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Abstract

TMEFF2 is a type I transmembrane protein with two follistatin (FS) and one EGF-like domain over-expressed in prostate
cancer; however its biological role in prostate cancer development and progression remains unclear, which may, at least in
part, be explained by its proteolytic processing. The extracellular part of TMEFF2 (TMEFF2-ECD) is cleaved by ADAM17 and
the membrane-retained fragment is further processed by the gamma-secretase complex. TMEFF2 shedding is increased with
cell crowding, a condition associated with the tumour microenvironment, which was mediated by oxidative stress signalling,
requiring jun-kinase (JNK) activation. Moreover, we have identified that TMEFF2 is also a novel substrate for other proteases
implicated in prostate cancer, including two ADAMs (ADAM9 and ADAM12) and the type II transmembrane serine
proteinases (TTSPs) matriptase-1 and hepsin. Whereas cleavage by ADAM9 and ADAM12 generates previously identified
TMEFF2-ECD, proteolytic processing bymatriptase-1 and hepsin produced TMEFF2 fragments, composed of TMEFF2-ECD
or FS and/or EGF-like domains as well as novel membrane retained fragments. Differential TMEFF2 processing from a single
transmembrane protein may be a general mechanism to modulate transmembrane protein levels and domains, dependent on
the repertoire of ADAMs or TTSPs expressed by the target cell.
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Introduction

TMEFF2, a type I transmembrane protein with two follistatin
and epidermal growth factor (EGF) domains, is expressed
selectively in the adult brain and prostate (Horie et al., 2000;
Liang et al., 2000), with elevated TMEFF2 expression in
prostate cancer (PCa) cell lines and clinical samples (Glynne-
Jones et al., 2001; Gery et al., 2002; Afar et al., 2004).However,
the role of TMEFF2 in PCa development and progression
remainsunclear, andTMEFF2 activitymaydependondisease
stage and/or post-transcriptional regulation. The ectodomain
of TMEFF2 (TMEFF2-ECD), comprised of the two follistatin

and EGF domains, is cleaved from the cell surface by
ADAM17 and the membrane-retained fragment undergoes
further processing by the gamma-secretase complex (Ali and
Kn€auper, 2007). Shedding of TMEFF2-ECD is induced by
pro-inflammatory cytokines TNFa and IL-1b (Lin et al.,
2003) or phorbol esters (Ali and Kn€auper, 2007), which are
known to upregulate ADAM-mediated protein shedding
(Brose and Rosenmund, 2002).

Ectodomain shedding may, at least partially, be responsi-
ble for pro- or anti-proliferative TMEFF2 functions in PCa.
Overexpression of full length, transmembrane TMEFF2 in
PCa cells impairs proliferation due to an interaction between
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the cytoplasmic domain of TMEFF2 and sarcosine dehydro-
genase (SARDH). This interaction results in decreased levels
of sarcosine (Chen et al., 2011a; Green et al., 2013), an amino
acid associated with PCa progression (Sreekumar et al.,
2009). Full length TMEFF2 also attenuates the migratory
properties of PCa cells (Chen et al., 2014), indicating a
tumour suppressor function. However, the TMEFF2-ECD
released, due to shedding, may act as a soluble growth factor.
Indeed, treatment of HEK293 cells with purified recombi-
nant TMEFF2-ECD stimulated ERK activation and in-
creased their proliferation rate (Ali andKn€auper, 2007; Chen
et al., 2011a). On the other hand, conditioned medium of
cells expressing TMEFF2-ECD reduced p-ERK levels in
RWPE1 cells in response to PDGF-AA treatment (Chen and
Ruiz-Echevarr�ıa, 2013) which was also reported to suppress
PDGF-AA stimulated growth of NR6 fibroblasts (Lin et al.,
2011). While this points to TMEFF2 possessing opposing
biological roles the molecular mechanism underlying this
dual functionality is unclear.We hypothesise that TMEFF2’s
biological functions may be regulated by differential
proteolysis, which generates not only TMEFF2-ECD but
additional protein fragments, which may modulate mito-
genic signalling. Indeed, additional soluble TMEFF2 forms
can arise from alternative splicing, generating a soluble
protein composed of the FS-I module and a truncated FS-II
module (Quayle and Sadar, 2006).

To address the hypothesis that TMEFF2 may undergo
differential proteolysis we focused our investigation on
proteases contributing to the pathogenesis of PCa. These
include members of the disintegrin and metalloproteinase
family, ADAM9 (Peduto et al., 2005; Fritzsche et al., 2008),
ADAM12 (Peduto et al., 2006) and ADAM15 (Lucas and
Day, 2009) as well as membrane associated serine proteases
implicated in PCa, such as type II transmembrane serine
proteases (TTSPs) (Webb et al., 2011) or the GPI-anchored
prostasin (Chen et al., 2004). Prominent TTSPs involved in
PCa progression include matriptase-1, matriptase-2 and
hepsin. Matriptase-1 overexpression correlates with Glea-
son score (Riddick et al., 2005) promoting cell invasion,
metastasis and prostate tumour growth (Sanders et al.,
2006; Ko et al., 2015) by regulating MET signalling in PCa.
Interestingly, matriptase-1 interacts with a close relative of
TMEFF2, TMEFF1, where the EGF-like domain of
TMEFF1 binds to the matriptase-1 CUB domain (Ge
et al., 2006). Matriptase-2 also contains CUB domains and
is implicated in PCa cell behaviour (Sanders et al., 2010).
Significant overexpression of hepsin is common in 90% of
PCa tumours, correlating with Gleason score, serum PSA
levels as well as early relapse following radical prostatec-
tomy (Dhanasekaran et al., 2001; Goel et al., 2011). In
contrast, prostasin levels are high in normal prostate
epithelial cells and decrease in PCa (Takahashi et al., 2003).
We therefore tested the hypothesis that TMEFF2 is cleaved

at different sites by ADAMs and TTSPs and we provide
evidence of complex TMEFF2 proteolysis by these proteases
that may impact the biological function of TMEFF2 reported
in the literature.

Materials and methods

Reagents

PMA and the NADPH oxidase inhibitor apocynin (APOC)
were from Sigma–Aldrich. N-acetylcysteine (NAC), p38
inhibitor (SB203580) and JNK inhibitor (SP600125) and the
broad spectrum metalloproteinase inhibitor GM6001 were
from Calbiochem. ADAM10 and ADAM17 inhibitors
GI254023X and GW280264X were a gift from Dr. Augustin
Amour and GlaxoSmithKline. DMEM and Ham’s F12 cell
media were from Lonza, FBS and hygromycin B from
Invitrogen. FuGENE6TransfectionReagentwas fromRoche.

Expression constructs, cell culture, transient transfection
and Western blotting

ADAM9andADAM12 expression constructs were a kind gift
from Dr. Carl Blobel. The cloning of ADAM15 A, B, C
isoforms andADAM15B E/A inactivemutant into pcDNA4-
V5/His vector was described previously (Zhong et al., 2008;
Maretzky et al., 2009). The corresponding coding sequences
were sub-cloned into pcDNA5/FRT/Flag-His plasmid using
HindIII and XhoI. Matriptase-2 expression plasmid was
described in Folgueras et al. (2008). Matriptase-1, hepsin and
prostasin plasmids were described in Gray et al. (2014) and
used to generate constructs expressing inactive S-A mutants
by QuikChange mutagenesis (Agilent). Generation of
HEK293 cells expressing AP/V5 TMEFF2 and AP/V5 D303-

320TMEFF2 was described previously (Ali and Kn€auper,
2007) and were maintained in DMEM with 10% FBS and
100mg/mL hygromycin B at 37�C in a humidified incubator
with 5% CO2. For shedding experiments 1� 105 HEK293
cells, expressing alkaline phosphatase tagged wild type or
mutant TMEFF2, were plated per well into a 24 well plate and
grown overnight in antibiotic free medium. 0.5mg of
expression plasmid encoding the active and inactive proteases
in question were mixed with 1.5mL of FuGENE 6
Transfection Reagent added to each well and grown for
2 days prior to shedding experiments in the presence or
absence ofADAM10,ADAM17or generalmetalloproteinase
inhibitor GM6001 described previously (Ali and Kn€auper,
2007). Additional experiments were performed using DU145
cells transiently transfected with AP-TMEFF2. Here, cell
lysates were analysed for total AP-activity to normalise the
release of soluble AP-TMEFF2 ectodomain into the medium
following cell crowding experiments. The data are displayed
as percentage of shed TMEFF2.
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Cell lysates were harvested at the end of shedding
experiments and analysed using 10% SDS–PAGE followed
by Western blotting using PVDF membranes.

Statistical analysis

Mean values� SD from three independent experiments with
four internal replicates were analysed using GraphPad Prism
5.0 and one-way ANOVA with Tukey’s test (��P< 0.01;
�P< 0.05). P-values below 0.05 were considered significant.

Results and discussion

Our first aim was to identify whether TMEFF2 could be
targeted by other proteases accounting for soluble TMEFF2
(Quayle and Sadar, 2006). We assessed a panel of ADAMs
with ADAM9 and ADAM12 overexpression leading to
increased shedding of TMEFF2, while the expression of
ADAM15 isoforms did not increase AP-activity in media
when compared to coexpression of an inactive ADAM15 EA
mutant used as a transfection control (Figure 1A). C-terminal
TMEFF2 fragments were indistinguishable from previously
described ADAM17 fragments (Ali and Kn€auper, 2007) (not
shown).

We then hypothesised that TTSPs could cleave TMEFF2,
as matriptase-1 is known to interact with TMEFF1 (Ge et al.,
2006). Overexpression of matriptase-1 or hepsin increased
AP-TMEFF2 fragment release into medium by 2–3.5-fold,
compared to inactive matriptase-1/hepsin S-A mutant
coexpression. Matriptase-2 overexpression was less efficient
and increased AP-activity in media 1.5-fold, while prostasin
had no effect (Figure 1B). Western blot analysis for
remaining membrane-associated fragments following
TTSP cleavage showed novel, C-terminal TMEFF2 frag-
ments in matriptase-1 (�24 and �28 kDa) and hepsin
(�20 kDa) expressing cells (Figure 1C). These fragments
were absent upon expression of their inactive S-A mutant
counterparts, in addition to the �17 kDa fragment which is
due to background ADAM activity previously described (Ali
and Kn€auper, 2007). Therefore, matriptase-1 and hepsin
cleave TMEFF2 in different positions than ADAMs,
generating novel transmembrane-retained fragments. No
additional C-terminal fragments were detected in cells
expressing matriptase-2 (Figure 1C), despite increased AP-
activity levels in medium (Figure 1B). Thus, matriptase-2
either cleaves TMEFF2 close to the ADAM cleavage site or
alternatively activates ADAMs to induce proteolysis. To
address this question, shedding experiments were performed
in the presence of selective ADAM10 and ADAM17
inhibitors, GW280264X and GI254023X or the broad
spectrum metalloproteinase inhibitor GM6001. The data
in Figure 1D showed that matriptase-2 dependent release of
AP-TMEFF2-ECD required ADAM activity, whereas

matriptase-1-dependent release did not. Additional experi-
ments were performed to exclude contribution from
ADAM9 and other metalloproteinases such as MMPs using
the broad spectrum metalloproteinase inhibitor GM6001
(Maretzky et al., 2017) and cells overexpressing matriptase-1
or hepsin, as well as their inactive counterparts. This analysis
indicated that matriptase-1 and hepsin were genuine
TMEFF2 sheddases as inhibitor treatment was ineffective
(Figure 1E).

To corroborate these findings, ADAM-cleavage-resistant
AP-D303-320 TMEFF2 (Ali and Kn€auper, 2007) was used to
confirm that matriptase-1 and hepsin cleaved outside and
matriptase-2 within the stalk section containing the ADAM
cleavage site. Bothmatriptase-1 and hepsin cleaved AP-D303-

320 TMEFF2 to a similar extent to wt TMEFF2 (Figure 2A),
while matriptase-2 was unable to directly cleave AP-D303-

320TMEFF2 lacking the ADAM-cleavage site. TMEFF2
C-terminal fragment analysis in Figure 2B confirmed that
matriptase-1 and hepsin cleaved AP-D303-320 TMEFF2 by
generating novel fragments, showing distinctly different
molecular weights, when compared to cleaved wt AP-
TMEFF2. Matriptase-1 produced 18 kDa and 20 kDa
C-terminal fragments, and hepsin a 25 kDa C-terminal
fragment of AP-D303-320TMEFF2. It has to be noted that the
AP-D303-320TMEFF2 mutant also lacks two potential TTSPs
cleavage site motifs, KKD and VRF (indicated in Figure 2A),
as judged by the preferences of TTSPs for P1 arginine or P10

lysine residues (Barr�e et al., 2014), although other sites can
also be cleaved by TTSPs. Potentially, hepsin cleavage occurs
at KKD in wild type TMEFF2 to produce the 20 kDa
fragment and disruption of this site to the artificial sequence
CEKLI then leads to an additional minor cleavage event, as
seen when the AP-D303-320TMEFF2 mutant was cleaved in
response to hepsin overexpression, producing a novel
25 kDa fragment. We predict possible cleavage sites for
matriptase-1 and hepsin in TMEFF2 (Figure 2C), with
hepsin cleaving in the stalk sequence, releasing a soluble
TMEFF2 fragment composed of the TMEFF2 ectodomain.
Matriptase-1 likely cleaves TMEFF2 in two positions,
generating soluble proteins containing FS-I or both FS
modules, which in conjunction with ADAM dependent
cleavage in the stalk region also liberates the EGF-like
domain. Thus, these cleavage events may be at least partially
responsible for the generation of soluble TMEFF2 forms
previously identified by others (Uchida et al., 1999; Quayle
and Sadar, 2006).

Soluble TMEFF2 fragments containing FS-domains gen-
erated by proteolysis likely modify PDGF-AA growth factor
signalling, where PDGF-AA-TMEFF2 complexes modify
signalling through PDGFRa, thus full length TMEFF2 or
soluble FS-domain containing TMEFF2 fragmentsmay block
PDGF-AA signalling (Lin et al., 2011). The FS domains of
TMEFF2 also regulate corticotropine-releasing hormone
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(CRH) signalling in corticotrope cells, where the production
of cAMP,CREB and expression of pro-opiomelanocortinwas
inhibited, resulting in decreased cell proliferation (Labeur
et al., 2015). On the other hand, growth-promoting activity of
soluble TMEFF2 has been described (Horie et al., 2000; Ali
and Kn€auper, 2007; Chen et al., 2011a; Chen and Ruiz-
Echevarr�ıa, 2013), suggesting that this may be cell type

dependent and potentially regulated by the pattern of ADAM
and TTSP expression as well as by the growth factors present
in the extracellular environment.

Reactive oxygen species (ROS) influence ADAM expres-
sion patterns and activation status (Sung et al., 2006;Willems
et al., 2010) and they also regulate TTSP activity, as seen for
matriptase-1, which is activated by ROS (Chen et al., 2011b)

Figure 1 TMEFF2 is a novel substrate for ADAM9, ADAM12, and type II transmembrane serine proteases (TTSPs)—matriptase-1 and hepsin.
(A) Schematic representation of AP-tagged TMEFF2 expression construct and ADAM9 and ADAM12-dependent AP-TMEFF2-ECD release into media. (B)
Release of AP-TMEFF2-ECD from cells transfected with matriptase-1, matriptase-2, hepsin, prostasin, or their inactive S-A mutants. (C) WB analysis for
the C-terminal V5-epitope of cell lysates demonstrating generation of distinct novel C-terminal TMEFF2 fragments inmatriptase-1 (�25 and 28 kDa) and
hepsin (�20 kDa) overexpressing cells. (D) The matriptase-dependent release of TMEFF2-ECD is independent of ADAM activity. (E) Matriptase-1 and
hepsin-dependent TMEFF2 release is independent of metalloproteinase activity. MP fragment¼metalloproteinase fragment.
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thus adding additional layers of regulation of shedding events.
ROS levels also regulate several signalling pathways in cancer
(Hanahan and Weinberg, 2000; Liou and Storz, 2010),
including PCa (Khandrika et al., 2009), which led us to
hypothesise that ROS levels regulate TMEFF2 shedding. To
investigate this hypothesis, we pre-treated AP-TMEFF2
HEK293 cells with the ROS scavenger NAC or the NADPH
oxidase inhibitor APOC prior to stimulation with PMA, a
known inducer of ROS generation (Datta et al., 2000) and
ADAM17 activator (Brill et al., 2009). Both inhibitor
treatments resulted in almost complete inhibition of AP-
TMEFF2-ECD release, indicating ROS-dependent TMEFF2
processing (Figure 3A). We hypothesised that ROS-induced

TMEFF2 shedding could be mediated by the stress-activated
protein kinases JNK or p38 to activate ADAM17. The JNK
inhibitor completely blocked AP-TMEFF2 release, whereas
the p38 inhibitor reduced TMEFF2 shedding by 50%
(Figure 3A) suggesting that TMEFF2 shedding is triggered
by oxidative stress signalling. The growth of cells at high
cellular density has been reported to be a contributing factor
to the increased oxidative stress in cancer (Hanahan and
Weinberg, 2000). We investigated whether shedding of
TMEFF2 was a pathophysiological response triggered by
oxidative stress originating from cells growing in high
confluency conditions. Equal number of cells were plated
onto 24-well or 6-well plates to obtain 95% and 30%

Figure 2 Characterization of TTSPs cleavage sites using the AP-D303-320TMEFF2 mutant lacking the ADAM cleavage site. (A) Schematic
representation of AP-D303-320TMEFF2 expression construct and sequencemotif deleted in this mutant, showing potential TTSP cleavage sites. Release of
AP-D303-320TMEFF2 from cells co-transfected with matriptase-1, matriptase-2, hepsin, prostasin, or their inactive S-A mutants. (B) WB analysis of lysates
for AP-D303-320TMEFF2 C-terminal fragments shows distinct cleavage products for matriptase-1 (�17 & 23 kDa) and hepsin (�25 kDa). (C) Model of
predicted TMEFF2 cleavage sites for hepsin and matriptase-1.
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confluency, respectively, and treated with equal volumes of
medium containing PMA or control solvent. High cellular
density significantly increased the shedding response to PMA
activation (Figure 3B). To confirm that TMEFF2 shedding in
response to cell crowding was also relevant in PCa cancer
cells, we then transiently transfected DU145 cells with AP-
TMEFF2 cDNA and analysed shedding responses. AP-
activity in cell lysates was determined and AP-activity in
mediumcalculated as% shedTMEFF2 in cells grown at 3%0 or
95%confluency, respectively (Figure3C).Data showsignificant
increase in shedding in response to cell crowding, thus
confirming the results obtained using HEK293 cells. Collec-
tively, this suggests that cell crowding mimicking conditions
frequently found in the tumourmicroenvironmentmay trigger

TMEFF2-ECD release, and contribute to the high proliferation
rate of cancer cells.

In summary, differential TMEFF2 proteolysis producing
various soluble fragments may be a general mechanism of
changing its biological activity, dependent on the repertoire
of ADAMs or TTSP expressed in the target cell, which in
this case is regulated by ROS signalling.
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