Accepted Manuscript

Intrinsic wheat lipid composition effects the interfacial and foaming properties of dough liquor

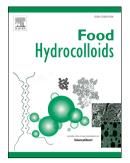
Louise J. Salt, Irene González-Thuillier, Gemma Chope, Simon Penson, Paola Tosi, Richard P. Haslam, Peter K. Skeggs, Peter R. Shewry, Peter J. Wilde

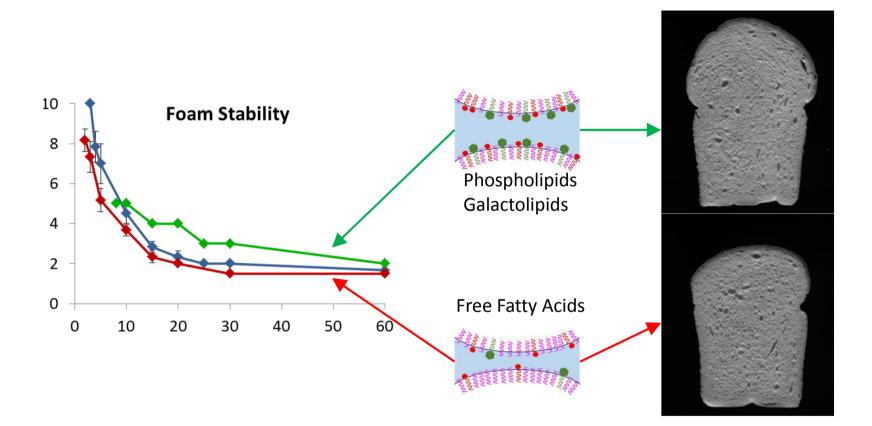
PII: S0268-005X(17)30236-9

DOI: 10.1016/j.foodhyd.2017.08.020

Reference: FOOHYD 4032

To appear in: Food Hydrocolloids


Received Date: 8 February 2017


Revised Date: 3 August 2017

Accepted Date: 16 August 2017

Please cite this article as: Salt, L.J., González-Thuillier, I., Chope, G., Penson, S., Tosi, P., Haslam, R.P., Skeggs, P.K., Shewry, P.R., Wilde, P.J., Intrinsic wheat lipid composition effects the interfacial and foaming properties of dough liquor, *Food Hydrocolloids* (2017), doi: 10.1016/j.foodhyd.2017.08.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Intrinsic wheat lipid composition effects the interfacial and foaming properties of dough
2	liquor.
3	
4	Louise J. Salt _a *, Irene González-Thuillier _b *, Gemma Chope _c , Simon Penson _c , Paola Tosi _d ,
5	Richard P. Haslam _b , Peter K. Skeggs _e , Peter R. Shewry _{b,d} and Peter J. Wilde _a
6	
7	Affiliations:
8	a. Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UA, UK
9	b. Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.
10	c. Campden BRI, Station Road, Chipping Campden, Gloucestershire, GL55 6LD, UK.
11	d. University of Reading, Whiteknights, Reading, Berkshire RG6 6AH, UK.
12	e. Hovis Limited, The Lord Rank Centre, High Wycombe, Buckinghamshire, HP12 3QS.
13	*These authors contributed equally to the work.
14	Corresponding author:
15	Professor Peter J. Wilde
16	Quadram Institute Bioscience
17	Norwich Research Park
18	Norwich
19	Norfolk
20	NR4 7UA
21	Email: peter.wilde@quadram.ac.uk
22	Telephone: 01603 255000
23	
24	
25	Abstract
26	Doughs were prepared from a single variety breadmaking flour (cv. Hereward), from three
27	successive harvests (years; 2011, 2012 and 2013). A preparation of the aqueous phase

- from dough, known as dough liquor (DL), was prepared by ultracentrifugation and its

29 physico-chemical properties were investigated. Surface tension and interfacial rheology, showed that the interface of DL was lipid-dominated and that 2013 DL had a different type of 30 interface to 2011 and 2012 DL. This data was consistent with the improved foam stability 31 32 observed for 2013 DL and with the types of lipids identified. All foams collapsed quickly, but 33 the most stable foam was from 2013 DL with 89.2 % loss in foam, followed by 2011 DL with 91.7 % loss and 2012 had the least stable foam with a loss of 92.5 % of the foam structure. 34 Glycolipids (DGDG and MGDG) were enriched in 2013 DL, and were also present in DL 35 36 foam, contributing towards improved stability. Neutral lipids, such as FFAs, were enriched in DL foams contributing towards instability and rapid foam collapse. Baking trials using 2012 37 38 and 2013 flour, showed increased loaf volumes and gas bubble diameter in 2013 bread compared to 2012 bread, highlighting the potential impact that surface active polar lipids, 39 enriched in the aqueous phase of dough, could have on improving breadmaking quality. 40

41

42 Key Words

43 Breadmaking, gas cells, dough liquor, foam, stability, lipids.

44

45 1. Introduction

The breadmaking performance of wheat flour is determined by the composition and 46 properties of the grain and the processes used for milling and baking (Cauvain, 2012). Of 47 48 particular importance is the ability of the flour to form a viscoelastic dough which retains the gas produced during proving and baking to give a loaf with a light porous crumb structure 49 (Chin & Campbell, 2005; Peighambardoust, Fallah, Hamer, & van der Goot, 2010). The 50 physical properties of the dough will depend on various factors, with the amount and quality 51 of the gluten proteins being the most important (D'Ovidio & Masci, 2004; Mills, Wellner, Salt, 52 Robertson, & Jenkins, 2012; Shewry, Tatham, & Lazzeri, 1997). However, the physical 53 properties of the dough will also be affected by other flour components, the dough 54

formulation, including the addition of improvers and surfactants, and the dough mixing
process (Cauvain, 2012).

57

58 The formation of an elastic gluten network requires shear forces during mixing to allow the 59 proteins to interact and form an elastic network (Belton, 2005; Dobraszczyk & Morgenstern, 60 2003). The viscoelastic properties of the gluten-starch matrix allow the entrapment of gas 61 cells formed during mixing, which grow during proving leading to the formation of a foam 62 (Campbell & Mougeot, 1999) which is fixed during baking to give a light, porous crumb 63 structure. If the dough is too "strong", then it will resist the growth of the gas cells, 64 conversely, if the dough is too "weak", then the network cannot hold the gas cell structure as effectively (Chin & Campbell, 2005), and oven spring (the rapid, final increase in volume 65 during baking) is also reduced (Dobraszczyk & Morgenstern, 2003). Hence, bread quality is 66 67 determined by gluten strength and dough bubble stability, which have impacts on loaf volume and crumb structure, respectively. 68

69

70 Because the strength of the gluten network influences how gas cells develop, it is not 71 surprising that this is by far the most important factor in controlling bread making quality. 72 Gluten strength is mainly determined by the proportions of individual proteins and their interactions, with one specific protein group, the high molecular weight (HMW) subunits of 73 74 glutenin, being particularly important (Cauvain, 2012; Chin & Campbell, 2005). However, gluten quality has been estimated to only account for approximately 70 % of the variation in 75 overall bread dough functionality (Gupta, Batey, & Macritchie, 1992; MacRitchie, 2016) and 76 attention has focused on the identification of other functional components. In particular, it is 77 likely that whereas gluten plays a key role in gas bubble development, other components are 78 79 required to confer bubble stability.

80

Bubble stability determines the extent to which bubbles, created during mixing and proving,
coalesce over time. Low levels of coalescence result in the fine texture typical of UK sliced

bread, and poor bubble stability leads to a coarser texture and reduced loaf volume. It is
clear that surface active components contribute to stabilising bubbles against coalescence,
particularly proteins and lipids, but the mechanisms remain unclear (Primo-Martin, Hamer, &
de Jongh, 2006; Salt, Wilde, Georget, Wellner, Skeggs, & Mills, 2006; Wilde, 2012). There is
therefore a need to elucidate the roles of different wheat components in determining bubble
stability and mechanisms of action in order to develop clear targets for improving gas cell
stability.

90

91 The gas phase in dough is critical for the texture and structure of bread: over 70% of the final 92 loaf volume is made up of gas cells, the size, shape and number of which determines the 93 final texture and structure. Gas cells or bubbles can be created and stabilised in the 94 presence of any amphiphilic molecule, with the molecular structure and physico-chemical 95 properties of the amphiphile (most commonly proteins, surfactants and lipids) determining the foam stability (Wilde, 2012). This stabilising layer is critical during proving of the dough in 96 97 breadmaking (Campbell & Martin, 2012), as the gas cells come into contact and the risk of coalescence is markedly increased. At this point, the strength of the gluten network no 98 99 longer controls the stability. Rather, it is the molecular properties of the stabilising layer that 100 control the stability of the bubbles to coalescence, particularly at the end of proving and the start of baking (Hayman, Sipes, Hoseney, & Faubion, 1998; Shimiya & Nakamura, 1997). 101

102

Although previous work has focused on the protein and lipid components in dough, their 103 relative contributions have not been defined, as the fragile nature of the dough means that it 104 is very difficult to study the components present at the surface of gas bubbles without 105 destroying the gas cell structure. Several proteins from wheat have been shown to possess 106 107 surface activity including soluble fractions of gliadins, globulins and albumins (Keller, Orsel, 108 & Hamer, 1997), non-specific lipid transfer proteins (Subirade, Salesse, Marion, & Pezolet, 109 1995), puroindolines (Biswas, Dubreil, & Marion, 2001; Kooijman, Orsel, Hamer, & Bekkers, 1998; Pauly, Pareyt, Fierens, & Delcour, 2014) and α -amylase/ trypsin inhibitors identified in 110

DL foams (Salt, Robertson, Jenkins, Mulholland, & Mills, 2005). However, the consensus is
emerging that lipids are the main components controlling bubble stability (Gerits, Pareyt, &
Delcour, 2014; Sroan & MacRitchie, 2009; Ukai & Urade, 2007).

114

115 Wheat flour contains a range of lipids (Pareyt, Finnie, Putseys, & Delcour, 2011), all of which 116 are capable of adsorbing to the surface of the gas bubble, although some are bound up in 117 different structures within the grain and the flour and are effectively not available. Differences 118 in lipid molecular structures will determine the overall bubble stability and the lipid 119 composition of the flour will therefore be critical for dough stability. Bekes et al. (Bekes, 120 Zawistowska, Zillman, & Bushuk, 1986) determined lipids in 26 spring wheat flours showing significant correlations between loaf volume and the ratios of neutral lipids to polar lipids 121 and, in particular, of neutral lipids to glycolipids. It has been suggested that phospholipids 122 123 and glycolipids may promote the formation of protein:lipid complexes during dough-making, through hydrogen bonds and hydrophobic interactions with gliadin and glutenin molecules 124 (Belton, 2005; Dobraszczyk & Morgenstern, 2003). These interactions will in turn result in 125 126 increased dough strength (as measured by mixing time) and gas retaining capacity and, 127 therefore, in a higher loaf volume and better crumb structure. A role for glycolipids in breadmaking was previously suggested by Chung et al. (Chung, Pomeranz, & Finney, 1982) 128 based on their structural similarity to bread softeners and surfactants which are commonly 129 added to dough to improve bubble stability. MacRitchie and colleagues (MacRitchie & Gras, 130 1973; Sroan & MacRitchie, 2009) confirmed that the polar lipid content of dough has a major 131 effect on dough stability and loaf volume and, together with other studies (Gerits, Pareyt, & 132 Delcour, 2014; Salt, Wilde, Georget, Wellner, Skeggs, & Mills, 2006), have shown that the 133 surface properties of dough liquor are dominated by the lipid component. White wheat flour 134 contains a range of polar lipids, including phospholipids (predominantly phosphatidy) 135 choline), galactolipids (predominately monogalactosyldiglycerides (MGDG)) and 136 digalactosyldiglycerides (DGDG)) and lyso-phospholipids (predominately 137 138 lysophosphatidylcholine (LPC) (Gonzalez-Thuillier, Salt, Chope, Penson, Skeggs, Tosi, et

al., 2015), the latter being integral lipids within the starch granules which are released on

starch damage (which is affected by milling). Furthermore, lipolytic enzymes can be used to

141 generate novel forms which may have better bubble stabilising properties than the

142 endogenous flour lipids (Gerits, Pareyt, Decamps, & Delcour, 2014).

143

144 We report here studies of the role of lipids in gas bubble structure in white flour, using dough

145 liquor and foaming to identify surface-active components. The cultivar Hereward was

selected because it was the gold standard for UK bread making wheats for over 15 years,

although its protein quality was not outstanding, and grain samples from three successive

148 years (2011, 2012 and 2013) were compared to determine the extent of year to year

variation in the amount, composition and properties of the lipids identified as functionally

150 active.

151

152 2. Materials

Breadmaking wheat, c.v. Hereward was grown under standard agronomic conditions at Rothamsted Research (Harpenden, Hertfordshire UK) in 2011, 2012 and 2013 and milled at Campden BRI (Chipping Campden, Gloucestershire UK), using a Buhler–MLU-202 mill. This gave three break and three reduction fractions, which were combined to give white flour with yields of 79 % (2011), 73 % (2012) and 77 % (2013).

All chemicals and reagents were supplied by Sigma-Aldrich (Poole, Dorset UK) unlessotherwise stated.

160

161 3. Methods

162 3.1. Dough liquor extraction and preparation

163 Doughs were prepared as previously described by Salt et al. (Salt, Robertson, Jenkins,

164 Mulholland, & Mills, 2005; Salt, Wilde, Georget, Wellner, Skeggs, & Mills, 2006). Briefly,

165 doughs were mixed in a Kenwood Chef mixer with a dough hook attachment, mixing for 4 min. Non-yeasted dough (500 g) was prepared using a basic recipe of 305 g flour (61 %), 166 189 g (37.8 %) water and 6 g salt (1.2 %). The recipe was adjusted for the 2013 flour [318 g 167 168 flour (63.6 %), 175 g water (35 %), and 6 g salt (1.2 %)] based on the unusually low water 169 absorption of 50.7 % (which was determined by Farinograph (to the 600BU Line) using Cereals and Cereal Applications Testing (CCAT) method No. 4). 170 After dough mixing, 65 g (approximately) dough pieces were weighed into polycarbonate 171 172 ultracentrifuge bottles (38 x 102 mm) with screw-on titanium caps (Beckman Coulter, item no. 355622), and held at 30 °C (in an incubator) for 90 minutes in accordance with the 173 common bakery practice in the manufacture of bread by the Chorleywood Bread Process 174 (CBP). The dough was then centrifuged in a pre-warmed (30 ℃) fixed-angle rotor (Beckman 175 Coulter, type 45 Ti - item no. 339160) at 200 000 x g for 30 min at 30 °C. After 176 ultracentrifugation, the supernatant (dough liquor) was collected, pooled and stirred for 5 min 177 before centrifugation at 48 000 x g for 20 min at 20 °C. The DL separated into three 178 179 fractions: a TAG-rich lipid pellicle on the top, clarified DL beneath the lipid, and a pellet. The clarified DL was collected using a peristaltic pump, taking care not to cause too much 180 disruption to the lipid layer or the pellet. 181

182

183 3.2. DL interfacial properties

A pendant drop technique was used to monitor the surface dilatational moduli of DL. 184 Measurements were taken using an FTA 200 pulsating drop densitometer (First Ten 185 186 Angstroms, Portsmouth, VA, USA), where a droplet hanging in air, was formed at the tip of a 187 Teflon coated needle (diameter: 1.12 mm) inside a glass cuvette. The needle was connected to a 50 µl glass syringe (Hamilton Company, Reno, NV, USA). Prior to each experiment the 188 syringe and needle were checked for contamination of surfactants by measuring the surface 189 190 tension of water (72.8 mN/m) for 10 min. The dilatational rheology of DL was then determined by capturing images of a pulsating, 8 -15 µl droplet (droplet size was altered 191

192	depending on DL concentration) that were taken every second for 600 seconds at
193	approximately 20 ${ m C}$. The shape of the droplet in ea ch image was analysed by fitting the
194	experimental drop profile to the Young-Lapalce capillary equation to calculate surface
195	tension, volume and specific area. The conductivity of DL (1/10 dilution with ultra-pure water)
196	was measured using a conductivity meter (Radiometer CDM83, Copenhagen Denmark) and
197	a 0.1 % NaCl solution to provide a ratio (10 % DL: 0.1% NaCl = 2.73 mS: 1 mS), allowing
198	the final salt content of undiluted DL to be calculated (2.73 %). For interfacial rheology
199	measurements, DL was diluted with 2.73 % NaCl solution to 10 %, 1.0 %, 0.1 % and 0.01 %
200	DL.
201	
202	3.3. Foaming
203	Dough liquor (20 mL) was transferred to a measuring cylinder and was foamed for 15 s,
204	using a mini rotary whisk (Le' Express, Kitchen Craft, Birmingham UK). The amount of liquid
205	formed underneath the foam (as the foam collapsed) was measured over 60 min.

For determination of lipids enriched in foam, 20 mL dough liquor was transferred to a funnel, with a drainage stopper, and was foamed. After 60 min, the liquid fraction was drained away

and the foam was rinsed from the funnel using ultra-pure water.

209

210 3.4. Lipid extraction

Total non-starch lipids were extracted from white flours, un-foamed DLs and DL foams as
described previously (Gonzalez-Thuillier, et al., 2015).

213 For flours, non-starch lipids were extracted from flour samples as described by Finnie et al

- 214 (Finnie, Jeannotte, & Faubion, 2009) with some modifications. The flour (150 mg) was
- heated in boiling water (100 $^{\circ}$) for 12 min to inac tivate any hydrolytic enzymes (Rocha,
- Kalo, & Malcata, 2012). Three sequential extractions were then carried out with petroleum
- ether (PEt), water-saturated butan-1-ol (1:10) (WSB), and propan-2-ol/water (90:10) (IW),
- with sample to solvent ratios of 1:10, 1:14, and 1:10, respectively. The PEt and WSB

extracts were washed by shaking with 1:1 (v/v) 0.88% KCl, centrifugation for 2 min at 650 x
g, and recovery of the upper layer to a new tube, in which all three lipid phases were
combined.

222 For un-foamed DL and DL foam; lipids were extracted by the Blight and Dyer method with 223 modifications (Bligh & Dyer, 1959; Kates, 1986). Chloroform: methanol (1:2) was added to 1 mL and 4 mL of un-foamed DL and DL foam, respectively in a 2:7.5 ratio. Samples were 224 vortex-mixed and incubated with agitation for 15 min, 250 rpm at room temperature. After 10 225 226 min of centrifugation at 650 g, the supernatant, containing the dough lipids, was transferred to a new tube. Lipid extraction was repeated using chloroform: methanol: water (1:2:0.8), 227 3.75 mL and 15 mL for un-foamed DL and DL foam, respectively. The two serial extracts 228 229 were collected in the same tube. The supernatants were washed with equal parts of 230 chloroform and 0.88% KCL, 1:3.2:3.2 sample: solvent: salt solution ratio. The lower phase 231 was collected in a new tube after centrifugation during 5 min at 650 x g. The aqueous phase was re-extracted with 2.5 mL and 10 mL of chloroform for un-foamed DL and DL foam, 232 respectively. For all samples, the combined extracts were evaporated under nitrogen 233 234 atmosphere at 40 °C, re-suspended in chloroform and filtered (0.45 µm Millex-FH filters, 235 Merck Millipore, Germany), dried under a stream of nitrogen, re-suspended in 1 mL of chloroform, flushed with nitrogen and stored at -80 °C. 236

237

238 3.5. Lipid analysis

239 Quantitative analyses of lipids, including neutral (free fatty acids (FFA), diacylglycerols

240 (DAG) or triacylglycerols (TAG)) and polar (phosphatidylcholine (PC),

241 phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerol (PG), LPC,

242 DGDG or MGDG) lipids were carried out using electrospray ionization tandem triple

243 quadrupole mass spectrometry (API 4000 QTRAP; Applied Biosystems; ESI-MS/MS) as

described previously by González-Thuillier (Gonzalez-Thuillier, et al., 2015). The internal

standards for polar lipids were supplied by Avanti (Alabama, USA), incorporated as; 8 pmol

246 13:0-LPC, 0.086 nmol di24:1-PC, 0.080 nmol di14:0-PE, 0.05 nmol di18:0-PI, 0.080 di14:0-

PG, 0.03 nmol di18:0-PS and 0.03 nmol di14:0-PA. The standards dissolved in chloroform

and different conditions were used for the aqueous samples, 100 μ L foam or 25 μ L un-

- foamed DL were combined with chloroform/methanol/300 mM ammonium acetate
- 250 (300:665:3.5 v/v) to make a final volume of 1 mL.
- 251 Neutral lipid molecular species were identified and quantified as described previously
- 252 (Gonzalez-Thuillier, et al., 2015). The amounts of sample used for foamed and un-foamed

253 DL were 100 µL and 25 µL, respectively. The standards were added to the foamed and un-

- foamed DL samples in the following concentrations 0.607 nmol 15:0-FFA (Sigma Aldrich, St
- Louis, USA) 0.0857 nmol tri15:0-TAG (Nu-Chek Prep, Minnesota, USA), 0.043 nmol 18:0-
- 256 20:4-DAG (Sigma Aldrich, St Louis, USA).
- 257
- 258 3.6. Multivariate statistical analyses.

Principal Component Analysis (PCA) was generated from full datasets for the individual
molecular species of the major lipid groups of white flour, DL and DL foam from 2011, 2012
and 2013. Multivariate statistical analysis software (SIMCA-P, version 14, Umetrics, Umea)
was used with unit variance scaling to compensate for differential concentrations of each
lipid species in the flour, DL and Foam.

- 264
- 265 3.7. Protein determination

266 The protein content of the dough liquor was determined by infrared (IR)-based protein

267 quantitation, using a bench-top Direct Detect® infrared spectrometer (Merk Millipore, Herts,

UK). In brief, 2.0 μL of sample (diluted to 1:10 using 2.73 % NaCl solution) was transferred

269 onto a hydrophilic polytetrafluorethylene (PTFE) membrane (which is transparent in mid-IR

regions used for protein analysis), on a sample card, and air-dried (using the heater in the
spectrometer) before use. Protein contents were calculated against a BSA standard curve
using a simple univariate (Beer-Lambert) analysis applied by the software of the
spectrometer (which relies on integration of the Amide I band).

274

275 3.8. Test baking

Test baking of the 2012 and 2013 flours and a control flour (Centurion, a commercially-276 available bread-making flour (Whitworth Bros Ltd)), was carried out using a standardised 277 278 protocol based on the Chorleywood Bread Process. A lean recipe was used, with 15 g salt (1.5 %), 0.1 g ascorbic acid (0.01 %), 0.014 g fungal alpha amylase (0.0014 %), 22.5 g yeast 279 (2.25 %), added to 1 kg flour and water added according to the water absorption (determined 280 by Brabender Farinograph to the 600BU line]. Doughs prepared with gluten fortification (up 281 282 to 11 %) to match that of the control and were mixed using a Morton mixer to a work input of 11Wh/kg and to a final dough temperature of 30.5 ± 1 ⁰C. The doughs were divided into 465 283 g pieces and were proved to a height of 10 cm at 40 °C in humid conditions to prevent 284 skinning. Proven dough was baked in a direct gas-fired reel oven at 235 °C for 25 min 285 286 resulting in single piece 400 g unlidded loaves. Loaves were assessed for height, volume and crumb structure (using a C-Cell instrument, Calibre Control International, UK). 287

288

289 4. Results

290 4.1. Flour lipid composition and properties

Total lipids were extracted from flour identified and quantified by ESI-MS-MS. The lipid classes identified were, (a) neutral lipids: including free fatty acids (FFA), diacylglycerol

293 (DAG), triacylglycerol (TAG); (b) galactolipids: monogalactosyl diglycerol (MGDG) and

digalactosyl diglycerol (DGDG); and (c) phospholipids: phosphatidyl choline (PC),

295 lysophosphatiyl choline (LPC), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidic acid (PA). 296 The lipid composition of the flours differed, and neutral lipids were most abundant and 297 298 galactolipids were least abundant for all three years (Figure 4). The 2013 flour had the 299 highest amounts of neutral lipids, 9274 nmol/g flour (Figure 4), accounting for 73 mol % of total lipids; containing the highest amount of TAGs (7967 nmol/g flour), DAGs (609 nmol/g 300 flour), and the lowest amount of FFAs (697 nmol/g flour) (Table 1). Followed by 2012 flour, 301 302 containing 4984 nmol/g flour neutral lipids (Figure 4), accounting for 89 mol % of total lipids; containing 2533 nmol/g flour TAGs, 609 nmol/g flour DAGs and 6974 nmol/g flour FFA 303 (Table 1). The 2011 flour had the lowest amounts of neutral lipids (3331 nmol/g flour) (Figure 304 4), accounting for 65 mol % of the total lipids. The flour from 2011 had the, highest amount 305 306 of FFAs (2503 nmol/g flour) and the least amount of TAGs (698 nmol/g flour) and DAGs (130 307 nmol/g flour) (Table 1).

Galactolipids were present in the biggest quantities in 2013 flour (1100 nmol/g flour), 308 309 followed by 2012 flour (738 nmol/g flour), and the lowest amounts were found in 2011 flour (508 nmol/g flour) (Figure 4), accounting for 9 mol%, 10 mol% and 10 mol% total lipids 310 311 respectively. In terms of specific lipid classes, 2013 flour contained the highest amounts of DGDG (784 nmol/g flour) and MGDG (316 nmol/g flour); compared to 2012 flour which had 312 532 nmol/g flour DGDG and 127 nmol/g flour MGDG. The 2011 flour had the least amount 313 of galactolipids, comprising 381 nmol/g flour DGDG and 127 nmol/g flour MDGDG (Table 1). 314 The 2013 flour had the highest levels of phospholipids (2339 nmol/g flour), compared to 315 2012 (1910 nmol/g flour) and 2011 flours (1261 nmol/g flour) (Figure 4), accounting for 18 316 mol%, 25 mol% and 25 mol% of total lipids. The largest contribution towards the 317 phospholipids was from LPC where 2012 flour had the highest amount (1612 nmol/g flour), 318 compared to 2013 flour (1335 nmol/g flour) and the least amount in 2011 flour (1145 nmol/g 319 flour). Phosphatidylcholine (525 nmol/g flour) and PI (374 nmol/g flour) made significant 320 contributions to the total amounts of phospholipids in 2013 flour. The remaining 321 322 phospholipids were much less abundant for all three samples.

323 These differences could be related to environmental effects on grain composition and/or differences in milling but we consider that they are probably unlikely to result from lipid 324 breakdown during flour storage as all flours were stored at -20°C and our investigations 325 326 showed that lipid breakdown was negligible under these conditions (results not shown). It is 327 notable that the samples also differed in water absorption, which was lower in 2013 requiring the addition of less water for dough mixing. Although water absorption is generally 328 determined by the extent of starch damage during milling, the reason for the difference was 329 330 not determined in the present study.

331

332 4.2. Surface properties of dough liquor

The surface pressure (π) of the samples was calculated by subtracting the mean surface 333 tension of the samples from the surface tension of water (72.8 mN/m at 20 °C, but can vary 334 with temperature) measured at the time of analysis. Averaged surface dilatational elastic 335 modulus (E), obtained from 15 intervals over 600 seconds, was plotted against surface 336 pressure (π) to indicate the types of molecules adsorbed at the air/water interface of DL at a 337 range of concentrations (0.01 %, 0.1 %, 1.0 %, 10 % and 100 %). The resulting values of E 338 339 for 2011 (Figure 1a), 2012 (Figure 1b) and 2013 (Figure 1c) showed that, for all samples, the surface of DL was dominated by proteins at lower DL concentrations (0.1 % and 1.0 % DL). 340 However, as the concentration of DL was increased, so did the lipid content which resulted 341 in increased surface pressure and a decrease in E to values typical of interfaces dominated 342 by lipids, as previously described by Salt et al (Salt, Wilde, Georget, Wellner, Skeggs, & 343 Mills, 2006). Dough liquor, diluted to 0.01% for all samples, showed similar interfacial 344 rheological properties to water and was too dilute to obtain any information about the DL 345 interface. Dough liquors from 2011 and 2012 flours showed similar interfacial rheological 346 properties, however, some small changes were observed for the 2013 flour (Figure 1c) at 347 348 100 % DL. The surface pressure (π) of DL from 2011 and 2012 flours ranged between 30-35 mN/m (Figure 1a and 1b) but for 2013 (Figure 1c), π was lower at a range of 25-30 mN/m. 349

To demonstrate the differences between the years in more details, the surface elasticity (E) was presented as a function of surface pressure (π) for undiluted DL from 2011, 2012 and 2013 flours on the same graph (Figure 2).

In terms of elapsed time during each experiment, the earliest adsorption time equates to the 353 lowest values of π , and as adsorption continues, π increases for DL from all three growing 354 years. The initial increase in π relates to the development of the air: water interface by the 355 migration of surface active molecules in the DL, such as proteins, to the interface followed by 356 their rearrangement and interaction however, the π values obtained are higher than would be 357 expected from protein alone (<24 mN.m⁻¹), and are normally associated with interfaces 358 occupied by low molecular weight surfactants or lipids. Therefore it is likely that such large 359 increases in π are the result of small amounts of lipid continually adsorbing into the interface 360 disrupting any interfacial protein networks, as previously shown by Salt et al. (Salt, Wilde, 361 Georget, Wellner, Skeggs, & Mills, 2006). Figure 2 shows that the 2011 and 2012 flours had 362 363 a similar range of values to each other, although the trends were slightly different, with both 364 being distinctly different to the 2013 flour. The higher π values for the 2011 and 2012 flours would indicate a greater emphasis of surfactants or lipids on their surface properties 365 compared to the 2013 flour. The difference in trends between the 2011 and 2012 could 366 indicate that kinetic changes in surface composition or molecular interactions over the 367 course of the experiment are slightly different between these two samples. 368 All samples displayed relatively weak elastic properties (Figure 2), with low E values 369 indicating a surface that is strongly influenced by the presence of lipids, as it is known that 370 371 even small amounts of lipids can have a significant effect on surface rheology (Wilde, 2000). Dough liquor from 2011 flour produced the least elastic interface; where E was 372 373 approximately 10 – 12 mN/m for most of the study, only rising towards 15 mN/m towards the 374 end of the experiment. The E values for the 2012 and 2013 DLs were over a similar range and trend, although 2013 DL showed a more rapid rise in E during the earlier stages of the 375 experiment, i.e. at the lower π values. The E values became similar between 2012 and 2013 376

377 towards the end of the experiment. If the interfacial composition of 2 different samples was 378 the same, but the kinetics of adsorption was different, then the data presented in Figure 2 would overlay between the 2 samples. This is because plotting the data as a function of π 379 normalises for any differences in adsorption kinetics (Ridout, Mackie, & Wilde, 2004). 380 Therefore, the distinct differences observed between the samples in Figure 2 clearly 381 demonstrate that the DL from 2013 flour had a different surface composition to DL from 2011 382 383 and 2012 flours, possibly due to there being more surface-active protein in the 2013 DL (Supplementary Figure 1.) available for adsorption. 384

385

386 4.3. Dough liquor foam stability

Foams were generated from 20 mL DL using a rotary whisk to determine their stability and 387 relate these properties to the stability of bubbles in bread dough. Observations by the 388 authors and others have shown that whole DL extracted from unmodified flour does not foam 389 390 (data not shown). This is thought to be due to the presence of neutral lipids such as triglycerides which have a detrimental effect on foam stability and loaf volume (Sroan & 391 MacRitchie, 2009). However, the lipid pellicle was excluded from DL during preparation 392 (Section 3.1) so that most of the triglycerides were also excluded, allowing the shearing 393 394 power of the whisk (traditionally used for producing milk foams for coffee) to generate foam 395 from DL.

Although the DLs foamed well, the foams were unstable and collapsed quickly with the least 396 397 stable foam generated from 2012 DL, and the most stable from 2013 DL (Figure 3). Foam volume measurements were taken when a distinct border was observed between the foam 398 399 and the drained DL underneath the foam (the foam that had collapsed). For 2012, this border appeared 2 min after foaming where the foam volume was 8.2 mL (59 % reduction), 400 which decreased rapidly to 3.7 ml (81.7 % reduction) at 10 min after foaming and collapsed 401 further reaching 2.3 mL at 15 min after foaming (88.3 % reduction). By 30 min, the foam 402 volume had collapsed further to 1.5 mL and remained at this volume until 60 min after 403 foaming resulting in a 92.5 % loss of foam structure. The foam generated from 2011 DL 404

405 behaved in a similar way to 2012 DL but was slightly more stable with a slower foam drainage rate. The border between the foam and the drained DL was visible slightly later, at 406 407 3 min after foaming, with a foam volume of 10.0 mL (50 % reduction), which again drained 408 quickly so that there was a 77.5 % reduction in foam volume (4.5 ml foam) at 10 min after 409 foaming. After 15 min the foam volume had fallen to 2.8 mL - a reduction of 85.8 %, which 410 collapsed further to 2.0 mL (90 % reduction) after 30 min and to 1.5 mL at 60 min resulting in a 91.7 % loss of foam structure. The DL from 2013 flour gave the most stable foam with 411 412 slower drainage than the foams from 2011 and 2012 DLs. Also, the border between the 413 foam and the DL was not visible until 8 min after foaming when the foam volume was 4.8 mL 414 (75.8 % reduction) which slightly decreased to 4.5 mL (77.5 % reduction) after 10 min, and after 15 min the foam had depleted to 3.7 mL (81.7 %). At 30 min after foaming, the foam 415 volume had further decreased to 2.7 mL (86.7 %), and then after 60 min reached 2.2 mL 416 417 resulting in an 89.2 % loss of foam structure.

418

419 4.4. Lipid analysis of dough liquor and foam

Total lipids were extracted from DL and DL foam fractions, to identify which were enriched in
DL foams, and compared to those extracted from white flours. A total of 85 molecular
species were identified and quantified by ESI-MS-MS and variation was observed both
between sample type and year of harvest. Lipid analysis data showed that DLs and foams
from 2011 and 2012 contained more neutral lipids than galactolipids or phospholipids,
except for 2013 DL, which had more galactolipids and phospholipids than neutral lipids and
more polar lipids enriched in its foam than 2011 and 2012.

The 2011 DL had the highest amounts of neutral lipids (302 nmol/g flour) compared to 2012 DL (234 nmol/g flour) and 2013 (239 nmol/g flour) (Figure 4), accounting for 89 mol %, 65 mol % and 14 mol % of total lipids respectively. The neutral lipid content of DL foam was greatest for 2011 where 1349 nmol/g flour was determined, an enrichment of 78 %; followed by an 80 % enrichment in 2013 foam (1192 nmol/g flour); 2012 DL contained the lowest amounts of neutral lipids, resulting in a lesser enrichment of 56 % (536 nmol/g flour) in its

433 foam. Small quantities of glycolipids were determined for 2011 DL (24 nmol/g flour) and 2012 DL (77 nmol/g flour) accounting for only 0.5 mol% and 1 mol% total DL lipids 434 respectively (Figure 4). However, 2013 DL had much higher levels of glycolipids;1106 435 436 nmol/g flour, similar to the amounts present in 2013 flour and accounting for 9 mol% of total 437 DL lipids. Galactolipids were present in DL foams but they were not enriched like the neutral lipids were. However, 2013 foam contained the highest amounts of galactolipids (404 nmol/g 438 flour) and phospholipids (410 nmol/g flour), accounting for 40 mol% of total foam lipids for 439 440 both groups.

441

The amounts of classes of lipids varied widely among the samples (Table 1). The neutral 442 443 lipids were most abundant group in the flours. Free fatty acids had the lowest values for 2013 DL (102 nmol/g flour) and 2012 DL (122 nmol/g flour) and were highest in 2011 DL 444 445 (210 nmol/g flour). The FFAs were enriched in the foams for the three years (2011: 1189 nmol/g flour; 2012: 373 nmol/g flour; 2013: 469 nmol/g flour), where 2011 had the greatest 446 enrichment (82 %). The 2013 DL had the lowest amounts of DAG (33 nmol/g flour), 447 compared to 2011 and 2012 DL, but DAG was enriched in 2013 foam (291 nmol/g flour; 87% 448 449 enrichment), the highest levels out of the three years. Although TAG was identified in the DLs and DL foams, we intentionally excluded the lipid pellicle on the surface of DL to 450 exclude most of the TAG, which would have affected surface tension and surface rheology 451 measurements and obscure the effect of other surface-active lipids. Our justification for this 452 is that during baking, TAG droplets would be entrapped in the starch-gluten matrix, and 453 would not be able to diffuse towards the gas bubble surface and thus are likely to have less 454 of an impact than the polar lipids. Any TAG present in the DL would therefore arise from 455 contamination of the capillary tubing used to extract the clarified DL after a secondary 456 centrifugation step (see section 3.1). We therefore do not discuss the data for TAGs. 457 458

Figure 4 shows that galactolipids were less abundant in the flour than the neutral lipids, so generally lower amounts of DGDG and MGDG were found in DL and DL foams. However,

461 the 2013 DL and foam was an exception, with significantly higher amounts of galactolipids than 2011 and 2012. Table 1 shows that the 2011 DL had the lowest amount of DGDG (16 462 nmol/g flour; 5 mol% of total lipids), compared to 2012 DL (47 nmol/g flour; 13 mol% of total 463 464 lipids) and 2013 DL had the highest levels (742 nmol/g flour; 45 mol% of total lipids); similar 465 to the amount in 2013 flour. The 2013 foam had the highest amounts of DGDG (269 nmol/g flour; 13 mol% of total lipids). The highest amount of MGDG (364 nmol/g flour; 22 mol% of 466 total lipids) was found in 2013 DL and 2013 foam also had the highest levels (135 nmol/g 467 468 flour; 7 mol% of total lipids).

469 Phospholipids were present in higher quantities in the flour than glycolipids, but they were 470 not as abundant as the neutral lipids, so, like the glycolipids, less were available in DL for enrichment in the foam. The 2013 DL had the greatest amount of PC, 228 nmol/g flour which 471 enriched in the foam by 38 % to 366 nmol/g flour. Also, PI was also enriched in 2013 foam, 472 473 but not to the same extent as PC. The PI content of 2013 DL was 6 nmol/g flour and increased to 8 nmol/g flour in the foam with an enrichment of 25 %. Foamed samples from 474 2011 DL and 2012 DL also showed an enrichment of PI, PS and PA, although contributions 475 476 to the lipid group are relatively small.

477

In terms of specific molecular species Figure 5, shows the proportion of the different 478 molecular species as a percentage of lipid content. Some differences were observed in the 479 degree of enrichment in some classes of lipids. These differences were highest for FFA; the 480 18:2 species was predominant in white flours, accounting for up to 51 mol% of total FFAs in 481 2012 samples. However, the proportion of this species decreased dramatically in DL foams; 482 by more than 12-fold in the 2012 DL foam. By contrast, other saturated and 483 monounsaturated FFAs were enriched in DL, especially in the foams. That was also the 484 case for 18:1 which was increased by 11 % in 2011 foams compared to white flour. The 485 FFA20:0 reached levels of 14 % in 2013 DL and 13 % in 2013 foam, whereas in the 2013 486 flour it represented only 5 % of the total FFA. The enrichment of the FFA22:0 was even 487 488 greater in the 2011 foam compared to the white flour with a 9-fold increase. Within the

489 phospholipids, the PI also differed between white flour, DL and foam. For example, the proportion of the species PI34:2, and in particular, PI36:2 were reduced in foams and DLs, 490 falling below the detection limits for the MS analysis. On the other hand, PI36:3 and PI36:4 491 492 were enriched in foams and DLs, being 4 and 3 times higher, respectively, in white flour 493 compared to foams in 2013. The proportions of DAG38:0 and DAG40:2 were greater in the 2011 white flour, DL and 494 foam samples compared to the other years but there were no differences between sample 495 types. Despite the increases in DGDG, MGDG and PC in foams, especially in 2013, there 496 were no differences in the proportions of individual molecular species in these polar lipid 497

498 classes between the samples.

499

500 4.5. Multivariate analyses.

The molecular species of the major lipid groups, in the different samples, were compared by 501 PCA (Figure 6). The first three Principal Components explained 76 % of the total variance. 502 The PCA showed sample distribution according to lipid composition. Noticeably, samples 503 504 were distributed in a gradient according to the year when they were harvested, and some 505 sample types were separated from the rest due to differences in lipid composition (Figure 6). For instance, 2013 white flour showed a positive score in Principal Component 2 (PC2) 506 given by an enrichment in TAG and PI molecules, differentiating from the other years and 507 the rest of the samples (Figure 6A, and Supplementary Figure S2A and S3). Flours from 508 2011 and 2012, as well as DL and DL foam from the same two years, had a negative score 509 along the PC1 axis, due to higher amounts of FFA and lower amounts of glycolipids and PL 510 compared to samples from 2013. A group for 2013 DL was plotted on the far-right side of the 511 chart (Figure 6A), and can be explained by a positive score in PC1 due to an enrichment of 512 glycolipids (specifically DGDG and MGDG) and PL (including PC, PG and PE), as well as 513 lower amounts of FFAs (supplementary Figure S2 B and C). However, the group was 514 positioned in the negative part of PC2 due to lower amounts of TAG and PL (Figure 6A, 515 516 Supplementary Figure S2A and S3). Differences in TAG in DL and DL foams are down to DL

preparation, described in section 3.1, thus comparing TAG levels in DL and DL foam is not possible for this work. A high positive score from 2013 foam, in the PC3 axis resulted in a distinct group present in the top part of the plot, due to higher levels of DAG and lower levels of FFA and LPC (Supplementary Figure S1A and B). The differences in lipid composition, explains why DL 2013 was showing better foaming properties than 2011 and 2012 DL. White flour from 2011 was grouped at the bottom of the plot showing opposite characteristics in terms of NL and LPC composition in 2013 foam (Supplementary Figure S1B).

524

525 4.6. Test baking

Test baking was carried out on the flours from 2012 and 2013, with the addition of gluten to 526 equalise the protein content of both flours with the control. The data clearly show that the 527 loaves baked from 2013 flour had higher loaf volumes (2012 = 1479 mL; 2013 = 1690 mL) 528 529 and the diameter of the gas cells was also greater compared to loaves baked with the 2012 flour (2012 = 1.40 mm; 2013 = 1.44 mm) and the control loaves (1.23 mm), which were not 530 fortified with gluten (Figure 7). The dough formulations had been adjusted to match the 531 protein content, and account for the water holding capacity of the test and control flours. This 532 533 would tend give the doughs more similar rheological properties to each other to optimise for air incorporation during mixing and proving. However, the rheology of the doughs are 534 unlikely to be identical, as the gluten guality and pentosan content may not be the same 535 between the flours. Nevertheless, normalising the protein and water contents of the doughs 536 would increase the reliance of the resultant baking quality on the gas bubble formation and 537 stability during mixing and proving. 538

539

540 5. Discussion

541 Lipids from 2013 flour had the greatest impact on the interfacial properties and foaming of

542 DL and the baking quality of the flour compared to flours from 2011 and 2012.

543 Surface dilatational rheology has showed that both lipids and proteins can adsorb at the air-

544 water interface of DL and, typically, that lipids dominated the interface at higher

545 concentrations of DL while proteins had more influence when the DL was diluted (Salt, Wilde, Georget, Wellner, Skeggs, & Mills, 2006). Differences in the surface elasticity -546 547 surface pressure relationship (Figure 2) were observed for undiluted 2013 DL, compared to 548 2011 and 2012 DLs, indicating that this sample had a different surface composition to the 549 2011 and 2012 DLs. The surface pressure of the 2013 DL was lower than the other two samples, which could indicate that the protein components could be having an influence 550 (Salt et al. 2006). However, all samples displayed high surface pressure values, typical of 551 552 interfaces dominated by surfactants or polar lipids. In addition, the surface rheology results (Figure 1) showed that all samples behaved very similarly, displaying a weak elastic 553 interface, and showed a maximum in surface elasticity when diluted. This maximum was 554 shown to be due to the increased adsorption of the protein component (Salt et al. 2006), and 555 the subsequent reduction in surface elasticity at higher DL concentrations shows that the 556 557 interfaces are becoming increasingly dominated by the lipid component. Dough liquors and foams were therefore analysed to determine differences in lipid content and composition in 558 to order explain differences in functionality at the gas bubble surface. 559 Enrichment of polar lipids (DGDG, MGDG, and PC) was observed in DL, with the highest 560 561 concentration being observed in the 2013 DL and Foam (Figure 4). These lipids were also present at higher proportions in the 2013 foam than in 2011 and 2012 foams, and could 562 have contributed towards the increased stability of 2013 foam. Polar lipids, particularly 563

galactolipids, have a large, non-ionic head group and are able to diffuse rapidly to the air-

565 water interface making them suitable for stabilising foams and gas bubbles in bread dough

566 (Gerits, Pareyt, & Delcour, 2014; Sroan & MacRitchie, 2009). However, 2013 DL and foam

had higher protein contents, than 2011 and 2012 samples. Although this could also have

568 contributed towards the improved foam stability, the weak surface elasticity values (Figure 2)

suggest that it was more likely that lipids were the main contributors to foam stability.

570 Enrichment of total FFA and DAG was also observed in the 2011 and 2012 DLs and DL

foams; and to a lesser effect for the 2013 DL foam. However, no significant enrichment in

572 individual molecular FFA species differing in chain length or saturation was observed. The

573 amount of FFA and DAG could have affected the foam stability, particularly that of the 2011 foam which contained higher levels of FFA and DAG. Free fatty acids are poorly soluble, 574 575 have a small head group and are unable to diffuse quickly to the air-water interface, resulting 576 in poor foam-stabilising characteristics. Also, small amounts of FFA are known to be 577 detrimental to foam stability (Pareyt, Finnie, Putseys, & Delcour, 2011; Wilde, Husband, Cooper, Ridout, Muller, & Mills, 2003), due to FFA using a foam breaking mechanism (Wilde, 578 2000), causing a rapid loss of foam structure, and therefore making them undesirable for 579 580 breadmaking. The lower levels of polar lipids in the 2011 and 2012 foam, compared to levels 581 in 2013 foam, meant that the overall stability of the foam was poorer than 2013 foam, and therefore its improved foam stability suggests that the higher levels of observed polar lipids 582 are capable of stabilising foams, and therefore the gas bubble network in bread dough 583 (MacRitchie & Gras, 1973; Sroan & MacRitchie, 2009). Even though the 2013 foam had high 584 585 levels of neutral lipids, similar to the 2011 foam (Figure 4), the much higher concentrations of polar lipids in the 2013 foam has probably counteracted the detrimental effect on foam 586 stability. Flours from 2012 and 2013 were also used for test baking to determine the effects 587 of differences in dough lipids on breadmaking quality. It was clear that the flour from 2013 588 589 gave the highest loaf volume, with a slightly larger gas bubble diameter (Figure 7). The lipid 590 analysis (Figure 4), PCA data (Figure 6) and the interfacial properties of DL (Figures 1 and 2) suggest that the polar lipids were dominating the interfacial properties. In addition, the 591 dough recipes were adjusted to account for protein content and water holding capacity, 592 which will increase the reliance for loaf volume on the stability of the gas cells. Hence the 593 results suggest that the intrinsic wheat lipids had some influence on the gas bubble stability 594 of dough during proving and early stages of baking. This observation is consistent with the 595 observed enrichment of polar lipids in the aqueous phase from the dough (Figure 6), foam 596 stability of DL (Figure 3) and the previous observations on the effect of polar lipids on 597 breadmaking quality (MacRitchie & Gras, 1973; Sroan & MacRitchie, 2009). Nevertheless, 598 we cannot discount other factors such as gluten quality or pentosan content, that may have 599 600 had additional effects on baking quality.

601

602 5.1. Conclusions

603 Increasing the content of intrinsic polar lipids and decreasing the content of neutral lipids would improve the breadmaking quality of wheat, by increasing the stability of the gas 604 bubble network and preventing coalescence during proving. Our results provide direct 605 evidence that polar lipids such as the galactolipids are enriched at the air-water interface. 606 thus contributing towards improving gas bubble stability in bread dough. Increasing the 607 608 endogenous polar lipids in wheat could also result in increases in health benefits, by allowing the reduction of salt and the amount of bakery fat or emulsifier used without compromising 609 dough stability. However, this will only be possible if the polar lipids are present in sufficient 610

- quantities to stabilise the thin films that support the gas bubble network in dough.
- 612
- 613 Funding
- 614 This work was supported by the BBSRC through the Crop Improvement Research Club
- 615 [grant number BB/J019488/1].

616

617 References

- Bekes, F., Zawistowska, U., Zillman, R. R., & Bushuk, W. (1986). Relationship between lipid content and composition and loaf volume of 26 common spring wheats. *Cereal Chemistry*, *63*(4), 327-331.
- Belton, P. S. (2005). New approaches to study the molecular basis of the mechanical
 properties of gluten. *Journal of Cereal Science*, *41*(2), 203-211.
- Biswas, S. C., Dubreil, L., & Marion, D. (2001). Interfacial behavior of wheat puroindolines:
 Study of adsorption at the air-water interface from surface tension measurement
 using Wilhelmy plate method. *Journal of Colloid and Interface Science, 244*(2), 245253.
- Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification.
 Canadian Journal of Biochemistry and Physiology, 37(8), 911-917.
- Campbell, G. M., & Martin, P. J. (2012). Bread aeration and dough rheology: an introduction.
 In S. P. Cauvain (Ed.), *Breadmaking: Improving Quality* 2nd ed., (pp. 299-336).
 Cambridge: Woodhead Ltd.
- Campbell, G. M., & Mougeot, E. (1999). Creation and characterisation of aerated food
 products. *Trends in Food Science & Technology, 10*(9), 283-296.

634	Cauvain, S. P. (2012). Bread making: improving quality (2nd Edition). Cambridge:
635	Woodhead.
636	Chin, N. L., & Campbell, G. M. (2005). Dough aeration and rheology: Part 2. Effects of flour
637	type, mixing speed and total work input on aeration and rheology of bread dough.
638	Journal of the Science of Food and Agriculture, 85(13), 2194-2202.
639	Chung, O. K., Pomeranz, Y., & Finney, K. F. (1982). Relation of polar lipid-content to mixing
640	requirement and loaf volume potential of hard red winter-wheat flour. <i>Cereal</i>
641	Chemistry, 59(1), 14-20.
642	D'Ovidio, R., & Masci, S. (2004). The low-molecular-weight glutenin subunits of wheat
643	gluten. Journal of Cereal Science, 39(3), 321-339.
644	Dobraszczyk, B. J., & Morgenstern, M. (2003). Rheology and the breadmaking process.
645	Journal of Cereal Science, 38(3), 229-245.
646	Finnie, S. M., Jeannotte, R., & Faubion, J. M. (2009). Quantitative Characterization of Polar
647	Lipids from Wheat Whole Meal, Flour, and Starch. Cereal Chemistry, 86(6), 637-645.
648	Gerits, L. R., Pareyt, B., Decamps, K., & Delcour, J. A. (2014). Lipases and Their
649	Functionality in the Production of Wheat-Based Food Systems. Comprehensive
650	Reviews in Food Science and Food Safety, 13(5), 978-989.
651	Gerits, L. R., Pareyt, B., & Delcour, J. A. (2014). A lipase based approach for studying the
652	role of wheat lipids in bread making. Food Chemistry, 156, 190-196.
653	Gonzalez-Thuillier, I., Salt, L., Chope, G., Penson, S., Skeggs, P., Tosi, P., Powers, S. J.,
654	Ward, J. L., Wilde, P., Shewry, P. R., & Haslam, R. P. (2015). Distribution of Lipids in
655	the Grain of Wheat (cv. Hereward) Determined by Lipidomic Analysis of Milling and
656	Pearling Fractions. Journal of Agricultural and Food Chemistry, 63(49), 10705-10716.
657	Gupta, R. B., Batey, I. L., & Macritchie, F. (1992). Relationships between protein-
658	composition and functional-properties of wheat flours. Cereal Chemistry, 69(2), 125-
659	
660	Hayman, D., Sipes, K., Hoseney, R. C., & Faubion, J. M. (1998). Factors controlling gas cell
661	failure in bread dough. <i>Cereal Chemistry</i> , 75(5), 585-589.
662	Kates, M. (1986). Lipid Extraction Procedures. In M. Kates (Ed.), <i>Techniques of lipidology:</i>
663	Isolation, Analysis and Identification of Lipids 2nd ed., (pp. 100-111). Amsterdam: Elsevier.
664 665	
665 666	Keller, R. C. A., Orsel, R., & Hamer, R. J. (1997). Competitive adsorption behaviour of wheat
666 667	flour components and emulsifiers at an air-water interface. <i>Journal of Cereal Science</i> , 25(2), 175-183.
668	Kooijman, M., Orsel, R., Hamer, R. J., & Bekkers, A. C. A. P. (1998). The insertion behaviour
669	of wheat puroindoline-a into diacylgalactosylglycerol films. <i>Journal of Cereal Science</i> ,
670	
671	MacRitchie, F. (2016). Seventy years of research into breadmaking quality. <i>Journal of Cereal</i>
672	Science, 70, 123-131.
673	MacRitchie, F., & Gras, P. W. (1973). The Role of Flour Lipids in Baking. Cereal Chemistry.
674	50(3), 292-302.
675	Mills, E. N. C., Wellner, N., Salt, L. A., Robertson, J., & Jenkins, J. A. (2012). Wheat proteins
676	and bread quality. In S. P. Cauvain (Ed.), <i>Bread making: improving quality (2nd Ed)</i> ,
677	(pp. 100-122). Cambridge: Woodhead.
678	Pareyt, B., Finnie, S. M., Putseys, J. A., & Delcour, J. A. (2011). Lipids in bread making:
679	Sources, interactions, and impact on bread quality. <i>Journal of Cereal Science</i> , 54(3),
680	266-279.
681	Pauly, A., Pareyt, B., Fierens, E., & Delcour, J. A. (2014). Wheat (Triticum aestivum L.)
682	puroindoline functionality in bread making and its impact on bread quality. <i>Journal of</i>
683	Cereal Science, 60(1), 114-121.
684	Peighambardoust, S. H., Fallah, E., Hamer, R. J., & van der Goot, A. J. (2010). Aeration of
685	bread dough influenced by different way of processing. Journal of Cereal Science,
686	<i>51</i> (1), 89-95.

- Primo-Martin, C., Hamer, R. J., & de Jongh, H. H. J. (2006). Surface layer properties of dough liquor components: Are they key parameters in gas retention in bread dough? *Food Biophysics, 1*(2), 83-93.
 Ridout, M. J., Mackie, A. R., & Wilde, P. J. (2004). Rheology of mixed beta-casein/beta-
- lactoglobulin films at the air-water interface. *Journal of Agricultural and Food Chemistry*, 52(12), 3930-3937.
- Rocha, J. M., Kalo, P. J., & Malcata, F. X. (2012). Composition of neutral lipid classes and
 content of fatty acids throughout sourdough breadmaking. *European Journal of Lipid Science and Technology*, *114*(3), 294-305.
- Salt, L. J., Robertson, J. A., Jenkins, J. A., Mulholland, F., & Mills, E. N. C. (2005). The
 identification of foam-forming soluble proteins from wheat (Triticum aestivum) dough.
 Proteomics, 5(6), 1612-1623.
- Salt, L. J., Wilde, P. J., Georget, D., Wellner, N., Skeggs, P. K., & Mills, E. N. C. (2006).
 Composition and surface properties of dough liquor. *Journal of Cereal Science*, 43(3), 284-292.
- Shewry, P. R., Tatham, A. S., & Lazzeri, P. (1997). Biotechnology of wheat quality. *Journal* of the Science of Food and Agriculture, 73(4), 397-406.
- Shimiya, Y., & Nakamura, K. (1997). Changes in size of gas cells in dough and bread during
 breadmaking and calculation of critical size of gas cells that expand. *Journal of Texture Studies, 28*(3), 273-288.
- Sroan, B. S., & MacRitchie, F. (2009). Mechanism of gas cell stabilization in breadmaking. II.
 The secondary liquid lamellae. *Journal of Cereal Science*, 49(1), 41-46.
- Subirade, M., Salesse, C., Marion, D., & Pezolet, M. (1995). Interaction of a nonspecific
 wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence
 microscopy and studied by infrared-spectroscopy. *Biophysical Journal, 69*(3), 974988.
- Ukai, T., & Urade, R. (2007). Cooperation of phosphatidylcholine with endogenous lipids of
 wheat flour for an increase in dough volume. *Food Chemistry*, *102*(1), 225-231.
- Wilde, P. J. (2000). Interfaces: their role in foam and emulsion behaviour. *Current Opinion in Colloid & Interface Science, 5*(3-4), 176-181.
- Wilde, P. J. (2012). Foam formation in dough and bread quality. In S. P. Cauvain (Ed.),
 Breadmaking: Improving Quality 2nd ed., (pp. 370-399). Cambridge: Woodhead Ltd.
- Wilde, P. J., Husband, F. A., Cooper, D., Ridout, M. J., Muller, R. E., & Mills, E. N. C. (2003).
 Destabilization of beer foam by lipids: Structural and interfacial effects. *Journal of the American Society of Brewing Chemists, 61*(4), 196-202.

0

724

- Table 1. Total lipid composition in White Flour, DL and Foam on three different years (2011,2012 and 2013) represented as nmol/g flour. The
- mean is the average of at least three biological replicates. Each lipid class represents the sum of all molecular species detected by mass

727 spectrometry for each class.

728

Lipid class	White Flour 2011 (nmol/g flour)		White Flour 2012 (nmol/g flour)		White Flour 2013 (nmol/g flour)		DL 2011 (nmol/g flour)		DL 2012 (nmol/g flour)		DL 2013 (nmol/g flour)		Foam 2011 (nmol/g flour)		Foam 2012 (nmol/g flour)		Foam 2013 (nmol/g flour)	
	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE	MEAN	SE
TAG	698.4	22.9	2532.9	99.6	7967.4	207.5	75.8	4.8	77.4	4.1	103.8	1.1	120.5	10.1	117.0	8.4	432.5	50.5
FFA	2502.6	295.7	1897.8	42.0	697.4	30.8	209.6	23.0	122.3	13.9	102.3	8.8	1189.0	295.8	373.2	8.7	468.9	65.7
DAG	130.3	7.7	553.3	19.6	609.0	23.9	16.7	3.1	34.4	5.4	33.0	6.1	39.2	10.4	45.9	11.6	291.0	9.3
DGDG	381.5	12.9	531.7	11.2	783.7	11.7	16.1	2.0	46.8	11.5	742.8	53.4	12.5	7.7	11.3	4.3	269.2	94.0
MGDG	126.6	4.0	206.7	2.9	316.1	4.9	7.9	1.1	29.8	7.7	363.7	8.9	7.5	3.7	9.5	2.6	134.7	53.8
LPC	1145.2	24.3	1612.4	41.0	1335.1	37.7	7.9	2.6	10.4	4.0	35.5	0.5	8.5	1.7	1.7	0.2	31.1	3.1
PC	51.0	3.0	205.7	7.8	524.7	29.3	3.0	0.3	32.6	10.6	228.0	63.6	6.3	2.6	24.6	11.7	366.2	228.1
PG	1.6	0.1	1.6	0.2	7.3	0.4	0.2	0.0	0.4	0.1	3.7	0.3	0.4	0.2	0.3	0.1	1.0	0.2
PE	2.7	0.2	9.6	0.7	29.8	1.7	0.2	0.0	1.3	0.7	18.5	2.5	0.1	0.0	0.4	0.2	1.5	0.7
PI	44.6	1.0	66.2	5.2	373.8	11.2	0.4	0.0	0.9	0.1	6.4	0.9	0.7	0.2	1.9	1.0	8.2	2.1
PS	12.7	1.1	9.3	0.6	20.7	0.8	0.1	0.0	0.1	0.0	0.7	0.1	0.6	0.3	0.4	0.1	0.3	0.0
PA	3.1	0.2	4.7	0.8	47.5	4.9	0.1	0.1	1.0	0.5	3.6	1.1	2.1	0.9	0.7	0.5	1.2	1.2
Total lipids	5100.2	304.6	7632.0	126.8	12712.5	296.6	337.9	25.4	357.3	43.9	1641.9	106.1	1387.5	310.2	586.9	45.4	2005.9	491.3

K

729

Figure 1. Surface dilatational rheology of DL from 2011 (a), 2012 (b) and 2013 (c). Undiluted DL (\bullet) was diluted to 0.01 % (\bigcirc), 0.1 % (\diamondsuit), 1 % (\triangle), 10 % (\Box); DL measurements were

compared to ultrapure water (\times) .

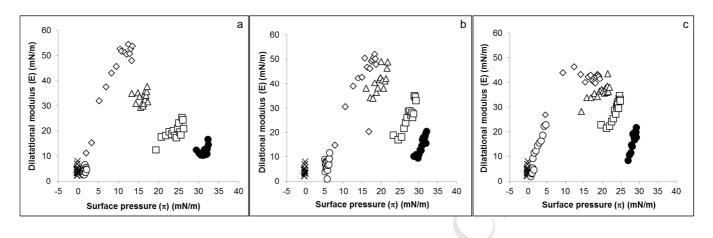


Figure 2. Surface dilatational rheology of 100 % DL from 2011(\boxtimes), 2012 (\bullet) and 2013 (\triangle) 737 738 flours as a function of the surface pressure.

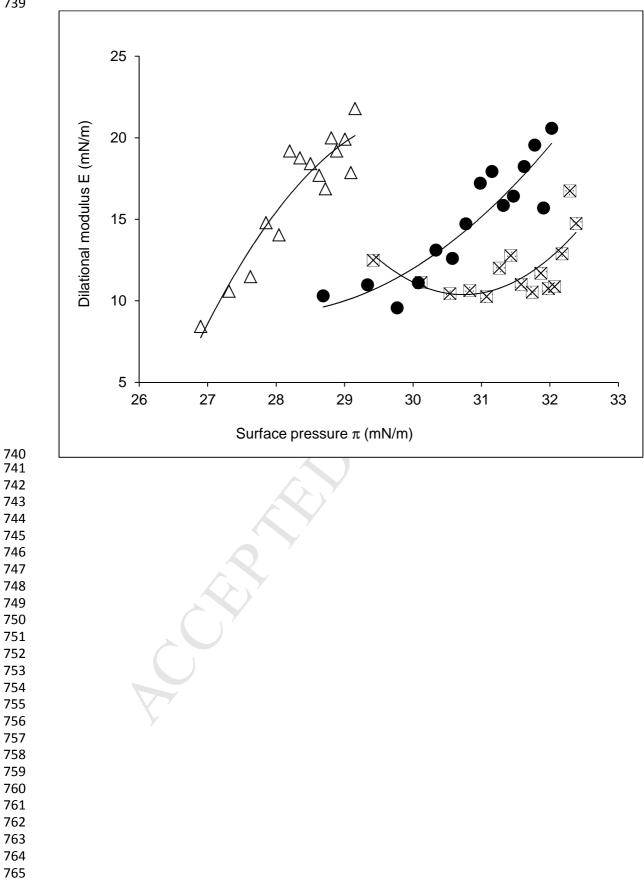
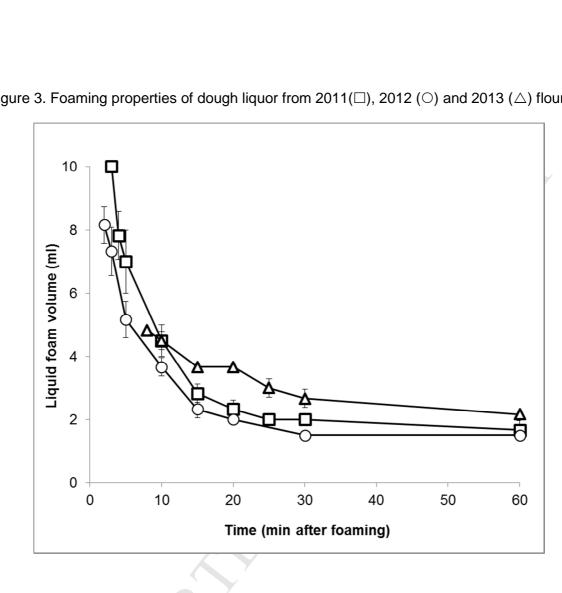
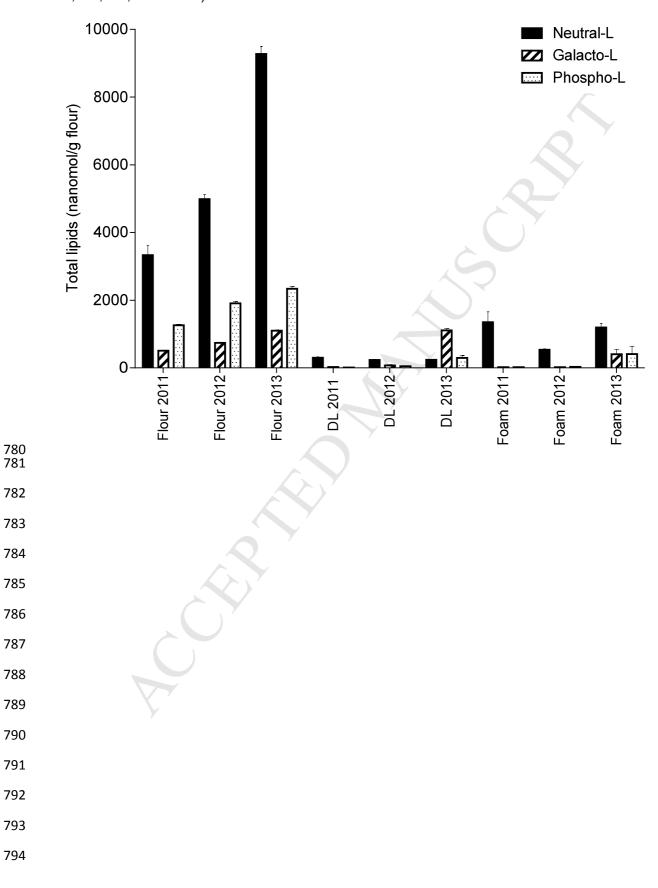
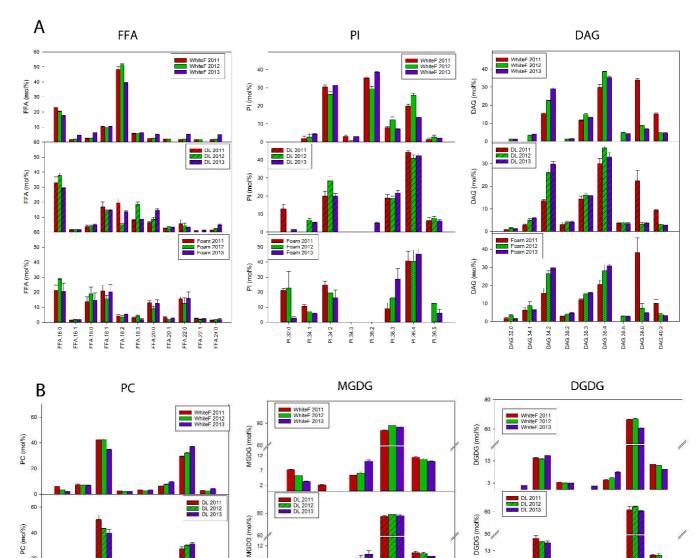


Figure 3. Foaming properties of dough liquor from 2011(\Box), 2012 (\bigcirc) and 2013 (\triangle) flours.


Figure 4. Lipid group distribution in flour, DL and DL foam. Neutral lipids (including FFA,
DAG and TAG), galactolipids (MGDG and DGDG) and phospholipids (including LPC, PC,
PG, PS, PE, PA and PI).

795

796

Figure 5. Proportions of molecular species in different lipid classes (by chain length) 797 identified from flour, DL and DL foam. A) FFA, PI and DAG. B) PC, MGDG, DGDG. 798 Expressed as mol% of total lipid content. 799 800

50 13 -

з

60 -

60 -(%|om) 50 50 13 -

Foam 2011 Foam 2012 Foam 2013

DGDG.34.1 DGDG:34.2 DGDG.34.3 DGDG.36.3

DGDG.36.2

DGDG.36.4

DGDG:35.5

801 802 PC (mol%)

40

20

0

60

PC (mol%) 20

0

PC.32.0 PC.34.1 60 12 -

7 2

(%)000 (mol%) 80

7

Foam 2011 Foam 2012 Foam 2013

AGDG:34.2

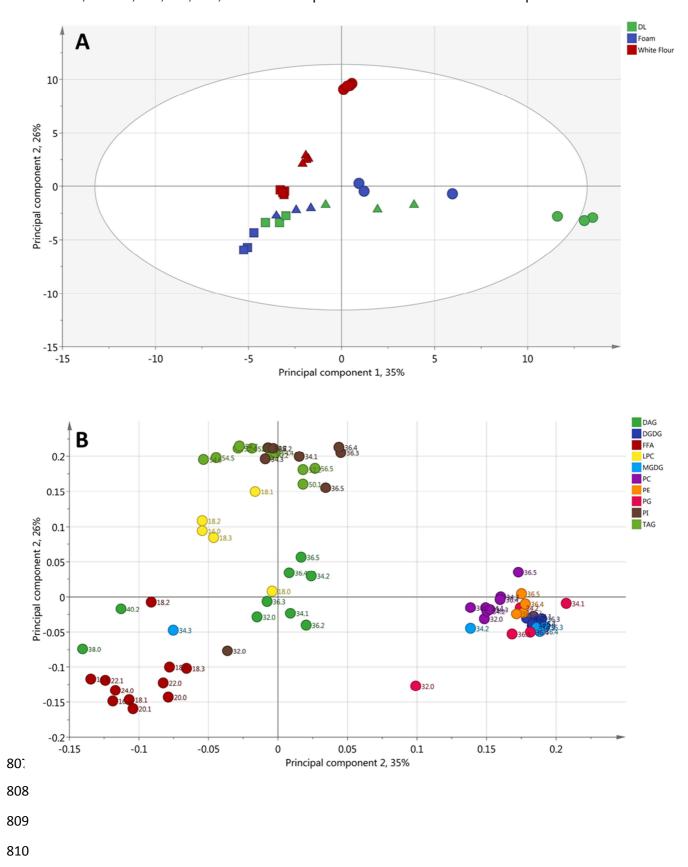
MGDG.34.3

MGDG:35.3

MGDG.36.5

MGDG.36.4

Foam 11 Foam 12 Foam 13


PC.36.5 -

PC.34.3

PC.36.2 -PC.36.3 -PC.36.4

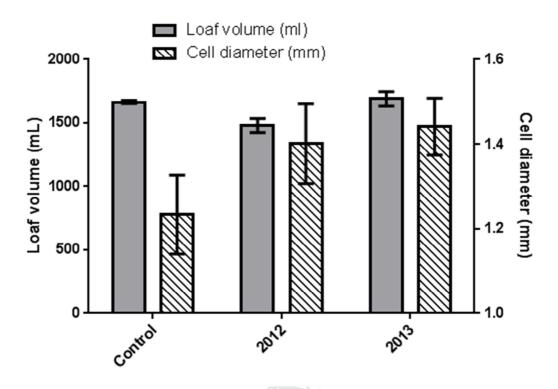

PC.34.2 -

Figure 6. Principal Component Analysis (PCA) of lipid composition. PC1 (35 %) vs PC2 (26
%). (A), PCA scores plot showing white flour (red), DL (green) and foam (blue) samples from
2011 (■), 2012 (▲) and 2013 (●). (B): PCA loading plot showing DAG, DGDG, FFA,
LPC,MGDG, PC, PE, PG, PI and TAG lipid classes and their molecular species.

811

- Figure 7. Loaf volume and gas cell diameter measured on loaves made during the
- 813 preliminary baking trials.

- During proving, gas bubble stability is determined by the types of lipids adsorbed at the air-water interface of the aqueous phase (forms thin films as bubbles expand reducing coalescence).
- Both proteins and lipids were active at the air-water interface of dough liquor (DL), but it was largely dominated by lipids.
- FFAs were enriched in DL foams and were detrimental to foam stability, whilst Polar lipids were enriched in DL.
- Greatest loaf volumes were generated from flour that produced DL with the highest enrichment of polar lipids.