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Key points 

• Functional mitochondria are transferred in–vivo from BMSC to the leukemic 

blast. 

• AML derived NOX-2 drives transfer of mitochondria via the generation of 

superoxide. 

 

 

Abstract 

 

Improvements in the understanding of the metabolic cross-talk between cancer and 

its micro-environment is expected to lead to novel therapeutic approaches. Acute 

myeloid leukemia (AML) cells have increased mitochondria compared to non-

malignant CD34+ hematopoietic progenitor cells. Furthermore, contrary to the 

Warburg hypothesis, (AML) relies on oxidative phosphorylation to generate ATP. 

Here we report that in human AML NOX2 generates superoxide, which stimulates 

bone marrow stromal cells (BMSC) to AML blast transfer of mitochondria through 

AML derived tunnelling nanotubes. Moreover, inhibition of NOX2 was able to prevent 

mitochondrial transfer, dramatically increase AML apoptosis and increase NSG 

mouse survival. Conversely, mitochondrial transfer could only be stimulated from 

BMSC to non-malignant CD34+ cells in response to oxidative stress. However, 

NOX2 inhibition had no detectable effect on non-malignant CD34+ cell survival. 

Taken together we identify tumor-specific dependence on NOX2 driven 

mitochondrial transfer as a novel therapeutic strategy in AML. 
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Acute myeloid leukemia (AML) is an aggressive disease that originates in the bone 

marrow from malignant transformation of a myeloid progenitor cell. AML can occur at 

any age but primarily affects the elderly, with the average age at diagnosis of 72 

years and three quarters of patients diagnosed after the age of sixty 1.  Despite 

existing cytotoxic treatments directly targeting the leukemic cell two-thirds of younger 

adults and 90% of older adults will die of their disease 2. Moreover, current 

aggressive chemotherapy regimens are often poorly tolerated by the older less fit 

patients. Improved outcomes are expected to be achieved through novel therapies 

which are developed from an improved understanding of the biology of the disease.  

 

AML blasts cultured in vitro undergo high levels of apoptosis, however the tumor 

rapidly proliferates in vivo demonstrating that the tissue microenvironment plays a 

fundamental role in the development of AML disease 3,4. The bone marrow 

microenvironment consists of many cell types not directly involved in 

haematopoiesis. These include endothelial cells; osteoclasts; osteoblasts; 

adipocytes and fibroblasts 5, which are broadly classed as bone marrow stromal cells 

(BMSCs) and have previously been shown to support AML survival and contribute to 

chemotherapy resistance 6.  

 

In general cancer cells depend on aerobic glycolysis to generate ATP, as 

hypothesised by Warburg in 1956 7 and this is thought to be due to activation of 

oncogenes that promote glycolysis 8. However the metabolism of AML blasts differs 

from most other cancers in so much as AML is primarily dependent on mitochondrial 

oxidative phosphorylation for survival 9. It is also established that AML cells have 

higher mitochondria levels compared to non-malignant haematopoietic stem cells 
10,11, which is entirely consistent with the observations that the tumor is dependent on 

a mitochondrial ATP production pathway. This proposes a key question; are the 

additional mitochondria in the AML blasts generated within the tumor cell or have 

they been acquired?  

 

For a long time mitochondria were thought to be retained in their somatic cell for their 

lifetime, however in 2004 the Gerdes lab showed that mitochondria can be 

transferred between cells 12. The main cell type in the bone marrow 

microenvironment, BMSC have been shown to donate their mitochondria to lung 
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epithelial cells preventing acute lung injury 13. This would suggest that BMSC have 

the capacity to donate their mitochondria within the bone marrow niche. In the 

present study we look to identify if and how BMSC transfer their mitochondria to AML 

blasts. Furthermore, we evaluate the mechanisms controlling the increase in 

mitochondria in AML blasts and finally whether blocking this process is specifically 

lethal to the tumor but not to the counterpart non-malignant hematopoietic progenitor 

cells in the bone marrow. 
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Methods 

Materials 

Anti-CD45-FITC, anti-CD33-APC, anti-CD90-FITC, anti-CD73-PE, anti-CD105-APC 

antibodies and CD34 microbeads were purchased from Miltenyi Biotec (Auburn, CA, 

USA). CellROX green, MitoTracker Green FM and Vybrant Dil stain were purchased 

from ThermoFisher (Waltham, MA, USA). Human Mitochondrial DNA (mtDNA) 

Monitoring Primer Set and the rLV.EF1.mCherry-mito-9 Lentivirus were purchased 

from Clontech Takara Bio Europe (Saint-Germain-en-Laye, France). Murine 

mitochondrial to nuclear DNA ratio kit was purchased from Detroit R&D (Detroit, MI, 

USA). All other reagents were obtained from Sigma-Aldrich (St Louis, MO, USA), 

unless otherwise indicated. 

 

Primary cell culture and differentiation 

Primary AML blasts were obtained from patient bone marrow following informed 

consent and under approval from the UK National Research Ethics Service 

(LRCEref07/H0310/146). Non-malignant CD34+ haematopoietic stem cells (HSC) 

were obtained from peripheral blood venesections from normal patients. AML cell 

isolation was carried out by density gradient centrifugation using Histopaque (Sigma-

Aldrich) and cell type was confirmed by flow cytometry as previously described 14. 

CD34+ HSC were isolated using density gradient centrifugation and CD34+ 

microbeads (Miltenyi Biotec). Bone marrow stromal cells (BMSC) were isolated by 

adherence to tissue culture plastic and were then expanded in Dulbecco’s Modified 

Eagle’s Medium (DMEM) containing 20% foetal bovine serum (FBS) and 

supplemented with 1% penicillin-streptomycin (Hyclone, Life Sciences). BMSC 

markers were confirmed using flow cytometry for expression of CD90+, CD73+, 

CD105+ and CD45-. 

 

Flow cytometry 

For this study we used the CyFlow Cube 6 (Sysmex, Milton Keynes, UK). Cells were 

incubated for 5 minutes with the FCR receptor blocker (MIltenyi Biotec, Cat. 130-

059-901) and then stained with isotype controls or test antibodies (Miltenyi Biotec). 

Gates were set to the appropriate isotype control.  
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Mitochondrial Mass determination 

To assess mitochondrial DNA copy number we performed direct qRT-PCR of 

primary cells using Terra qPCR Direct Polymerase mix and Human Mitochondrial 

DNA (mtDNA) Monitoring Primer Set (Clontech Takara Bio Europe) according to 

manufactures protocols. 

 

MitoTracker based mitochondrial transfer assay 

Human primary BMSC were stained with 200nM MitoTracker Green FM for 1 hour. 

Primary AML blasts were also stained with 200nM MitoTracker Green FM for 30 

mins. Both cell types were washed three times in phosphate buffered saline (PBS) to 

remove the unbound probe. Stained AML blasts were added to stained BMSC at a 

5:1 ratio for 24 hours. Stained AML were also grown in mono-culture for 24 hours as 

a control. After incubation AML were removed from BMSC and MitoTracker 

fluorescence in these cells was analysed using the CyFlow Cube 6 flow cytomter 

(Sysmex, Milton Keynes). This assay was used to quantify mitochondrial transfer to 

determine the stimulus mechanism, the difference in MitoTracker fluorescence 

between AML blasts grown with and without BMSC provided a baseline 

mitochondrial transfer. A pharmacological screen was carried out, whereby 

numerous drugs and pathway inhibitors were added to the MitoTracker based co-

culture, glutathione, hydrogen peroxide and diphenyleneiodonium chloride (Sigma 

Aldrich) were used further with additional patient AML blasts. 

 

AML xenograft model 

All in-vivo studies were carried out following approvals from the UK home office and 

Animal Welfare and Ethics Board of the University of East Anglia. For this study the 

NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice (The Jackson Laboratory, Bar 

Harbour, ME, USA) were housed under specific pathogen-free conditions in a 12/12-

hour light/dark cycle with food and water provided ad libitum in accordance with the 

Animal (Scientific Procedures) Act, 1986 (UK). 2x106 primary AML blasts were 

intravenously injected into non-irradiated 6-8 week old NSG mice. 2.5x105 OCI-

AML3-luc cells were injected, as per the primary blasts, for the NOX-2 KD xenograft. 

Mice injected with OCI-AML3-luc cells were monitored via in vivo bioluminescent 

imaging (Bruker, Coventry UK). At pre-defined humane end points mice were 

sacrificed (6-12 weeks post injection), bone marrow isolated and engraftment 
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determined using human CD33 and CD45 expression. Human AML blasts were 

purified from the heterogeneous bone marrow by MACS using CD45 microbeads. 

This purified human AML blast population was used for the PCR and agarose gel 

electrophoresis. Levels of mitochondria in the purified OCI-AML3-luc populations 

was achieved using MitoTracker Green FM staining and flow cytometry.   

 

Murine mitochondrial DNA detection 

Murine mitochondrial DNA detection was used to determine if inter-species 

mitochondrial transfer occurred from murine BMSC to human AML blasts. This 

method was used for both the in vitro culture and in vivo study. DNA from the purified 

human AML blasts was extracted using the GenElute mammalian DNA miniprep kit. 

8ng of DNA was added to the PCR reaction containing Sybr green and murine 

primers provided in the Detroit R&D kit. PCRs were amplified for 40 cycles (95°C/15 

seconds, 60°C/60 seconds) on a Roche 96-well LightCycler480. PCR products were 

run on a 1.25% agarose gel at 100V for 1 hour. Detection was performed by 

Chemdoc-It2 Imager (UVP) and analysed using ImageJ.  

 

Fluorescence and Confocal Microscopy 

Primary human BMSC were transduced with a rLV.EF1. mCherry-Mito-9 Lentivirus 

and were cultured with primary AML blasts for between 72 hours and 3 weeks. Live 

cell imaging was carried out in FluoroBrite DMEM media supplemented with 10% 

FBS (Hyclone, Life Sciences). Cytochalasin B (Sigma Aldrich) was added to the 

culture to analyse tunnelling nanotube formation (TNT). To visualise TNTs BMSC 

were stained with 100nM MitoTracker green FM and AML were stained with Vybrant 

Dil stain to visualise cell membranes. After co-culture cells were fixed with 4% 

paraformaldehyde and imaged. Fluorescence and bright field images were acquired 

on Zeiss Axio Vert.A1 microscope with 20X and 40X air objectives (Carl Zeiss) 

confocal images were acquired on Zeiss LSM 800 Axio Observer.Z1 confocal 

microscope with 40X and 63X water objectives (Carl Zeiss). 

 

2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and CellROX assays 

BMSC after a 24h co-culture with primary AML blasts were stained with 20µM 

H2DCFDA (Sigma Aldrich) for 30 mins at 37°C in FluoroBrite DMEM media 

supplemented with 10% FBS, BMSC grown alone were also stained. After incubation 
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cell were washed in PBS before flow cytometry analysis of the H2DCFDA 

fluorescence. Live fluorescence microscopy cell imaging was also used to visualise 

BMSC ROS. AML cells were not removed from the BMSC, H2O2 and NAC were 

also used with the same concentrations as the MitoTracker pre-stain assay. 

 

For the CellROX assay BMSC were cultured with primary AML blasts for 24 hours or 

stimulated with H2O2 and then stained with 10µM CellROX green reagent 

(ThermoFisher Waltham, MA, USA) for 30 minutes. After incubation the cells were 

washed with PBS and analysed using confocal microscopy. 

 

Lentiviral transduction 

NOX-2 shRNA glycerol stock was purchased from Sigma Aldrich 

(TRCN0000064588). Lentivirus particles generated using this construct were 

produced as previously described 15. Lentiviral stocks were concentrated using 

Amicon® Ultra centrifugal filters and titres were determined using Lenti-X™ qRT-

PCR titration kit (CloneTech). Primary AML blasts were plated at a density of 

5x104/well in a 24 well plate and infected with the NOX-2 lentivirus at MOI 30. NOX-2 

knockdown was confirmed using qRT-PCR.  

 

Real-time polymerase chain reaction 

Reverse transcription was performed using an RNA polymerase chain reaction 

(PCR) core-kit (Applied Biosystems). Relative quantitative real-time (qRT)-PCR used 

SYB-green technology (Roche) on generated complementary DNA. After pre-

amplification (95°C/60 seconds), PCRs were amplified for 45 cycles (95°C/15 

seconds, 60°C/10 seconds, 72°C/10 seconds) on a Roche 384-well LightCycler480. 

Messenger RNA (mRNA) expression was normalized against glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). 

 

Apoptosis 

Apoptosis of AML blasts and non-malignant CD34+ HSC was measured using 

PI/AnnexinV (eBiosciences) after co-culture with AML blasts and was quantified 

using flow cytometry. 
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Amplex Red Superoxide Assay 

The amplex red hydrogen peroxide/peroxidase assay kit was used to determine 

superoxide production was control KD vs NOX-2 KD AML blasts. 1x105 cells were 

plated in a 96 well plate for 48 hours in FluoroBrite DMEM media supplemented with 

10% FBS. The assay was carried out as per manufacturer’s protocol with a H2O2 

standard curve allowing superoxide quantification. 

 

Mitochondrial Respiration 

Mitochondrial respiration in AML blasts was assessed using the Seahorse XFp 

Analyzer, as previously described 16, and the Seahorse XF Mito stress test kit 

(Agilent Seahorse Bioscience) according to manufacturer’s specifications. Briefly, 

AML blasts were cultured with or without BMSC and then removed from co-culture 

and plated in poly-D-lysine (Sigma) coated assay wells at a density of 2x105 per well 

in base media containing 2.5mM glucose, 0.5mM carnitine and 5mM HEPES. 

Oligomycin (2µM), FCCP (0.25µM) and Rotenone (0.5µM) were added into the 

injection ports. The experimental template was designed using Wave software for 

desktop from Seahorse Bioscience. ATP production was monitored by the CellTitre-

Glo assay (Promega). 

 

Statistical analysis 

We used the Mann-Whitney U test, Wilcoxon matched pairs test and paired t test to 

compare results between groups. The Mantel-Cox test was used to analyse Kaplan-

Meier survival curves. Results with P < 0.05 (denoted by *), P < 0.01 (denoted by **) 

P < 0.001 (denoted by ***) were considered statistically significant. Results represent 

the mean ± Standard Deviation of 4 independent experiments. We generated 

statistics with Graphpad Prism 5 software (Graphpad, San Diego, CA, USA). 
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Results 

BMSC donate their mitochondria to leukemic blasts.  

As previously reported human AML blasts have an increased mitochondrial mass 

compared to non-malignant CD34+ progenitor cells 10,11 (Figure 1A). To determine if 

BMSC support the increase of mitochondria in AML we examined mitochondrial 

content after in-vitro co-culture. Figure 1B shows that AML increase their 

mitochondrial mass after co-culture with BMSC. Next we used 3 different methods to 

show that BMSC transfer their mitochondria to primary human AML.  

 

First, we assessed mitochondrial transfer between our patient derived BMSC and 

primary AML blasts by infecting BMSC with a rLV.EF1.mCherry-Mito-9 Lentivirus for 

stable production of mitochondria incorporated mCherry tagged protein. Using this 

we observed that primary AML blasts, after co-culture with these BMSC, acquired 

the mCherry fluorescence (Figure 1C and 1D). This demonstrates that mitochondria 

from the BMSC with the mCherry tag move to the AML blasts. 

 

Second, we used MitoTracker Green FM stain to quantify mitochondria in AML after 

co-culture with BMSC. We incubated both BMSC and AML with MitoTracker Green 

FM stain for 1h. The cells were washed twice in PBS and incubated for 4 h. The cells 

were then co-cultured for 24 h and then measured for MitoTracker fluorescence 

using flow cytometry. Figure 1E shows that AML in cultured with BMSC had 

significantly more mitochondria than AML cells cultured alone. This was also the 

case for the OCI-AML3 cell line (Supplementary Figure 1A). To begin to address 

whether this is a tumor specific phenomenon we repeated the experiment using non-

malignant CD34+ cells in the BMSC assay and showed no significant increase in 

MitoTracker fluorescence in the hematopoietic progenitor cells (Figure 1F).       

 

Third, we used an in-vivo xenograft model in which human primary AML were 

transplanted into NSG mice. Following tumor engraftment we determined if mouse 

mitochondrial DNA (mtDNA) could be detected in the human leukemia cells after 

extraction from NSG bone marrow. Four individual patient AML samples were 

transplanted into 8 NSG mice and following engraftment at between 6 and 12 weeks 

human AML blasts were isolated via human CD45 sorting (Figure 2A). Primary AML 

blasts reliably engrafted into NSG mice, verified by human CD33 and CD45 
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expression confirming human AML blast identity (Figure 2B) and Figure 2C shows 

that the human CD45 sorted cells were a pure population. Next we wanted to 

determine if the engrafted AML and subsequent CD45 purified human blasts had 

acquired mouse mitochondria. To do this we performed a PCR analysing mouse 

mitochondrial DNA and mouse genomic DNA.  Figure 2D shows that AML blasts 

isolated from engrafted NSG mice contained mouse mitochondrial DNA but not 

mouse genomic DNA, this was also the case for the OCI-AML3 cell line (Figure 2E). 

Taken together these 3 methods show that mitochondria are transferred from BMSC 

to leukemic blasts both in vitro and in vivo. 

 

Mitochondria transfer occurs via leukemia derived tunnelling nanotubule (TNT) 

A constant observation from live cell imaging was that AML blasts that acquire the 

mCherry fluorescence are in direct contact with the BMSC, this led us to investigate 

whether a cell-cell interaction is the way mitochondria move between the two cell 

types (figure 1C). We first hypothesised that tunnelling nanotubes (TNT) facilitate 

mitochondrial transfer from BMSC to AML blasts. To inhibit TNT formation we added 

cytochalasin B to our mCherry-Mito-9 BMSC-AML co-culture experiment. Figure 3A 

and 3B show that there is a significant reduction in the percentage of AML blasts that 

acquire the mCherry fluorescence after cytochalasin B treatment. This suggests that 

mitochondria from the BMSC are transferred to the AML blast via TNTs.  

 

TNTs are functionally dynamic, so in order to visualise the transfer of mitochondria 

we used a fixed cell based imaging. To do this we stained AML blasts with the 

Vybrant lipid stain (red) and the mitochondria in BMSC cells with MitoTracker Green 

FM stain and then cultured the cells together for 24 hours. Following co-culture the 

cells were fixed and TNT formation was detected using confocal microscopy. In 

Figure 3C we observed green mitochondria from the BMSC in the red TNT projecting 

from the AML blasts. 

 

ROS regulates the transfer of mitochondria from BMSC to leukemia blasts 

It is not known what stimulates mitochondrial transfer in AML or any cancer. 

Moreover, determination of the controlling stimulus is essential if this biological 

phenomenon is to be exploited therapeutically in the future.  
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To identify the mechanism of mitochondrial transfer in AML we used a 

pharmacological screen in which the MitoTracker experiment described in Figure 1 

was employed as a screening tool. Figure 4A shows that N-acetyl cysteine (NAC), 

glutathione (GSH) and diphenyleneiodonium (DPI) inhibit mitochondrial transfer. In 

contrast we observe that hydrogen peroxide (H2O2), daunorubicin and cobalt chloride 

further enhance mitochondrial transfer from BMSC to AML blasts. In our baseline 

experimental conditions mitochondria did not transfer from BMSC to non-malignant 

CD34+ cells (Figure 1F). However, the addition of H2O2 to the co-culture of non-

malignant CD34+ cells and BMSC co-cultures was able to induce mitochondrial 

transfer to the CD34+ cells. Next we wanted to determine if AML blasts are 

responsible for an increase in ROS levels in BMSC. To do this we analysed BMSC 

ROS when cultured with AML using two assays CellROX and 2',7'-

dichlorodihydrofluorescein diacetate (H2DCFDA) assay.  Figure 4E, F and G shows 

that culture with AML blasts causes increased ROS levels and oxidative stress in the 

BMSC. Figure 4H shows that non-malignant CD34+ cells do not increase ROS levels 

in BMSC. Taken together these results, show that AML induced ROS stimulate 

mitochondrial transfer from BMSC.   

 

AML derived NOX-2 drives mitochondrial transfer 

We observed that diphenyleneiodonium (DPI) was able to inhibit mitochondrial 

transfer in our assays (Figure 5A, Supplementary Figure 1B). As DPI inhibits NOX-2, 

and NOX-2-derived ROS plays a critical role in mobilization and homing of non-

malignant hematpoietic stem cells 17, we next asked whether NOX-2 derived 

superoxide produced by the AML was responsible for mitochondrial transfer. We 

knocked down NOX-2 using a lentiviral transduction (Figure 5B) in 4 human AML 

patient cell samples and the OCI-AML3 cell line. Then we analysed mitochondrial 

transfer to AML following NOX-2 or control shRNA knockdown. Figure 5C shows a 

significant reduction in mitochondrial transfer in the NOX-2 KD AML cells compared 

to control KD blasts, also consistent with the OCI-AML3 cell line (Supplementary 

Figure 1C). To confirm that superoxide was reduced in the NOX-2 KD cells we 

analysed superoxide using the AmplexRED assay. Figure 5D shows that NOX-2 KD 

cells have significantly reduced superoxide. Next we tested if AML with NOX-2 KD 

could increase ROS in BMSC. Figure 5E shows that NOX-2 KD AML cells had a 

reduced capacity to stimulate ROS production in the BMSC compared to control KD 
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blasts. Finally, we tested if DPI could reduce survival of AML in culture with BMSC. 

Figure 5F shows that AML blast survival on BMSC is inhibited by the addition of DPI. 

Moreover, DPI had little or no effect on the viability of non-malignant CD34+ cells 

grown in co-culture with BMSC (Figure 5G). Taken together in leukemic blasts NOX2 

derived superoxide stimulates ROS generation in BMSC which results in 

mitochondrial transfer from the stroma to the tumor.   

 

Mitochondria acquired by the AML blast are functionally active and contribute 

to the metabolic capacity 

We next explored the function of mitochondrial transfer in relation to mitochondrial 

respiration. We found that after co-culture with BMSC AML blasts have increased 

basal and maximum mitochondrial respiration compared control cells (Figures 6A 

and 6B). In addition, the ATP production capacity of AML blasts in co-culture with 

BMSC was increased compared to control cells (Figure 6C). This shows that 

mitochondria in AML after co-culture with BMSC are functional and contribute to 

energy requirements of the rapidly proliferating cancer cell. To determine if the 

mitochondria transferred are responsible for this increased respiration, we analysed 

the mitochondrial respiration in the control and NOX-2 knockdown primary AML 

blasts in co-culture with BMSC. We found that knockdown blasts had significantly 

reduced basal and maximum mitochondrial respiration (Figure 6D), showing that 

mitochondrial transfer has to occur in order for AML to have increased mitochondrial 

output when cultured with BMSC.  

 

NOX-2 is crucial for the development of AML in an in vivo xenograft model 

To analyse in the impact of NOX-2 on mitochondrial transfer and disease 

progression, we engrafted control KD and NOX-2 KD OCI-AML3-luc cells into NSG 

mice. Mice were imaged using bioluminescence at weekly intervals. These images 

revealed that there is reduced AML disease progression and engraftment in the bone 

marrow with NOX-2 KD cells compared to the control KD cells (Figure 7A). Disease 

progression was monitored until humane end point, the survival of the NOX-2 KD 

mice was significantly increased compared to the control KD mice (Figure 7B). OCI-

AML3-luc reliably engrafted into NSG mice, verified by human CD45 expression 

confirming human AML blast identity (Figure 7C). Mitochondrial levels were analysed 

in the two cell populations pre and post engraftment into the NSG mice, using 
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MitoTracker Green FM. There was no difference in the mitochondrial levels between 

the control and NOX-2 KD pre-engraftment (Figure 7D). However in the purified OCI-

AML3-luc cells post engraftment, the control KD cells had significantly increased 

mitochondrial levels compared to NOX-2 KD cells (Figure 7E). Taken together these 

results show that there is reduced mitochondrial transfer in vivo to NOX-2 KD cells 

compared to control KD cells. This reduces the engraftment and disease progression 

in these cells and enhances survival.  
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Discussion 

In this study we report that BMSC within the protective microenvironment of AML 

transfer their mitochondria to AML blasts. Furthermore, we show that mitochondria 

are transferred via AML-derived TNTs. We identified that AML derived ROS drives 

mitochondrial transfer from the BMSC to the AML. Specifically, NOX-2 derived 

superoxide generated from the AML causes mitochondrial transfer, shown through in 

vitro and in vivo studies. We were able to reduce mitochondrial transfer using both 

lentiviral knockdown and pharmacological inhibition of NOX2. Overall our results 

provide a first in cancer mitochondrial transfer mechanism, whereby the cancer cell 

drives transfer through increasing oxidative stress in the non-malignant donor cell.  

 

Mitochondrial transfer is known to occur in other cancers such as breast 18, lung 19 

and melanoma 20.  Our work shows in patient derived AML blast and BMSC 

samples, using three in vitro methods and an in vivo model that mitochondrial 

transfer was also observed between the BMSC and the AML blast. The mitochondria 

that move to the AML are also functionally active, highlighting that the AML blast is 

using this biological phenomenon to its metabolic advantage. As Mitochondrial 

transfer has been shown to occur via TNTs in some cancers 18,21,22, whereas in other 

disease contexts it has been shown to be via connexin-43 GAP junctions 13. A 

constant observation was that AML blasts which acquired mitochondria were in 

contact with BMSC, therefore we first analysed whether the mitochondria could be 

moving via TNTs in our AML cancer setting. Through the addition of cytochalasin B 

to the co-culture and capturing the dynamic interactions through confocal 

microscopy, we report that mitochondria move from BMSC to AML blasts 

predominantly through TNTs. In previous literature presenting mitochondrial transfer 

in AML it was suggested that mitochondria moved between cells via endocytosis 23. 

Our results do not disprove this idea and it is possible a combination of the two 

mechanisms (or possibly more) contribute to the total mitochondria that are acquired 

by the AML blast. The TNT mechanism is however necessary for AML survival.  

 

Through the pharmacological screen we highlighted that inducing ROS increased 

mitochondrial transfer, whereas inhibiting ROS reduced transfer. Additionally, we 

found that AML blasts increase oxidative stress in the BMSC. Chronic oxidative 

stress has been shown to aid tumour survival 24, metastasis 25 and proliferation 26. It 
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is also known that there are high levels of oxidative stress in AML 27 and that in AML 

disease relapse there are increased markers of oxidative stress 28. As we have 

shown oxidative stress drives mitochondrial transfer, this biological phenomenon 

may be the underlying reason why oxidative stress promotes AML proliferation and 

relapse. Interestingly using H2O2 we could stimulate mitochondrial transfer to non-

malignant CD34+ cells, which do not otherwise acquire mitochondria under baseline 

conditions, AML acts in a ‘parasitic’ way by generating the hypoxic conditions in the 

bone marrow necessary for mitochondrial transfer from stromal cells. 

 

We show that specifically NOX-2 generated superoxide derived from the AML blasts 

drives the observed mitochondrial transfer, which provides a molecular target for the 

process. NOX-2 has an established role in immune defence whereby superoxide 

produced by NOX-2 on phagocytic myeloid cells destroys pathogens 29. Through DPI 

drug inhibition of NOX-2 we show that in co-culture with BMSC, the cell viability of 

AML blasts is significantly reduced highlighting the significance of NOX-2 in AML 

disease. NOX-2 knockdown blasts have reduced mitochondrial respiration compared 

to control knockdown cells, therefore the metabolic requirements of the blasts may 

not be met resulting in the observed cell death. Inhibition of NOX-2 in vivo 

highlighted that NOX-2 and the resultant mitochondrial transfer is essential for AML 

disease progression, whereby NSG mice administered with NOX-2 KD AML out 

survived their control counterparts. Interestingly in vitro, the cell viability of non-

malignant CD34+ cells is unaffected upon the addition of DPI to the co-culture. It has 

been previously described that AML blasts produce a greater quantity of NOX-2 

derived superoxide than non-malignant CD34+ cells 30. This knowledge combined 

with the fact non-malignant CD34+ cells do not acquire mitochondria from BMSC 

and do not stimulate oxidative stress in the BMSC opens up a novel therapeutic 

window. Mitochondrial transfer from BMSC could be targeted therapeutically through 

NOX-2 inhibition without any detrimental effects to the normal haematopoietic 

system. 

 

Overall we report a first in cancer mitochondrial transfer mechanism whereby NOX-2 

derived oxidative stress drives transfer from non-malignant BMSC to AML blasts. 

Moreover, we show that this mitochondrial transfer is fundamentally a part of the 

malignant AML phenotype. Accordingly, these results may have the ability to be 
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translated into other malignancies where mitochondrial transfer has previously been 

observed but, where the specific mechanism have yet to be elucidated. Finally, our 

results identify a novel therapeutic opportunity to be developed and explored for the 

treatment of AML. 
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Figure Legends 

Figure 1. BMSC donate their mitochondria to leukemic blasts. (A) Mitochondrial 

DNA copy number was assessed in primary non-malignant CD34+ cells (n=7) and 

AML blasts (n=9) (P=0.0164). (B) Mitochondrial DNA copy number was assessed in 

primary AML blasts (n=6) in mono-culture vs co-culture with BMSC for 72 hours and 

1 week (P=0.0022). (C) BMSC were transduced with a rLV.EF1. mCherry-Mito-9 

Lentivirus. AML blasts were cultured on mCherry-Mito-9 positive BMSC and were 

analysed by live cell imaging after a 1 week culture. Bright field, mCherry and 

merged channels are shown. (D) Live cell imaging was repeated with 5 primary AML 

patient samples, the percentage of mCherry positive AML blasts is presented. (E and 

F) Primary AML blasts (n=11) or non-malignant CD34+ cells (n=7) were pre-stained 

with 200nM MitoTracker Green FM for 24 hours on BMSC stained with MitoTracker 

Green FM, MitoTracker fluorescence was analysed in the AML blasts (P=0.001) and 

non-malignant CD34+ cells (p<0.05) by flow cytometry.  

 

Figure 2. Human AML acquire mouse mitochondria in NSG xenograft model. 

(A) schematic representation of PDX model used for these experiments. (B) 2x106 

primary AML cells (4 individual patient AML) were I.V. injected into NSG mice. 

Engraftment was measured using human CD33 and human CD45. In the dot plot 

each AML engraftment into NSG mice is shown for bone marrow and spleen. (C) 

Engrafted AML were purified from the mouse BM using human CD45 cell sorting.  

Shown in the flow figure are the characteristics of AML#12 engraftment into BM and 

spleen. (D) Total DNA was extracted from the purified AML and analysed by PCR for 

murine and human specific mitochondrial and genomic DNA. PCR products were 

visualised by agarose gel electrophoresis. (E) OCI-AML3 cells engrafted into NSG 

mice were also analysed by PCR and agarose gel electrophoresis. 

 

Figure 3. Mitochondria transfer to leukemic blasts occurs via TNT. (A) BMSC 

were transduced with a rLV.EF1. mCherry-Mito-9 Lentivirus. AML blasts were 

cultured on mCherry-Mito-9 positive BMSC and were analysed by live cell imaging. 

With and without cytochalasin B. (B) Multiple primary AML blasts were cultured on 

rLV.EF1. mCherry-Mito-9 Lentivirus transduced BMSC with and without cytochalasin 

B the percentage of mCherry positive AML is shown. (C) AML blasts were stained 

with Vybrant Dil for 1 h and washed 3 times in PBS. BMSC were stained with 
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MitoTracker green FM for 1 h and washed 3 times in PBS. AML blasts and BMSC 

were then cocultured for 24 hours before fixation using paraformaldehyde. Cells 

were visualised by confocal microscopy.  

 

Figure 4. ROS regulate the transfer of mitochondria from BMSC to AML blast. 

(A) Primary AML and BMSC were pre-stained with MitoTracker green FM for 1h and 

then cultured together before 24 h drug treatment. Flow cytometry was used to 

detect MitoTracker green FM in the AML blast. (B) Primary AML (n=7) and BMSC 

were pre-stained with MitoTracker green FM for 1h and then cultured together before 

24 h NAC (5mM) and GSH (5Mm) treatment. Flow cytometry was used to detect 

MitoTracker green FM in the AML blast. (C)  Primary AML (n=10) and BMSC were 

pre-stained with MitoTracker green FM for 1h and then cultured together before 24 h 

H2O2 (50µM).  Flow cytometry was used to detect MitoTracker green FM in the AML 

blast. (D)  non-malignant CD34+ cells (n=7) and BMSC were pre-stained with 

MitoTracker green FM for 1h and then cultured together before 24 h H2O2 (50µM).  

Flow cytometry was used to detect MitoTracker green FM in the malignant CD34+ 

cells. (E)  BMSC cultured alone and in co-culture with AML or treated with H2O2 

(50µM) AML were removed and BMSC were stained for ROS using CellROX. BMSC 

were visualised for ROS using fluorescence microscopy. (F)  BMSC cultured alone 

and in co-culture with AML or treated with H2O2 (50µM) AML were removed and 

BMSC were stained for ROS using H2DCFDA (10µM).  BMSC were visualised for 

ROS using fluorescence microscopy or flow cytometry (G) BMSC cultured alone and 

in co-culture with non-malignant CD34+ cells or treated with H2O2 (50µM) AML were 

removed and BMSC were stained for ROS using H2DCFDA (10µM).  BMSC were 

visualised for ROS flow cytometry. 

 

Figure 5. AML derived NOX-2 drives mitochondrial transfer. (A) Primary AML 

(n=11) and BMSC were pre-stained with MitoTracker green FM for 1h and then 

cultured together before 24 h treatment with DPI (1µM).  (B)  4 AML patient samples 

were transduced with a lentivirus targeted to NOX-2 or control for 72 h. NOX-2 

mRNA levels were analysed by real-time PCR and normalised to GAPDH. (C, D, E 

and F) 4 AML patient samples were transduced with a lentivirus targeted to NOX-2 

or control for 72 h. KD AML cells and BMSC were pre-stained with MitoTracker 

green FM for 1h and then cultured together before 24 h. MitoTracker was detected 
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by was detected by flow cytometry.  (D) Superoxide production was detected in 

NOX-2 and control KD AML cells by AmplexRED assay. (E) BMSC were cultured 

with control KD AML or NOX-2 KD AML. BMSC were stained for ROS using 

H2DCFDA (10µM) and visualised for ROS using flow cytometry. (F) Primary AML or 

(G) non-malignant CD34+ were cultured with BMSC and treated with DPI (1µM) for 

72 h. AML blasts or non-malignant CD34+ cells were stained with Annexin V and 

analyses by flow cytometry.  

 

Figure 6. Mitochondria acquired by the AML blast are functionally active and 

contribute to the metabolic capacity. (A) Primary AML blasts were grown with and 

without BMSC for 72 hours and then analysed independently using the Seahorse 

XFp Analyser with the Mito Stress Test Kit. Data represented as mean ± standard 

deviation. Sequential injections of Oligomycin (O), FCCP (F) and Rotenone (R) were 

used to obtain respiration dynamics presented in (B). (C) Primary AML blasts were 

grown with and without BMSC and after 72 hours the ATP production capacity was 

analysed by CellTitre-Glo, with cells numbers normalised. (D) BMSC were cultured 

with control KD AML or NOX-2 KD AML for 72 hours. The blasts were then analysed 

using the Seahorse Extracellular Flux Analyser, basal and maximum mitochondrial 

respiration is presented. 

 

Figure 7. NOX-2 is crucial for the development of AML in an in vivo xenograft 

model. (A) Mice were imaged using bioluminescence weekly to monitor engraftment 

and disease progression in the animals administered with control and NOX-2 KD 

cells. (B) The survival of NSG mice administered with either control KD or NOX-2 KD 

OCI-AML3-luc cells. (C) Engraftment of AML in bone marrow harvested post human 

end point was analysed by flow cytometry for human CD45 expression. (D) 

Mitochondrial levels were analysed in the OCI-AML3-luc pre engraftment by staining 

for 15 mins in 200mM MitoTracker Green FM. (E) Mitochondrial levels in the purified 

OCI-AML3-luc population were also analysed as in D. 

 

 
















