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ABSTRACT 

Objective: Previous studies on cerebral autoregulation have shown the existence of 

hemispheric symmetry, which may be altered in stroke and traumatic brain injury. There is a 

paucity of data however on whether the response is symmetrical between those disturbances 

that cause cerebral hyperperfusion, to those that cause hypoperfusion. Our aim was to 

investigate whether the responses of cerebral autoregulation to haemodynamic stimuli of 

different directions are symmetrical.  

Approach: Using a previously described assessment method, we employed coherent 

averaging of the cerebral blood flow velocity (CBFV) responses to thigh cuff inflation and 

deflation, as driven by pseudorandom binary sequences, whilst simultaneously altering the 

inspired CO2. The symmetry of the autoregulatory response was assessed with regards to two 

parameters, its speed and gain. Using the first harmonic method, critical closing pressure 

(CrCP) and resistance area product (RAP) were estimated, and the gain of the autoregulatory 

response was calculated by performing linear regression between the coherent averages of 

arterial blood pressure (ABP) and  CBFV, ABP and CrCP and finally ABP and RAP. A two-

way repeated measures ANOVA was used to assess for the effect of the direction of change 

in ABP and the method of CO2 administration.  

Main results: Our results suggest that whilst the direction of ABP change does not have a 

significant effect, the effect of CO2 administration method is highly significant    (p<10
-4

).  

Significance: This is the first report to report to demonstrate the symmetry of the 

autoregulatory response to stimuli of different directions as well as the short term dynamics 

of RAP and CrCP under intermittent and constant hypercapnia. As haemodynamic stimulus 

direction does not appear to have an influence, our findings validate previous work done 

using different assessment methods. 
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INTRODUCTION 

Cerebral autoregulation (CA) is the complex homeostatic mechanism through which the 

cerebrovascular bed maintains control over regional blood flow (Lassen, 1959).   

Assessment of its functional status has become a topic of interest as it was demonstrated that 

dynamic cerebral autoregulation (dCA) may be impaired in stroke, carotid stenosis and 

traumatic brain injury(Brady et al., 2009, Dagal and Lam, 2009, Greene, 2010, Guendling et 

al., 2006, Joshi et al., 2010, Lang et al., 2003, Rasulo et al., 2008, Sharma et al., 2010). Two 

main ensembles of methods have been proposed for the assessment of the functional status of 

dynamic CA.  

The first set of assessment methods relies on the induction of a haemodynamic stimulus that 

will elicit an autoregulatory response (Aaslid et al., 1989, Birch et al., 2002, Blaber et al., 

1997, Dawson et al., 1999, Diehl et al., 1995, Reinhard et al., 2000). The second ensemble 

capitalizes on the spontaneous variability of arterial blood pressure (ABP) and cerebral blood 

flow velocity (CBFV) in the setting of spontaneous fluctuations of ABP as well as from 

ectopic heart beats (Eames et al., 2005, Panerai et al., 1995, Panerai et al., 1998, Zhang et al., 

1998). 

We have recently proposed a new method for the integrated assessment of cerebral 

haemodynamics that relies on the use of pseudorandom binary sequences to drive the 

inflation of thigh cuffs and the administration of CO2 (Katsogridakis et al., 2012). The 

method was shown to be capable of augmenting ABP and CBFV variability without 

distorting dCA estimates through causing sympathetic excitation (Katsogridakis et al., 2013).  
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In this paper we use the intermittent nature of the stimuli used in our assessment method to 

explore the symmetry of the autoregulatory response, using coherent averaging.  

 

METHODS 

Hardware and software. For the purposes of this study, a modification of the thigh cuff method was 

used, combined with the intermittent and constant administration of CO2, at a concentration of 5%. 

The operating principles and controlling software of the device used to achieve this have been 

described in greater detail in previous communications (Fan et al., 2013, Katsogridakis et al., 2012). 

Volunteers and experimental set-up. Volunteers were recruited if their medical history was 

free of known cardiovascular and neurological disorders. Upon their arrival, volunteers were 

reminded of the protocol, the instrumentation was demonstrated, its function explained and 

written informed consent was obtained. The study was approved by the Nottingham Research 

Ethics Committee, United Kingdom.  

The participants were asked to assume a supine position on the experimental couch. 

Following a brief settling down period, brachial ABP was measured by means of automatic 

sphygmomanometry and the thigh cuffs and face mask were attached. A trial inflation / 

deflation cycle was performed to familiarize participants with the procedure and to ensure the 

uninterrupted flow of air to the cuffs. 

Arterial blood pressure was monitored noninvasively using the arterial volume clamp method 

(Finometer, Ohmeda). Transcranial Doppler (Companion III, Viasys Healthcare) 

identification of both middle cerebral arteries (MCA) was performed using two 2MHz probes, 

held in place with a custom built headframe. The mask was connected to the CO2 delivery 
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system and the capnograph (Datex, Normocap 200) to measure end-tidal CO2 (EtCO2) levels. 

A three-lead surface electrocardiogram (ECG) was also recorded. 

Following a brief period of supine rest which was required for the setup and connection of all 

monitoring devices the participants underwent a five minute baseline recording. Three 

additional manoeuvres were then performed for every volunteer and were administered in 

random order. These manoeuvres corresponded to the random inflation/deflation of thigh 

cuffs under normocapnic, constant hypercapnic and intermittent/pseudorandom hypercapnic 

conditions. For the two manoeuvres where thigh cuff inflation was combined with CO2 

administration (the constant hypercapnic and intermittent/pseudorandom administration), this  

was administered at a concentration of 5% in air through the face mask. 

Data recording and pre-processing. All signals were sampled at a rate of 500Hz and 

recorded in real time on a dedicated personal computer. Offline, signals were visually 

inspected, spikes and artifacts were removed and the ABP signal was calibrated. The 

recorded signals were then filtered with an eighth order Butterworth low-pass filter with a 

cut-off frequency of 20Hz, applied in a forward and reverse direction to avoid time-shift. 

The beginning and end of each cardiac cycle were detected from the ECG signal, to estimate 

heart rate (HR) and mean beat-to-beat values were calculated for the recorded signals. For 

each cardiac cycle, the instantaneous relationship between CBFV and ABP was used to 

estimate the critical closing pressure (CrCP) and resistance-area product (RAP) of the 

cerebral circulation using the first harmonic method. Estimates were then interpolated using a 

third order polynomial and resampled at 5Hz to create time series with a uniform time base. 

The resistance area product was estimated for each cardiac cycle from the raw data, using the 

first harmonic of the ABP (A1) and CBFV (V1) signals (Michel et al., 1997) as: 
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Having estimated RAP, the critical closing pressure (CrCP) was then calculated from the 

relationship: 

                     

where ABPm and CBFVm are the mean values of ABP and CBFV for that particular cardiac 

cycle. 

The mean value of every signal was subtracted. 

Coherent averaging. The recorded thigh cuff pressure transducer signal (TCPT) was used to 

identify the thigh cuff inflation and deflation points, needed for the subsequent coherent 

averaging analysis.  In summary, a peak detection algorithm was used on the numerical 

derivative of the TCPT signal to identify the thigh cuff inflation time points. A similar 

approach was used to identify the thigh cuff deflation time points.  

Once the thigh cuff inflation and deflation time points were identified, these were used to 

ensure the alignment of the ABP, CBFV, CrCP and RAP signals for the subsequent analyses 

by using a 10s segment of data. This consisted of 5s length of data preceeding the 

inflation/deflation event and 5s data segment following it. These 10s long data segments were 

then averaged for that recording. Left and right sided estimates were also averaged.  

Assessment of the symmetry. The symmetry of the autoregulatory response was assessed with 

respect to its two components: the gain and speed of the transient response as described in a 

recent report (Aaslid et al., 2007). In their work Aaslid et al (2007) reviewed the time series 

and manually selected the time points to be included in the analysis, an approach that 

introduces bias. To overcome this, we used the whole coherent averaging time series to 
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perform linear regression between the corresponding ABP and CBFV, ABP and CrCP, and 

ABP and RAP signals. The estimates of the regression line slope were averaged to obtain one 

estimate for every volunteer. Similarly, left and right sided estimates were again averaged. 

To assess the differences in the speed of the response to stimuli of different direction, the 

CBFV coherent average response to thigh cuffs deflation under normocapnic, intermittent 

and constant hypercapnic conditions were inverted and plotted on the same graphs as the 

average responses to thigh cuff inflation. 

Statistics. The Shapiro-Wilk test was used to test for normality. All non-normally distributed 

data were log-transformed. A two-way repeated measures ANOVA was performed to test for 

differences in the linear regression slope estimates obtained from the inflation and those 

obtained from the deflation of the thigh cuffs, for different EtCO2 levels. Values of p < 0.05 

were considered to represent statistical significance. 

 

RESULTS 

Population estimates for the ABP and CBFV coherent averages are presented in Figure 1, 

whilst for CrCP and RAP in Figure 2. Coherent averages of ABP appear to remain largely 

unaffected by changes in EtCO2 levels for both thigh cuff inflation and deflation (Figure 1, 

subplots A and B). Similar results were observed with the CBFV coherent averages, where 

the effect of CO2 in dampening the response to both thigh cuff inflation and release was not 

apparent (Figure 1, subplots C and D). 

Population estimates for the CBFV responses to thigh cuff inflation and release (inverted 

CBFV) are presented in Figure 3 for normocapnic, intermittent and constant hypercapnic 

conditions. Though a small difference is observed in the magnitude of the CBFV transient 
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response in the form of an overshoot in subplots A and B, the speed of the response appears 

to be relatively similar.  

The group averaged values for the slope of the regression line between ABP and CBFV, ABP 

and CrCP and ABP and RAP are presented in Table 1. Slope estimates for all parameters 

(CBFV, CrCP and RAP) were not affected by the direction of changes in blood pressure, 

however the effect of CO2 was statistically significant (p – values are presented in Table 1). 

 

DISCUSSION 

This study confirms our earlier reports with respect to the effectiveness of the new method in 

amplifying ABP and CBFV variability to facilitate the comprehensive assessment of cerebral 

haemodynamics (Katsogridakis et al., 2013, Katsogridakis et al., 2012). It also demonstrates 

the usefulness of coherent averaging in extending our understanding of the dynamics of dCA, 

as it provides new insights about the symmetry of the autoregulatory response and the effect 

of varying EtCO2 levels on the cerebrovascular bed (Katsogridakis et al., 2016). 

A significant effect of the random and constant administration of CO2 on the transient 

response of CBFV was not clearly seen (see Figure 1), despite the well understood effects of 

hypercapnia on dCA (Garnham et al., 1999, Panerai et al., 1999). The reasons for this are not 

immediately clear, however we hypothesize that this may be related to two reasons: on one 

hand a short segment of data (5s preceeding and 5s ensuing the thigh cuff release) was used 

for the coherent averaging, to ensure no overlap of responses following sequences of different 

durations occurred, an event that would render physiological interpretation rather difficult. 

This window of data however may have not been long enough to observe the effects of 

hypercapnia on CBFV. The second possibility, which we address in the following 
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paragraphs, was that the intermittent / pseudorandom administration of CO2 may have not 

resulted in a physiological effect of a magnitude such that it would be manifest in changes in 

velocity. As will become apparent in the following paragraphs, the effects of the intermittent 

CO2 administration were evident in the RAP and CrCP responses, and were dose-dependent, 

findings that militate against the likelihood that pseudorandom administration of CO2  has no 

physiological effect.  

As already mentioned, the intermittent administration resulted in a partial impairment of the 

autoregulatory response which is by the effect EtCO2 levels had on the response of the 

attributes of the cerebrovascular bed (RAP and CrCP) as seen in figure 2. 

The RAP is an index used to represent the relationship between ABP and flow velocity(Evans 

et al., 1988). Its involvement in the regulation of CBF was recently demonstrated and it is 

believed to be achieved through myogenic actuators (Panerai et al., 2005).  Critical closing 

pressure on the other hand, has been shown to be representative of the cerebrovascular tone 

and the influences of ICP (Panerai, 2003), and  correlates strongly with EtCO2 levels  

(Garnham et al., 1999, Panerai, 2003, Panerai et al., 1999, Reinhard et al., 2000, Weyland et 

al., 2000). 

We decided to use both CrCP and RAP to investigate the effect of different methods of 

administering CO2 on the tone and resistance of the cerebrovascular bed using coherent 

averaging. Our findings suggest that the method of CO2 administration had a dose dependent 

effect on both the CrCP and RAP, for both directions of changes in ABP. In particular, 

hypercapnia appears to prolong the duration and decrease the amplitude of the response of 

both covariates.  
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To the best of our knowledge, this is the first time that a partial impairment of dCA, 

secondary to the intermittent administration of CO2, has been demonstrated, as seen by its 

effects on the tone and resistance of the cerebrovascular bed. 

The use of coherent averaging also revealed that of the two parameters, CrCP appears to be 

reacting much faster, for both directions of ABP transients, with a very sharp transition, 

whilst the response of RAP appears to be slower and more gradual. This would suggest that 

dCA first acts by adjusting the tone of the cerebral arterioles as a crude means of 

compensating for the CBFV transient, and then modulates resistance for a finer adjustment of 

the resting levels of CBFV. This finding may have significant implications for the assessment 

of dCA as it suggests that CrCP may be used to assess dCA in its own right (Dewey et al., 

1974). 

To investigate the symmetry of autoregulatory response, we decided to use linear regression. 

The use of the term symmetry warrants further clarification at this point, as it has been 

employed in the literature to denote different things by different authors. Typically, symmetry 

is used in the literature in the context of investigations of hemispheric differences in dCA 

(Schmidt et al., 2003b).  

Using conventional metrics of dCA, it was found that no side to side differences exist in 

healthy adult volunteers at rest (Schmidt et al., 2003b), with differences observed following 

brain activation (Panerai et al., 2005), traumatic brain injury in adults (Lang et al., 2003, 

Schmidt et al., 2002, Schmidt et al., 2003a) and paediatric patients (Vavilala et al., 2008).  In 

a recent report however, Aaslid et al. defined symmetry as the absence of marked differences 

in the speed and gain of the CBFV transient response to cyclical stimuli of different 

directions (Aaslid et al., 2007) and found strongly asymmetric responses in a population of 

neurosurgical patients, whilst no significant asymmetries were seen in the control group. A 
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critical appraisal of that report would suggest however, that the study may not have been 

optimally set up to answer the question of asymmetries. 

The authors defined asymmetry as any discrepancy in the gain or the speed of the 

autoregulatory response. Speed however, was not investigated in their report. It is therefore 

unknown if any discrepancies exist, that would be indicative of asymmetries even in a 

healthy population. The metric that the authors used, termed in their study ’the autoregulatory 

gain’ was defined as the ratio between the difference in critical closing pressure to the 

difference in arterial blood pressure. No information is provided however on the selection of 

the points used to calculate the differences, and it is thus unknown if bias has been introduced 

in the analysis through the subjective selection of points. The observation of strongly 

asymmetric responses in the neurosurgical population is more compatible with it being the 

derivative of the traumatic brain injury itself rather than it being reflective of an inherent 

physiological mechanism. The authors fail to make a distinction and to explain why no 

asymmetries were observed in the control group.  Lastly, the authors do not address the 

possibility of the discrepancy between the control and patient groups being due to the 

difference in EtCO2 levels due to the need for the neurosurgical patients to be kept at a state 

of moderate hypocapnia. 

To address some of the aforementioned limitations we performed linear regression analysis 

between ABP and CrCP. Our finding of a symmetrical dCA response under normocapnic and 

random hypercapnic conditions is in agreement with their report of an absence of significant 

asymmetries in the autoregulatory gain observed in healthy volunteers. This is further 

supported by the similarity in the speed of the CBFV responses to transient changes of ABP 

in different direction and by the absence of significant differences in the slopes of the linear 

regression.  

Page 11 of 19 AUTHOR SUBMITTED MANUSCRIPT - PMEA-102109.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Constant hypercapnia was then used to simulate a state of impaired autoregulation. Though 

no difference was observed in the slope of the linear regression, a potential difference in the 

speed and magnitude of the CBFV transient could be considered indicative of an asymmetry 

of the autoregulatory response under constant hypercapnia (see Figure 3). This finding is in 

agreement with the secondary finding of the aforementioned study with respect to the 

existence of strong asymmetries observed in volunteers with impaired autoregulation. 

Study limitations. Measurements of CBFV can reflect changes in CBF as long as the diameter 

of the insonated vessel remains constant. Several studies have demonstrated that the cross-

sectional area of the MCA changes minimally (Newell et al., 1994, Serrador et al., 2000) 

which supports the use of CBFV as a surrogate of CBF. 

Due to the sensitivity of CrCP and RAP to ABP measurement inaccuracies (Panerai et al., 

2006) and to the method that was employed for their estimation, comparison of results should 

be done with caution. For the purposes of this study, we used ABP estimates measured with a 

different device (Finometer) to that used in the study of Aaslid et al. (2007). The influence 

that the different ABP measurement methods used may have on estimates of CrCP, and 

therefore on those of the autoregulatory gain is not known. However, both devices have a 

similar operating principle, and therefore differences would be expected to be minimal. 

Lastly, we performed linear regression between ABP and CrCP as an estimate of gain with 

respect to the tone and resistance of the cerebrovascular bed. Linear regression however, 

operates under the assumption that measurement errors exist only on the independent 

variable. As CrCP and RAP are estimated using ABP, irrespective of the estimation method, 

this assumption is not entirely true.  
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CONCLUSIONS 

We have demonstrated that our new assessment protocol can be combined effectively with 

analytical methods such as coherent averaging to obtain new insights into cerebral 

haemodynamics. The autoregulatory response, under normocapnic conditions, was found to 

be  symmetrical to stimuli of different directions. dCA appears to act by first adjusting the 

tone and then the resistance of the cerebral arterioles. More investigations are required to 

verify our results. 
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Figure 1. Population estimates of the ABP (subplot A) and CBFV (subplot C) coherent 

averages in response to thigh cuff inflation, along with population estimates of the ABP 

(subplot B) and CBFV (subplot D) coherent averages in response to thigh cuff deflation. The 

solid line represents estimates obtained for manoeuvres undertaken in normocapnic 

conditions, the dashed line for intermittent / pseudorandom hypercapnic conditions and the 

dotted line for constant hypercapnic conditions. Error bars represent the largest ± 1 SEM. 
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Figure 2. Population estimates of the CrCP (subplot A) and RAP (subplot C) coherent 

averages in response to thigh cuff inflation, along with population estimates of the CrCP 

(subplot B) and RAP (subplot D) coherent averages in response to thigh cuff deflation. The 

solid line represents estimates obtained for manoeuvres undertaken in normocapnic 

conditions, the dashed line for intermittent / pseudorandom hypercapnic conditions and the 

dotted line for constant hypercapnic conditions. Error bars represent the largest ± 1 SEM. 
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Figure 3. Population estimates for the averaged and inverted CBFV responses under 

normocapnic (A), intermittent hypercapnic (B) and constant hypercapnic conditions (C). 

Solid line: CBFV response, dashed line: inverted CBFV response. Error bars represent the 

largest ± 1 SEM. 
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Table 1: Slope coefficients for the linear regression between ABP & CBFV, ABP & CrCP 

and ABP & RAP 

 

 

                                                            Direction 

 

Parameter          Up    Down p-values 

 

CBFV 

 

Normocapnia      0.50 ± 0.32 0.48 ± 0.35 p = 0.002 (effect of CO2) 

Intermittent Hypercapnia    0.57 ± 0.33   0.58 ± 0.31  p = 0.369 (effect of direction) 

Constant Hypercapnia     0.71 ± 0.45   0.69 ± 0.42  p = 0.510 (effect of interaction) 

 

CrCP 

 

Normocapnia        0.85 ± 0.31 0.90 ± 0.30 p < 10
-4       

(effect of CO2) 

Intermittent Hypercapnia      0.38 ± 0.34  0.41 ± 0.34 p = 0.105  (effect of direction) 

Constant Hypercapnia    -0.12  ± 0.39 -0.09 ± 0.39 p = 0.135  (effect of interaction) 

 

RAP 

 

Normocapnia    0.003 ± 0.008  0.003 ± 0.008  p < 10
-4       

(effect of CO2) 

Intermittent Hypercapnia  0.005 ± 0.006  0.006 ± 0.010  p = 0.481  (effect of direction) 

Constant Hypercapnia   0.010 ± 0.014  0.016 ± 0.013  p = 0.643  (effect of interaction) 
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