection of well- 

developed methods 

Assessment of soil P 

availability 

• Avoid repeating experiments by 

being aware of past research 

t1:5 Nutrient cycling in natural 

ecosystems 

Wide range of techniques Understanding biological 

system function 

• Better access to shared facilities 

t1:6 Po buffers ecosystem function 

with effects on ecosystem 

resilience and biodiversity 

Capacity for multi- 

disciplinarity 

Input into climate and 

biogeochemical models 

• Training programmes in Po related 

techniques and concepts 

t1:7 Renewable resources Strong international 

networks 

Potential to close the P 

cycle 

• Interdisciplinary and long term 

research 

t1:8 Use of wastes containing Po as 

fertilisers to close the loop 

Potential for 

commercialisation of 

techniques 

Manage ecosystem services 

and resilience 

• Link operationally-defined pools 

with biological processes 
Opportunities in organic 

phosphorus analytical 

methodologies 

t1:9 C storage in soils Range of field based 

applications 

Understand the role of soil 

biology – fungal vs 

bacterial dominated 

systems 

• Some standardisation of protocols 

t1:10 Utilisation of soil Po may be 

counter to our need to store 

C in organic matter 

Weaknesses Assess stability of P forms 

in soil 

• Development of in situ, non- 

destructive techniques for Po 

t1:11 Environmental pollution ‘Snap-shot’ rather than 

dynamic techniques 

Identify mechanisms from 

natural systems that can 

be applied in managed 

systems 

• Develop a minimum dataset and an 

accessible database 

t1:12 Need to manage the balance of 

food security vs 

environmental P pollution 

Operational methodologies 

lack biological relevance 

Separate plant and 

microbial contributions 

to soil functions 

•Link the Po cycle with other 

biogeochemical cycles 

Opportunities from 

understanding 

stoichiometry – 

t1:13 Environmental change Lack of standardisation and 

quality control 

Develop indicators for 

tipping points in 

ecosystem function – 

identify conditions of 

resistance, resilience and 

“points of no return” 

• Optimise stoichiometry between Po 

and other elements for system 

function 

interactions with other 

element cycles 

t1:14 Warmer temperatures will shift 
the biogeochemical cycle of 

Po 

t1:15 Biogeochemical cycling from 

global to cellular scales 

Methodological limitations 

(matrix issues) 

 
Loss of training/education 

in soil science 

Allow scaling up in time 

and space through input 

to models 

Extend our understanding 

of global nutrient 

• Integrate soil physics, chemistry 
and biology to understand Po and 

how it fits with wider soil fertility 

 
  



 

 

 

 

 

 
t1:16 Table 1 (continued) 

 

What are the global issues 

associated with Po? 

 

 
 

What are the 

methodological strengths 

and weaknesses? 

 

 

What are benefits of 

understanding dynamics 

of Po? 

 

 
 

What are the priorities for Po 

research? 

 

 
 

Opportunities in Po 

research 

 

 

 

 
t1:16 Po compounds are vital for cell 

function and are moved 

globally as part of 

biogeochemical cycles and 

in the food chain 

 

 

 

Lack of replication and 

appropriate statistical 

approaches 

dynamics beyond what 

can be ascertained 

empirically 

• Design tailored systems for 

specific managed environments 

that optimise use of Po 

• Optimise Po utilisation over loss 

Opportunities from 

understanding interactions 

with land management 

Opportunities from 

understanding Microbial 

Po: Function and 

dynamics 

t1:17 Geopolitical stability Limited access to advanced •Improve soil P testing 

t1:18 Po as an alternative to mined P 

resources 

techniques for all 
• Develop a P credits system 

• Utilise Po more effectively by using 

what’s in soil, what’s added to 

soil and what’s lost 

• Understand which genes and 

transcripts control the microbial 

response to Po 

• Understand microbial impacts on 

Po cycles 

• Understand the P limits to plants 

and microbes 

• Produce a molecular toolkit for 

studying microbial structure and 

function 

• Understand Po interaction with 

natural and manmade 

nanoparticles 

• Assess the utility of nanoparticles 

to help manage the system 

• Model P dynamics in the 

environment 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Opportunities from 

interactions with 

nanoparticles 

 

 
Opportunities to use 

modelling of Po in soil 

 

t1:19 
 

 
t1:20 

 

 
t1:21 

t1:22 

t1:23 

 
t1:24 

 
 

t1:25 

t1:26 

• Develop conceptual models of 
cycling at a range of scales 

• Build empirical models using 

existing data 

• Produce a life cycle analysis of Po 

• Promote discussion of Po within 

the scientific community 

and ecosystems t1:27 

 
t1:28 

 
t1:29 

t1:30 
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models. It is clear that Po research field is evolving, but 

some of the issues of a decade ago still persist. 

221 

222 
 

Opportunities in organic phosphorus analytical 

methodologies 

 
The core analytical tools for the Po discipline are 31P 

NMR spectroscopy (Cade-Menun and Liu 2014; Cade- 

Menun 2005; Cade-Menun et al. 2005; Turner et al. 

2005a, 2005b), which is used to identify Po compounds 

in several environmental matrices, along with more 

traditional soil extraction methods, such as those to 

measure total Po and the fractionation method developed 

by Hedley et al. (Condron and Newman 2011; Hedley 

et al. 1982; Negassa and Leinweber 2009). There is 

discussion and debate focused around the suitability of 

these analytical methodologies for characterizing Po in 

soil and terrestrial systems (Liu et al. 2014; Doolette and 

Smernik 2011) and this debate revolves around the 

identity of the broad base of the inositol hexaphosphate 

peak on NMR spectra, which some contest is resolved 

and other suggest is unidentified (Jarosch et al. 2015). 

Despite this, research into Po is still limited methodo- 

logically and many methods are operationally-defined. 

Importantly, there is a need to link the results from these 

methods to biological and biogeochemical processes in 

the environment. In the process of achieving this, there 

is debate over the benefits of (i) standardization or 

homogenization of analytical methods, versus the merits 

of (ii) promoting diversity of analytical procedures. 

It is critical to develop non-destructive methods to 

analyse soil pools and their dynamics without the need 

for extraction. Some solid-state methods, such as solid- 

state NMR or P-XANES (X-ray Adsorptive Near Edge 

Structure) spectroscopy are limited by the naturally low 

concentrations of Po forms in soils (Liu et al. 2013, 

2014, 2015). Visible Near-Infrared Reflectance Spec- 

troscopy (VNIRS) has shown some promise for deter- 

mining total Po in soils (Abdi et al. 2016), but further 

testing is needed. Another priority for Po methodologies 

is the development of standard analytical quality con- 

trols through the use of standardized reference materials 

for cross-comparison and checks on analytical methods. 

These standardized reference materials will include ref- 

erence soils and chemicals. There is a need for the 

community to identify standardized natural reference 

materials such as soils and manures, but a large amount 

of effort would be needed to put together a collection of 

appropriate materials as well as a means to share them 
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268 internationally. Standardization of Po compounds could analysing the C:N:P ratio of bulk soils only, information 315 

269 be achieved through the use of simple, relatively pure, on relevant and spatially-dependent processes may be 316 

270 and inexpensive Po compounds (e.g. Na-phytate, glu- lost (e.g., rhizosphere, soil horizons). The most obvious 317 

271 cose 1-P) purchased from a single supplier operating in reason for soil-specificity and heterogeneity among stoi- 318 

272 many countries with a guaranteed long-term production chiometric ratios is that part of the SOM is separated 319 

273 commitment. And there is a need to develop a commer- from microorganisms and roots via physical and phys- 320 

274 cial supply of other commonly identified Po compounds icochemical barriers. By re-analysing the results of 321 

275 in soils, such as scyllo-inositol hexakisphosphate, to C:N:P:Sulphur (S) analyses of SOM obtained from 322 

276 allow the use of appropriate substrates for research fully 2000 globally distributed soil samples, Tipping et al. 323 

277 understand the biological and chemical processes con- (2016) demonstrated that there is both nutrient-poor and 324 

278 trolling the behaviour of this and other Po compounds in nutrient-rich SOM, with the latter being strongly sorbed 325 

279 the environment. It is a priority for researchers to further by soil minerals (Tipping et al. 2016). This may be 326 

280 develop methods, while also refining existing Po explained by the incorporation of SOM into aggregates 327 

281 methods and standards, to generate useful and compa- (Stewart and Tiessen 1987) or the adsorption of P- 328 

282 rable datasets and to build a consensus with respect to Po containing organic and inorganic molecules to mineral 329 

283 dynamics and function in agricultural and natural surfaces (Celi et al. 2003; Giaveno et al. 2010). Clay and 330 

284 ecosystems. metal (oxy)hydroxide minerals can sequester Po and Pi 331 
 released by microbial- or plant-driven processes and/or 332 

285 Opportunities from understanding stoichiometry – affect enzyme activities, while limiting P biocycling 333 

286 Interactions of organic phosphorus with other element (Celi and Barberis 2005). This highlights the need to 334 

287 cycles understand the tight interrelationship between chemical, 335 
 physical and biological processes and the potential for 336 

288 Comparing element ratios of living organisms and their stoichiometric assessment as an indicator of P and or- 337 

289 non-living environment has been at the centre of scien- ganic matter availability in soils. Modern analytical 338 

290 tific debate for many years. In oceans, planktonic bio- techniques which enable to analyse the stoichiometry 339 

291 mass is characterized by similar C:N:P ratios as marine of the soil constituents at a high resolution might help 340 

292 water (106:16:1) (Redfield 1958). While similar charac- provide this knowledge (Mueller et al. 2012). 341 

293 teristic element ratios also exist for terrestrial ecosys- There are many known mechanisms by which organ- 342 

294 tems with much greater heterogeneity across a range of isms can improve access to Po (Richardson et al. 2011), 343 

295 spatial scales (Cleveland and Liptzin 2007). The com- but there are several novel mechanisms being identified 344 

296 parison of C:N:P ratios in the microbial biomass of soils that target key components of SOM, such as polyphe- 345 

297 with that of soil organic matter (SOM) may therefore nols and tannins, to mobilise P (Kohlen et al. 2011). A 346 

298 help to identify the nutrient status of the soil (Redfield priority will be to understand the plant and microbial 347 

299 1958). Following this concept, the stoichiometric ratios mechanisms involved in the accumulation and mobili- 348 

300 of resources (e.g., SOM) over the microbial biomass has zation of P from organic matter. It is important to at- 349 

301 been calculated as a proxy for nutrient imbalances tempt to determine the optimal stoichiometry between 350 

302 (Cleveland and Liptzin 2007). An understanding of C:N:P, and understand the role Po plays in this, to allow 351 

303 stoichiometric ratios in soils and their relationship to sustainable management of P in arable soils and to 352 

304 those in crop plants and for the decomposition of litter identify anthropogenic nutrient imbalances in natural, 353 

305 and SOM will provide an important indicator of nutrient agricultural and forest ecosystems (Frossard et al. 2015). 354 

306 status in terrestrial ecosystems and better management   

307 of systems. Opportunities from understanding interactions 355 

308 Until now, the large temporal and spatial heterogene- of organic phosphorus with land management 356 

309 ity of soil systems and the heterogeneous distribution of   

310 SOM constituents have made the analysis and interpre- An ability to utilise Po to sustain agronomic productivity 357 

311 tation of ecosystem stoichiometry a challenge because with declining conventional fertiliser inputs drives re- 358 

312 for microbial decomposers the elemental composition of search into interactions among Po, land use and man- 359 

313 micro-sites in soils might be more relevant than the agement (Nash et al. 2014; Stutter et al. 2012). The 360 

314 overall element ratio of the soil. For example, by conditions to better utilise Po may bring benefits for 361 



 

 

 

362 other soil quality factors (e.g., SOM status and microbial 2014; Powers et al. 2016), following declining fertiliser 411 

363 cycling), but may require management of potentially inputs or altered cropping practices, has been studied 412 

364 adverse effects on wider biological cycles and water following long-duration manipulations. Often these 413 

365 quality (Dodd and Sharpley 2015). Societal drivers for look at the end point of change (Cade-Menun et al. 414 

366 food and timber production underpin much of the re- 2015), but have not ‘followed’ the dynamic. Although 415 

367 search into Po speciation, biological turnover and inte- powerful methods for Po assessment are developing 416 

368 gration with agronomic systems. Numerous studies rapidly, studies that preceded these have the opportunity 417 

369 have reported Po stocks and changes associated with to incorporate them with archived samples or control 418 

370 management; fewer have studied the time-course of soils (Keller et al. 2012; Liu et al. 2015). Long-term 419 

371 transformations and turnover with management change, understanding of Po dynamics in management systems 420 

372 linked with soil chemical and biological processes. The should be pursued, while short-term seasonal observa- 421 

373 interactions between P speciation, (bio)availability and tions (for example Ebuele et al. 2016) will be needed to 422 

374 SOM are of prime importance since land management understand the influence of microbial dynamics on P 423 

375 greatly affects SOM in space and time (in beneficial or speciation and turnover under various land-use and 424 

376 detrimental ways) and exert strong geochemical and management scenarios. If studies of short-term 425 

377 microbial controls on Po cycling. peturbations (via management, climate etc) can show 426 

378 The interactions of land cover, use and management benefits for providing greater Po resources into available 427 

379 are important for understanding the role of Po across pools then these processes may be beneficially incorpo- 428 

380 ecosystems. In agricultural systems, the information on rated in future land management. 429 

381 soil Po stocks is well represented have been quantified ‘Organic’ farming brings a commercial stimulus to 430 

382 by numerous studies in North America (Abdi et al. substitute agro-chemicals (including chemical P 431 

383 2014; Cade-Menun et al. 2015; Liu et al. 2015; fertilisers) with sustainable management, such as use 432 

384 Schneider et al. 2016), Europe (Ahlgren et al. 2013; of organic amendments, for example enhancing soil P 433 

385 Annaheim et al. 2015; Keller et al. 2012; Stutter et al. cycling with the aim of better utilizing P already present 434 

386 2015), China (Liu et al. 2013), South America (de and moving towards a ‘closed’ system (Annaheim et al. 435 

387 Oliveira et al. 2015), and Australia (Adeloju et al. 2015; Gaind and Singh 2016; Schneider et al. 2016). 436 

388 2016). In forestry, such information is available in trop- The same approaches can be applied to less intensive, or 437 

389 ical (Zaia et al. 2012) and temperate systems (Slazak developing, agricultural systems. Canadian pastures 438 

390 et al. 2010) and orchards (Cui et al. 2015). However, an managed under an organic regime, had a greater abun- 439 

391 important improvement will be to better understand the dance of Po (65% vs 52% of total P)compared to con- 440 

392 reasons as to why particular stocks exist under certain ventional pastures and were able to maintain yield with- 441 

393 geoclimatic-land cover combinations. Key opportunities out inorganic fertilisers (Schneider et al. 2016). These 442 

394 exist to understand Po dynamics for sustainable P use in authors concluded that plants were using Pi rather than 443 

395 tropical systems and for forests growing on marginal Po and supported by other studies showing no indication 444 

396 soils, both of which depend on effective management of that the greater microbial activity under organic farming 445 

397 Po resources. caused utilization of stabilized Po forms (Keller et al. 446 

398 It is known that both land cover and management 2012). Therefore, the management conditions and ac- 447 

399 factors (tillage, fertilizer type, application rate and tions required to promote better acquisition of Po pools 448 

400 timing) interact with abiotic factors in controlling Po remain elusive. 449 

401 stocks and cycling, such as SOM, stabilizing surfaces The consensus is that a key question remains: How 450 

402 [e.g., Fe- and aluminium (Al)-oxides, calcium (Ca) long could the turnover of Po sustain crop yields under 451 

403 forms, clays] and soil moisture, (Adeloju et al. 2016; scenarios of reduced P inputs and maintained or in- 452 

404 Cade-Menun et al. 2015; Stutter et al. 2015). Chemical creased outputs and thus contribute to agricultural pro- 453 

405 fractionation studies of Po stocks provide a snap-shot in duction and feed supplies? The mechanistic understand- 454 

406 time, missing temporal aspects of cycling associated ing required to answer this question lies in the role of 455 

407 with management-induced change at seasonal or to lon- biota (in the context of their abiotic setting) in Po turn- 456 

408 ger term management. As a result, short periods of rapid over and the potential pathways of Po loss to be man- 457 

409 change in P speciation and turnover may not be appre- aged (e.g. runoff). In order to progress, a systems ap- 458 

410 ciated. The utilization of ‘legacy P’ (Haygarth et al. proach is needed to fully assess the opportunities and 459 



 

 

 

460 role of Po, as well as the interactions of soil chemical, the availability of P in soils and sediments by selection 507 

461 physical and biological processes and impacts of land of the optimal plant rhizosphere compliment. 508 

462 use change that control P availability. Alkaline phosphatase and phytase genes are distrib- 509 
 uted across a broad phylogenetic range and display a 510 

463 Opportunities from understanding microbial Po: high degree of microdiversity (Jaspers and Overmann 511 

464 Functional genes and metagenomics 2004; Lim et al. 2007; Zimmerman et al. 2013), where 512 

 closely related organisms exhibit different metabolic 513 

465 As our abilities to analyse and interpret the complexity activities. It is therefore not possible to determine com- 514 

466 inherent in the soil microbiome improves, interest is munity functional potential from 16S rRNA gene abun- 515 

467 burgeoning around the functional ecology of microor- dance – functional gene abundance information is re- 516 

468 ganisms. Organic P dynamics across ecosystems, along quired and this can be provided by employing sequenc- 517 

469 with development of many techniques that will aid in ing techniques to assess the soil metagenome. In marine 518 

470 this understanding, are beginning to emerge. Scaveng- systems, there is evidence from metagenomic sequenc- 519 

471 ing of P from P-containing organic compounds by soil ing of environmental DNA that alkaline phosphatase 520 

472 microbes is tightly controlled by intracellular P avail- genes phoD and phoX are more abundant than phoA 521 

473 ability through the Pho pathway in yeast (Secco et al. (Luo et al. 2009; Sebastian and Ammerman 2009) and 522 

474 2012) and the Pho regulon in bacteria. In both cases, the β-propeller phytase is the most abundant phytase 523 

475 transcription of phosphatase and phytase, which act to gene (Lim et al. 2007). The dominant alkaline phospha- 524 

476 release orthophosphate from phosphate esters, and high tase gene in terrestrial ecosystems is also phoD (Tan 525 

477 affinity transporters which transport Pi into the cell, are et al. 2013), which is more abundant in soils than other 526 

478 up-regulated under Pi limitation, affecting the organ- environments (Courty et al. 2010; Ragot et al. 2015; 527 

479 isms’ ability to utilise Po. The Pho regulon also acts as Fraser et al. 2017). From a functional standpoint, abun- 528 

480 a major regulator of other cellular processes, including dance of phoD-like sequences correlate well with esti- 529 

481 N assimilation and ammonium uptake (Santos-Beneit mates of potential alkaline phosphatase activity (Fraser 530 

482 2015). The C:N:P elemental ratios of the soil bacterium et al. 2015), although this is not always the case (Ragot 531 

483 Bacillus subtilis range between C53–125:N12–29:P1 under et al. 2015).Moreover, in soils there is little information 532 

484 N- and P-limited culture conditions (Dauner et al. 2001), regarding other phosphatases and little is known about 533 

485 although environmental assemblages may exhibit great- the distribution and abundance of bacterial acid phos- 534 

486 er stoichiometric flexibility (Godwin and Cotner 2015). phatases, but there is some information related to phoX 535 

487 Given this regulatory cross-talk, nutrient stoichiometry (Ragot et al. 2016). In contrast, fungi are well known for 536 

488 will be important to cellular and community metabolism their capacity to secrete acid phosphatases (Plassard 537 

489 meaning that the cycling of P must be considered within et al. 2011; Rosling et al. 2016), especially 538 

490 the context of other biogeochemical cycles, as highlight- ectomycorrhizal fungi. Since only a small percentage 539 

491 ed earlier. of soil microorganisms are cultivable, research will need 540 

492 Soil type, nutrient inputs, and plant species have to rely upon culture-independent approaches to generate 541 

493 been shown to determine microbiota species compo- a thorough understanding of the abundance and diversi- 542 

494 sition and function (Alegria-Terrazas et al. 2016). ty of genes associated with Po turnover. Environmental 543 

495 However, plant root exudation drives recruitment of metagenomic sequencing can form the basis of an effi- 544 

496 specific microbes and microbial consortia to the rhi- cient molecular toolkit for studying microbial gene dy- 545 

497 zosphere and may outweigh the impacts of soil and its namics and processes relevant to Po mineralization 546 

498 management in shaping community composition and (Neal et al. 2017). Such an approach will need to 547 

499 function (Tkacz et al. 2015). As yet, there is only prioritize generating comprehensive understanding 548 

500 limited understanding of how specific root exudates of the distribution of alkaline and acid phosphatase 549 

501 affect microbial recruitment (Neal et al. 2012), and phytase genes within soils, coupled with activity 550 

502 let alone specific microbiota responsible for phospha- measurements, and a sense of their relative sensitivi- 551 

503 tase expression and production. A better understand- ties to edaphic factors. This will allow explicit incor- 552 

504 ing of interactions between plants and microbes would poration of microbial Po turnover in the new genera- 553 

505 facilitate identification of functional redundancy tion of soil models, as well as allowing rapid assess- 554 

506 among them, which could ultimately help manage ment of a soil’s capabilities for Po cycling. Improved 555 



 

 

 

556 knowledge will allow the exploitation of microbial and enzyme-mediated P transformations in soils may 603 

557 activity to sustain and improve soil fertility and allow now be gained from measurement of the isotopic 604 

558 the tailoring of new fertilizers based upon the capacity composition of oxygen associated with phosphate 605 

559 of microbes to exploit Po. (δ18OP) (Tamburini et al. 2014; von Sperber et al. 606 
 2014) and the use of radiolabelled (32P or 33P) Po 607 

560 Opportunities from understanding microbial Po: compounds to measure mineralisation and immobili- 608 

561 Measuring stocks, mineralisation and dynamics sation rates directly (Harrison 1982). A powerful tool 609 

562 of turnover for quantifying soil P pools and transformation rates 610 

 is the isotope dilution technique [reviewed in 611 

563 The apparently large diversity of genes associated Bünemann 2015; Di et al. 2000; Frossard et al. 612 

564 with Po-hydrolysing enzymes suggests that changes 2011]. The decrease in radioactivity with time is 613 

565 in community composition are unlikely to result in a caused by the exchange of the added radiolabelled 614 

566 loss of ecosystem function. This confers resilience to P (either 32P or 33P) with 31P from the sorbed/solid 615 

567 P-cycling processes, although many of these genes phase and by the release of inorganic 31P from the 616 

568 have very specific functions intracellularly. However, organic pool via hydrolysing enzymes (Bünemann 617 

569 trait differences are likely to have significant impli- 2015). Determination of gross Po mineralization rates 618 

570 cations for community function in soils, e.g., the from Po to Pi remains a critical approach, helping 619 

571 contrasting effects of arbuscular and ectomycorrhizal understand the processes and rates of P cycling in 620 

572 fungi upon the cycling of P in forest soils, where it different soils and under different environmental con- 621 

573 has been shown that Po is more labile in  ditions (Frossard et al. 2011). These techniques pres- 622 

574 ectomycorrhizal dominated systems than arbuscular ent new opportunities to link P cycling to other bio- 623 

575 mycorrhizal systems (Rosling et al. 2016). The fact geochemical cycles, such as C and N. 624 

576 that enzyme activity in soil appears to be disconnect-   

577 ed from soil P status is at odds with the apparent Opportunities in the emerging area of interactions 625 

578 influence of the Pho regulon or pathway upon gene between Po dynamics and nanoparticles 626 

579 expression and indicates that much of the observed   

580 activity derives from multiple enzyme sources, which Reactive nanoparticles can take the form of natural 627 

581 have been stabilised by soil colloids (Nannipieri et al. soil colloids or man-made particles and are potential 628 

582 2011). This also suggests that soil enzyme activity Po carriers, sources and sinks in ecosystems. Up to 629 

583 does not directly represent microbial activity or sim- 90% of P in stream water and runoff is present in nano- 630 

584 ply reflects the complexity in current P requirements and colloidal sized materials (Borda et al. 2011; 631 

585 of different microbial species. However, visualization Gottselig et al. 2014; Uusitalo et al. 2003; Withers 632 

586 of acid and alkaline phosphatase activity associated et al. 2009). Colloidal P may comprise nano-sized 633 

587 with roots by zymography (Spohn and Kuzyakov aggregates (Jiang et al. 2015) bound to Fe, Al and 634 

588 2013) does provide an exciting means to determine SOM (Celi and Barberis 2005; Celi and Barberis 635 

589 regulation of soil phosphatase activity with P avail- 2007), including inositol phosphates. However, the 636 

590 ability and illustrates the clear spatial separation influence of nanoparticles on the dynamics and bio- 637 

591 among the activities of physiologically different en- availability of P in soil-plant systems is unclear (Bol 638 

592 zymes. It is a priority to develop and couple tech- et al. 2016). Nanoparticles such as C-magnetite, 639 

593 niques that resolve the distribution of active enzymes which adsorb and retain Pi and Po, are used to enhance 640 

594 in soil with estimates of gene expression derived the recovery and recycling of P from P-rich wastes 641 

595 from functional genes or meta-transcriptomic studies. (Magnacca et al. 2014; Nisticò et al. 2016). It may also 642 

596 The stock of microbial P is an easy-to-determine be possible to enhance soil enzyme activity with 643 

597 component in soils, which is widely used to charac- amendments containing mesoporous nanoparticle ma- 644 

598 terize the P status of microbial communities and terials (Zhou and Hartmann 2012). Phytase encapsu- 645 

599 ecosystems (Brookes et al. 1982, 1984). Neverthe- lated in nanoparticles was shown to be resistant to 646 

600 less, its analysis relies on many different protocols inhibitors and proteases and to promote the hydrolysis 647 

601 (Bergkemper et al. 2016). Building on the previous of phytate for P uptake by Medicago truncatula 648 

602 work, further insights into both microbial-mediated (Trouillefou et al. 2015). Nanotechnology has also 649 



 

 

 

650 been used to develop new fertilizers and plant-growth- cooperation of modellers and empiricists is essential 695 

651 enhancing materials (Liu and Lal 2015), representing for building models with great potential use to predict 696 

652 one potentially effective option for enhancing global changes in Po bioavailability due to land-use and man- 697 

653 food production. A better understanding of the Po agement change and to infer the sustainability of the 698 

654 nanoparticle interaction may improve our understand- system as a whole. 699 

655 ing on P fluxes in natural and agricultural systems, and   

656 provide innovative technologies for fertilizer produc- Opportunities to better communicate and translate 700 

657 tion and environmental remediation. research 701 

658 Opportunities to use modelling of Po in soil Organic P represents a small, albeit critical component 702 

659 and ecosystems of biogeochemical research. The marginal nature of the 703 

 subject to date creates a need to communicate the im- 704 

660 The use of all types of modelling approaches to study Po portance of this science for the future of P sustainability. 705 

661 is generally overlooked and there is a dearth of Po based As for other scientific disciplines, communication pri- 706 

662 models, but development of such models would be orities include (1) strengthening communication among 707 

663 extremely beneficial. Modelling should facilitate the scientists within and outside of the Po research commu- 708 

664 development of a systems-based perspective and help nity; (2) engagement with stakeholders; and (3) dissem- 709 

665 to identify knowledge gaps in the current understanding ination of knowledge to the public and specific end- 710 

666 of Po. Models of all types are needed including those users. 711 

667 that are conceptual, mechanistic or empirical in nature Conferences and workshops on the topic of organic 712 

668 and in general there is a lack of focus on all the types of P promote the exchange of ideas and forging of new 713 

669 models that exist for Po. The potential benefits of ad- research partnerships (Sharpley et al. 2015; Turner 714 

670 vances in modelling for Po include: et al. 2015). Online platforms are also powerful tools 715 
 to connect researchers and stakeholders on issues of 716 

671 & Prediction of the relationship between soil Po and global P sustainability (e.g., European Sustainable 717 

672 plant uptake, which should be developed in both Phosphorus Platform, www.phosphorusplatform.eu, 718 

673 conceptual and mechanistic models of P dynamics North America Partnership for Phosphorus  719 

674 in the environment.  Sustainability) (Rosemarin and Ekane 2015). The 720 

675 & Application at different scales to determine the rela- ‘Soil Phosphorus Forum’ (www.soilpforum.com) 721 

676 tionship between Po with land use and management provides a platform for the exchange of information 722 

677 should be possible by building empirical models relating to Po. Specific protocols and conference 723 

678 based on existing data. presentations are also featured in archived YouTube 724 

679 & Application of modelling to help understand the role channels (https://www.youtube.com/channel/UCtGI3 725 

680 of microbial traits in soil (Wieder et al. 2015), which eUZscCgByewafsQKdw). A central platform for Po 726 

681 may determine the effects of gene expression, en- research and communications is still needed, to 727 

682 zyme activities and the stoichiometric ratio of C:N:P connect existing forums to global research networks 728 

683 in the microbial biomass relative to that of SOM and would include features such as researcher 729 

684 & Application of complete Life-Cycle Analysis for membership, methodological resources, links to 730 

685 relying of the run-down of soil Po as a replacement relevant organizations and platforms, and a clearing 731 

686 to inorganic fertilisers will help us develop adequate house of Po data for future meta-analysis and model- 732 

687 conceptual models for management of the system. ling efforts. 733 

688 & Modelling could also be used to help in the quanti- Key stakeholder groups such as land managers, 734 

689 fication of soil P pools for estimating flow among Po farmers and extension services are a natural link 735 

690 pools. between industry, government, and academia (FAO 736 

 2016). These key groups hold traditional knowledge 737 

691 In general, there is a great opportunity for the devel- on sustainable farming techniques, which serve as a 738 

692 opment of modelling in all areas of Po research and this potential basis for future Po research. Industry initia- 739 

693 will be of considerable benefit to the subject if this can tives such as the 4R Nutrient Stewardship framework 740 

694 be developed and integrated with all areas. The provide feedback from end users and practitioners on 741 

http://www.phosphorusplatform.eu/
http://www.soilpforum.com/
https://www.youtube.com/channel/UCtGI3eUZscCgByewafsQKdw
https://www.youtube.com/channel/UCtGI3eUZscCgByewafsQKdw


 

 

742 research priorities associated with the management of 

743 agricultural  nutrients (Vollmer-Sanders et  al. 2016). 

744  The engagement of Po researchers with existing nu-   

745   trient initiatives such as  these will be  critical for    

746  bolstering public understanding of Po and its impor-  

747 tant role in global P dynamics. 

 
 

748 Conclusion - statement of intent for the Po research 

749 community 

 
750 Organic P  research has  a  critical role  to  play  in  

751  tackling a  number of  important global challenges   

752 and there are key  contributions  to  be made  toward  

753 understanding biogeochemical cycles, dynamics and  

754  function of natural ecosystems and the management  

755 of agricultural systems. In particular, we must reduce 

756 our reliance on inorganic P fertilisers and strategies to 

757  do this will increase the relevance of soil Po for plant 

758 nutrition. Secondly, there is a need to develop a 

up the agenda of policy makers and funding bodies 

on a global scale. 
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