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Running title: Improving zinc barley endosperm using HvMTP1 
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The abbreviations used are: MTP, Metal Tolerance Protein; DAP, days after pollination; D-HorP, D-

hordein promoter; SXRF, Synchrotron X-ray fluorescence. 

 

SUMMARY 

Zinc (Zn) is essential for all life forms, including humans. It is estimated that around two billion 

people are deficient in their Zn intake. Human dietary Zn intake relies heavily on plants, which in 

many developing countries consists mainly of cereals. The inner part of cereal grain, the endosperm, 

is the part that is eaten after milling but contains only a quarter of the total grain Zn. Here we 

present results demonstrating that endosperm Zn content can be enhanced through expression of a 

transporter responsible for vacuolar Zn accumulation in cereals. The barley (Hordeum vulgare) 

vacuolar Zn transporter HvMTP1 was expressed under the control of the endosperm-specific D-

hordein promoter. Transformed plants exhibited no significant change in growth but had higher total 

grain Zn concentration, as measured by ICP-OES, compared to parental controls. Compared with Zn, 

transformants had smaller increases in concentrations of Cu and Mn but not Fe. Staining grain cross-

sections with the Zn-specific stain DTZ revealed a significant enhancement of Zn accumulation in the 

endosperm of two of three transformed lines, a result confirmed by ICP-OES in the endosperm of 

dissected grain. Synchrotron X-ray fluorescence analysis of longitudinal grain sections demonstrated 

a redistribution of grain Zn from aleurone to endosperm. We argue that this proof-of-principle study 

provides the basis of a strategy for biofortification of cereal endosperm with Zn.  

 

INTRODUCTION 

Zinc (Zn) is an essential micronutrient for all living organisms, performing both catalytic and 

structural roles in a wide variety of proteins. Almost 3000 human proteins, one tenth of the 

proteome, bind Zn (Andreini et al., 2006), but the number of protein-zinc interactions could be larger 

even than this (Maret, 2012). Thus, Zn is involved in regulating many important biological processes. 

While Zn toxicity in humans is very rare (Plum et al., 2010); (Lu et al., 2009), Zn deficiency impairs 

development and growth, affects the nervous system, reduces immunity and can cause death. It is 

estimated that a third of the world population is suffering from moderate to severe Zn deficiency, 

while half of the population is at risk of being Zn deficient (Prasad, 2013; Wessells and Brown, 2012; 
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WHO, 2002). Among micronutrient deficiencies, zinc deficiency ranks third, after iron and vitamin A 

deficiencies (WHO, 2013), that together account for almost half of the worldwide deaths of children 

under five (Black et al., 2013; WHO, 2013). 

The primary cause of Zn deficiency in humans is poor nutrition because the main source of 

the metal ion is through dietary intake. Red meat comprises a principal dietary source of Zn, but in 

the most severely affected areas of dietary Zn deficiency the population depends on staple grain 

crops such as wheat, maize, rice. These crops often contain low concentrations of zinc in the 

endosperm, the part of the kernel that is milled to make flour (Hansen et al., 2009; Lombi et al., 

2011; Ozturk et al., 2006; Uddin et al., 2014). In most cases low endospermal Zn is not due to growth 

in Zn-poor soils (Fan et al., 2008), but rather to an uneven distribution of Zn within the tissues of the 

grain; although endosperm comprises up to two-thirds of the grain biomass, it typically contains only 

25% of grain Zn (Lombi et al., 2011). Bioavailability in the intestinal tract is also important for 

nutrition, and metal complexation influences absorption (Humer et al., 2015). Milling removes the 

embryo and the aleurone layers to leave flour containing less Zn than the whole grain (Cakmak, 

2008; Cakmak et al., 2010; Ozturk et al., 2006). Cereal breeding generally has selected for traits such 

as high yield, disease resistance and starch quality rather than grain micronutrient content (Fan et 

al., 2008; Garvin et al., 2006; Zhao et al., 2009). Mineral analyses of currently cultivated cereal 

cultivars varies greatly, but generally the low concentrations within the grains is assumed to result 

from the dilution effect of increasing the yield (Garvin et al., 2006; White and Broadley, 2009; White 

and Broadley, 2011; Zhao et al., 2009). Furthermore, wheat grain Zn concentration has been found 

to decrease with the date of release of the cultivar, suggesting that modern breeding is selecting 

against this trait (Fan et al., 2008; Garvin et al., 2006; Zhao et al., 2009). 

Strategies to address Zn malnutrition have focused on soil fertilization, food fortification and 

dietary diversification, all of which - although efficient - are very difficult to achieve in developing 

countries where deficiency is most prevalent. A complementary intervention method is to breed 

crops with increased Zn content in the grain – so-called ‘biofortification’ (Borrill et al., 2014; 

Meenakshi et al., 2007; Palmgren et al., 2008; White and Broadley, 2005; White and Broadley, 2009). 

Biofortification has been defined as the process of increasing the mineral status of staple crops 

within the edible parts through plant breeding. It ranks fifth among the intervention methods agreed 

by the Copenhagen Consensus (Center, 2008) to combat mineral malnutrition and it has proved to 

be highly-cost effective (Bouis et al., 2011; Meenakshi et al., 2010). Biofortification requires no 

further investment once the crop lines with higher mineral content are identified and is thus more 

readily available to developing parts of the world.  
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To address Zn biofortification from a genetic perspective, the transporters involved in the 

grain deposition of Zn must first be identified and their metal specificities determined. In barley 

grains, Zn-related transcriptome microarray analysis and expression studies in different grain tissues 

have identified several different metal ion transporter families: Heavy Metal ATPases (HMAs), Cation 

Diffusion Facilitators (CDFs, also known in plants as Metal Tolerance Proteins (MTPs)) and Natural 

resistance associated macrophage proteins (Nramps), that might be involved in the deposition of 

metals within the grain (Tauris et al., 2009). Plants MTPs are transition metal transporters that 

catalyse the efflux of Zn2+, Co2+, Fe2+, Cd2+, Ni2+, or Mn2+ from the cytoplasm to the outside of the cell 

or into subcellular compartments (Montanini et al., 2007). We have previously shown that the barley 

HvMTP1 transporter localizes to the vacuolar membrane, transports Zn to the vacuole when 

expressed in yeast, and is specific for both Zn and Co, but not for other transition elements (Podar et 

al., 2012). The HvMTP1 transporter was also found to be expressed in phloem and aleurone cells and 

present but with the low expression levels within transfer and endosperm cells of barley (Tauris et 

al., 2009). We hypothesised that over-expression of HvMTP1 on the strong endosperm-specific D-

hordein promoter might provide a strategy to increase endosperm Zn content, thereby providing a 

proof of principle approach to cereal grain biofortification.  

 

RESULTS 

Generating transformed plants expressing HvMTP1 under D-hordein promoter  

Transformed barley plants from a parental line (cv. Golden Promise) expressing HvMTP1 

under the endosperm-specific D-hordein promoter were generated to assess the role of HvMTP1 in 

grain metal accumulation. The barley D-hordein promoter directs gene expression throughout the 

endosperm from 12 to 24 Days After Pollination: DAP (Furtado et al., 2009). Homozygous 

transformed plants with two (lines 2 and 3) and four copies (line 1) of HvMTP1 were identified based 

on quantitative real time PCR (RT-qPCR) of the hygromycin resistance gene. The Golden Promise 

parental line was used as a control, alongside a homozygous line constitutively expressing GFP under 

the CaMV35S promoter. RT-qPCR analysis of the whole grain showed that the HvMTP1 transcript 

was highly expressed at 21 DAP in all three independently-transformed lines, while low levels of 

transcript were detected in both the parental and the GFP expressing lines. Data relating to HvMTP1 

endosperm-specific promoter expression are shown for T6 grains (Fig. 1). Transformed plants had 

similar germination rate, yield and morphology to the parental and GFP lines (Table S1 and Fig. S1).  
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HvMTP1 transformed plants retain whole grain Zn content 

Barley plants were grown in pots with or without added ZnSO4 (150 mg kg-1) until maturity in 

order to investigate whether enhanced HvMTP1 expression in endosperm would increase grain Zn 

concentration. The three independent homozygous transformed lines and controls were examined 

for Zn accumulation in whole grain using ICP-OES. The concentration of whole grain Zn of HvMTP1 

transformed lines 2 and 3 was very significantly greater than in the parental or GFP lines (Fig. 2a). 

Transformed lines 2 and 3 also showed significantly greater concentrations of whole grain Fe, Cu and 

Mn irrespective of the addition of Zn to the soil (Fig. 2b, c, d). Supplementation of compost with Zn 

led to a mean 103% increase in the concentration of Zn in parental, GFP expressing and transformed 

HvMTP1 lines when compared to plants with no added zinc (P<0.001; Fig. 2a). There were smaller 

increases in the whole grain concentrations of Cu (P=0.001; 24%; Fig. 2c) and Mn (P=0.001; 25%; Fig. 

2d) in Zn-supplemented compost but no increase in Fe (P=0.9; Fig. 2b). There was no significant 

evidence that the parental, GFP or transformed lines differed from each other in the extent to which 

Zn supplementation affected concentrations of any of the four cations.  

Endosperm-specific HvMTP1 transformed plants exhibit higher accumulation of Zn in the 

endosperm 

To determine the sites of Zn deposition within the grain we deployed three independent 

approaches. 

Longitudinal sections of grains were stained with diphenyl thiocarbazone (DTZ), which forms 

a red complex when bound to Zn and is highly selective for this metal, being interfered with only by 

Cd at high concentration (Ozturk et al., 2006). Figure 3 shows, as previously reported for wheat 

(Cakmak, 2008; Ozturk et al., 2006), that for the parental line, Zn is predominantly localized in the 

embryo and aleurone layer. A similar localisation is apparent also for the GFP expressing control line, 

as well as for one of the HvMTP1 expressing on the endosperm-specific promoter lines (line 1). 

However, increased staining of Zn is visually apparent in the endosperm of the other two HvMTP1 

transformed constructs (lines 2 and 3; Fig. 3a). Quantitative analysis of Zn staining within the 

endosperm alone indicated that lines 2 and 3 had very significantly higher levels of Zn compared to 

the parental and GFP lines with or without Zn supplementation, by a mean of 16% in line 2 and by 

24% in line 3 (P<0.001; Fig. 3b). 

To quantify Zn distribution, barley grains were dissected into endosperm (including the 

nutrient-dense aleurone layers) and embryo plus bran layers, then analysed by ICP-OES. Figure 4 

shows that supplementation of compost with Zn led to an increase in the concentration of Zn in 
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embryo and bran layer by at least two-fold in all lines (Fig. 4a). There was a significant increase in Zn 

accumulation in embryo plus bran layer comparing the endosperm-expressing HvMPT1 lines 2 and 3 

with the parental and GFP expressing lines, regardless of whether or not Zn was supplemented. In 

general, there was also no consistent difference in Fe, Cu and Mn concentrations in both treatments 

for all plants (Fig. S2). 

Adding Zn to the growth medium similarly increased by at least 50% the concentration of Zn 

in the endosperm plus aleurone samples both in control and endosperm-expressing HvMTP1 lines 

(Fig. 4b). Moreover, irrespective of Zn supplementation, the endosperm-expressing HvMTP1 lines 

showed increases of 9% to 31% of Zn concentration in the endosperm and aleurone compared with 

parental line, all three lines exhibiting statistically significant enhancement (Fig. 4b). Cu and Mn 

accumulated in the endosperm, including the aleurone layer, of Lines 2 and 3 as did Fe in Line 1 

(P<0.001 in all cases; Fig. S2a, c, e). There was also evidence for more variable accumulation of these 

cations in the embryo, specifically of Cu in Line 2 (P<0.001; Fig. S2d), Mn in Line 3 (P<0.01; Fig. S2f) 

and Fe in both these lines (P<0.001; Fig. S2b). These results strongly suggest that endosperm-specific 

HvMTP1 expression drives Zn redistribution within the grain increasing the concentration of Zn in 

the endosperm plus aleurone, but to a lesser extent in the whole grain. It may also enhance 

accumulation of other cations, especially in the endosperm. 

To attain higher spatial resolution of distribution of Zn within the grain as a result of 

expression of HvMTP1 on the endosperm-specific promoter, Synchrotron X-Ray Fluorescence (SXRF) 

mapping was performed on longitudinal grain sections of parental and transformed lines. All grains 

analysed were from plants grown without Zn supplementation.  

Figure 5 demonstrates that in the parental line, Zn is principally distributed in the grain 

periphery, within a narrow band of approximately 150 μm which corresponds to the aleurone layer 

(Lombi et al., 2011). The Zn concentration decreases markedly beyond the point where the inner 

endosperm begins. By contrast, all three of the HvMTP1 expressing lines have lower Zn in the 

aleurone layer, when compared to controls, in addition to an increased endosperm Zn signal (Fig. 5). 

The endosperm/aleurone Zn concentration ratio increases from 0.1 in the parental line to 5.54, 2.15 

and 2.90 in lines 1-3. These results demonstrate that endosperm-specific expression of HvMTP1 

leads to Zn grain redistribution from the aleurone layers into the endosperm. In contrast, the 

distribution of Fe, Ca and Cu are not affected by HvMTP1 overexpression (Fig. S3). To facilitate 

sectioning of the barley grain a 12 h pre-soak in water was used to soften the tissues. A parental line 

grain was also sectioned without soaking to analyse whether the water could be reallocating the 

minerals within the grain. The mineral distribution was similar for Zn, Fe, Ca and Cu, when 
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comparing parental line either with or without water soaking (Fig. S4). We therefore confirmed that 

pre-soaking the grain resulted in no significant metal redistribution within the grain. 

 

DISCUSSION 

Micronutrient acquisition through cereals is essential in many areas of the world, particularly in 

developing countries where meat consumption is not prevalent for reasons of sustainability or 

affordability (White and Broadley, 2011). Although whole grain itself might provide adequate dietary 

supply for humans, social and economic factors often determine – particularly in developing 

countries – that milled (endosperm-rich) grain is eaten. Increased accumulation of Zn in cereal 

endosperm is therefore critical for human nutrition because this part of the grain is usually eaten: 

significant enhancement of Zn endosperm content could potentially contribute considerably to 

dietary Zn biofortification (Velu et al., 2014). 

Within cereal grains Zn is mainly found in the pericarp, testa, embryo and aleurone, while 

the endosperm contains lower concentrations (Hansen et al., 2009; Lombi et al., 2011; Ozturk et al., 

2006; Persson et al., 2009). Recent findings suggest that in barley (Uddin et al., 2014) and rice (Iwai 

et al., 2012) Zn can also be found in the outer endosperm in the sub-aleurone layers. Nonetheless, 

methods to develop high concentrations of Zn in the endosperm, which accounts for 60-70% of the 

dry barley grain mass, are clearly desirable. 

 

Strategies to increase the concentration of Zn in cereal grain at a most general level include 

agronomic practices such as the application of soil and foliar Zn fertilizers. The use of Zn fertilizers in 

deficient soils can increase grain yield and the accumulation of Zn by up to 300%, depending on the 

species and crop genotype (Graham et al., 1992; Graham and Rengel, 1993; Souza et al., 2014). In 

the current study, supplementation of compost with 150 mg kg-1 of ZnSO4 increased the 

concentration of Zn in grain by 103%, both in parental line, GFP and endosperm overexpressing 

HvMTP1 lines. There were much smaller increases in the accumulation of Cu and Mn while Fe was 

not affected. Nevertheless, Zn-enriched soils or foliar-applied sprays do not represent a sustainable 

agricultural solution in soils that are adequate for normal crop growth and development (Swamy et 

al., 2016; Wissuwa et al., 2008). 

 

In addressing the issue of zinc biofortification, we have therefore taken a genetic rather than 

an agronomic approach. We reasoned that redistribution of Zn within cereal grains might provide a 

sustainable solution to endosperm-enrichment of Zn. In this proof-of-principle study we have been 

able to show through three separate approaches that increasing the expression of a vacuolar Zn 
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transporter in cereal grain endosperm enhances accumulation of Zn in the endosperm. The HvMTP1 

transporter chosen for these studies specifically transports Zn and cobalt, but not other metals 

(Podar et al., 2012). 

All three of the techniques used here to assay the impact of HvMTP1 specific expression in 

barley endosperm point to the promise of this approach. The qualitative overview provided by DTZ 

staining studies suggested enhancement of Zn uptake in two of three lines expressing HvMTP1 on an 

endosperm-specific promoter. Using dissected grains ICP-OES provided quantitative data on 

enhanced endosperm Zn accumulation in HvMTP1 transformed lines. The quantitative SXRF analysis 

has provided spatially-refined visualisation and confirmation of our hypothesis that Zn can be 

redistributed from the aleurone to the endosperm with appropriate transporter arrangement. The 

correlation between increased HvMTP1 transcript levels and Zn content in the endosperm strongly 

implies that HvMTP1 protein is upregulated in the endosperm and to a lesser extent in the embryo 

and bran. 

Several transgenic approaches have been tested in recent years to increase cereal grain Zn 

accumulation. Overexpression in rice of the nicotianamine synthase genes HvNAS1 under 

constitutive Actin1 promoter (Masuda et al., 2009) or OsNAS1 under the endosperm specific glutelin 

B1 promoter (Zheng et al., 2010) led to nearly 30% increase in grain Zn content, whereas OsNAS2 

and 3 almost doubled the amount of Zn accumulated in unpolished rice grains (Lee et al., 2009; Lee 

et al., 2012; Lee et al., 2011). Choice of promoters used to drive overexpression can impact the 

outcomes. Constitutive overexpression of the plasma membrane Zn transporters AtZIP1 and HvZIP7, 

driven by the maize ubiquitin and double 35S promoters increased the concentrations of Zn in barley 

grain by 60 and 35% (Ramesh et al., 2004; Tiong et al., 2014a; Tiong et al., 2014b). However, in rice, 

constitutive overexpression of OsZIP4 (35S promoter), OsZIP5 (maize ubiquitin promoter) and OsZIP8 

(maize ubiquitin promoter), lowered Zn concentrations within the grains (Ishimaru et al., 2007; Lee 

et al., 2010a; Lee et al., 2010b). What distinguishes the current study is the compartmental analysis 

of the Zn distribution within the grain. The use of the endosperm-specific promoter has resulted in 

increases of up to 31% in Zn in the barley endosperm.  

Major bottlenecks for Zn entering the endosperm are thought to be the translocation from 

the vascular tissue to the endosperm and the endosperm capacity to accumulate Zn (Ozturk et al., 

2006; Stomph et al., 2011). Our results show that the limited capacity of the endosperm to store Zn 

can be controlled by sink demand.  

Translation of these proof-of-principle findings to application will require bio-availability 

studies of endosperm-stored Zn. Phytate levels have conventionally been perceived to limit 

bioavailability of Zn through chelation (Palmgren et al., 2008). More recent studies, however, have 
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suggested that sulphur (S) containing peptides rather than phytic acid bind to Zn in the barley 

embryo (Persson et al., 2009). The identity of the physiological ligands for Zn within the endosperm 

of cereals is still uncertain; in wheat endosperm, Zn was possibly associated with nicotianamine 

(Eagling et al., 2014; Xue et al., 2014), and did not correlate with S (Stomph et al., 2011), in rice Zn 

may also be associated to nicotianamine (Johnson et al., 2011), whereas in barley endosperm Zn was 

associated with S-containing hordeins (Uddin et al., 2014).  

It is therefore unclear from previous metabolite and co-localization studies how Zn 

physiologically is bound in the grain, and what implications ligand-binding might have for human 

nutritional bioavailability. We suggest here that generation of novel cereal germplasm with 

enhanced Zn endosperm accumulation offers new opportunities to explore the bottlenecks that limit 

grain Zn biofortification. 

 

EXPERIMENTAL PROCEDURES 

Vector construction 

The zinc transporter HvMTP1 amplified with primers HvtMTP1_F and HvMTP1_R (Table S2) 

from barley (Hordeum vulgare cv. Golden Promise) seedlings (Podar et al., 2012) was cloned via XmaI 

in the pART7 vector (Gleave, 1992). The D-hordein promoter (D-HorP) was amplified with Phusion 

Hot Start High-Fidelity DNA Polymerase (Finnzyme), using primers D-HorP_F and D-HorP_R (Table 

S2) from pHorGusNos vector and inserted via SacI/EcoRI in pART7-HvMTP1, thus constructing a NotI 

cassette that placed the HvMTP1 under the D-hordein promoter and contained the ocs3’ terminator. 

The NotI cassette was further excised from pART7 and inserted in the pWBVec8 vector via NotI. 

Plasmids pWBVec8-D-HorP-HvMTP1-ocs3’T containing the construct in the inverted orientation with 

regard to the 35S promoter were selected and used for barley transformation. Plasmids were 

checked by sequencing after each cloning event. 

 
Plant transformation 

Barley transformation was achieved using immature embryos infected with Agrobacterium 

strain AGL0 carrying the binary vector pWBVec8-D-HorP-HvMTP1 (Matthews et al., 2001) and, as a 

control, pWBVec8-35S-GFP. After infection, embryos were transferred on Agrobacterium co-

cultivation, callus induction and subsequently, calli were placed on shoot induction and then root 

induction media. Primary putative transformants (T0) were rooted in the presence of hygromycin 50 

mg ml-1, in a growth room at 16h/8h light/dark cycle (light at 70 µmol m-2 s-1) and 24oC/18oC 

(day/night) temperature. Once rooted plants from tissue culture were transferred to pots containing 
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3:1 Levingtons F2: perlite and grown in a glasshouse with a minimum of 16 hours light (78 µmol m-2s-

1 supplementary lighting for 12 hours) and 20oC/15oC (day/night) temperature. 

Selection of transformants, segregation analysis and lines selection 

Primary putative transformants (T1) were assessed for T-DNA insertion both by PCR and leaf 

hygromycin resistance test (Wang and Waterhouse, 1997). PCR was performed using primers on D-

HorP_F and HvMTP1_137_R and GoTaq DNA Polymerase (Promega). Leaf hygromycin resistance test 

was performed on mature leaf segments placed on ½ MS media supplemented with hygromycin 200 

mg/ml. Barley homozygous GFP expressing and parental lines were used as positive and negative 

controls. Only plants showing positive results for both the PCR and leaf resistance test were used for 

further generation analysis. 

Grains of selected primary transformants were germinated (T2) and further assessed for 

segregation and single insertion by leaf resistance test. Plants with single insertion were expected to 

segregate according to Mendelian ratio of 3:1 hygromycin sensitive: resistant and therefore were 

selected for analysis. Grains of selected T2 plants constituted the T3 generation that was subjected 

to a second screening for zygozity by leaf resistance test. Only plants showing 100% resistance to 

hygromycin were retained and allowed to self-pollinate. Grains were collected and germinated; the 

resulting plants represented the T4 generation. Genomic DNA of T4 plants was sent to iDNA Ltd 

Norwich for zygosity test and number of inserts based on quantitative PCR (RT-qPCR) on hygromycin 

resistance gene. 

Grains of T4 lines were also investigated for the level of expression of the zinc transporter by 

quantitative real-time PCR (RT-qPCR) using specific primers for HvMTP1 and HvTUB2 as a reference 

gene (Table S2). RNA was extracted (see RT-qPCR section) from T4 grains at 21 days after pollination 

(21DAP) and 2 µg were used for cDNA preparation (SSIII reverse transcriptase Invitrogen). Lines with 

higher level of expression of HvMTP1 compared to control were selected for preliminary analysis of 

Zn levels within the endosperm by DTZ staining (Ozturk et al., 2006). 

Three homozygous D-HorP-HvMTP1 transformed lines showing 10 to 20-fold higher level of 

expression of HvMTP1 compared to parental background and potentially high levels of Zn within the 

endosperm were selected for further quantitative analysis: line 52c(4.1) with potentially two inserts 

and lines 30a(4.1) and 44(3.2) each with one copy of T-DNA insertion, which were designated, for 

ease of reading, lines 1, 2 and 3, respectively.  
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Analysis of selected transformed lines expressing HvMTP1 under the D-hordein promoter 

Growth conditions 

T5 generation of barley (Hordeum vulgare cv. Golden Promise) parental line and 

transformed lines (Ca35S_GFP and D-hordein_HvMTP1 lines 1, 2 and 3) were grown in 2 L pots with 

or without Zn treatment. The compost mix consisted of Scotts Levington M2 compost, Perlite, Grit 

and Osmocote plant food (containing 0.02% Zn). Zinc treatment consisted of the addition of ZnSO4 

(150 mg kg-1) as a powder into the compost mix. Plants were grown in the greenhouse with no 

supplementary light regime, at temperatures of 15oC day and 12oC night. Individual spikes were 

tagged at flowering and developing grains were harvested at 21 DAP when the barley D-hordein 

promoter is highly active (Furtado et al., 2009). Samples were immediately frozen in liquid nitrogen 

and stored at -80°C until RNA extraction for RT-qPCR analysis. The remaining grains were harvested 

at maturity. 

 

ICP-OES analysis 

Whole grain and dissected tissues samples were digested with a nitric acid (88%)/perchloric 

acid (12%) mix in a closed-vessel microwave system (Milestone, Sorisole, Italy) upon oven dried at 

60°C for 5 days. Metal concentrations (Cu, Fe, Mn Zn) were determined by inductively coupled 

plasma optical emission spectrometry (ICP-OES; Vista-Pro Axial; Varyan Pty Ltd, Mulgrave, Australia) 

at the School of Environmental Sciences, University of East Anglia. Reagent blanks, Wheat Flour 

certified reference material - NBS 1567a (from the US Department of Commerce National Bureau of 

Standards, Gaithersburg, MD 20899, USA) and standard metal solutions (Fluka) were used to assess 

the analytical quality control for sample preparation and the ICP-OES. The whole grain analysis was 

performed in triplicate on 12 grains randomly collected from three different plants of each 

genotype. 

Parental, GFP expressing and transformed lines (Ca35S_GFP and D-hordein_HvMTP1 lines 1, 

2 and 3) barley grains were carefully dissected by hand, after 24 h soaking in water, using plastic 

tweezers and plastic razor blade under a dissecting microscope (Wild Heerbrugg, M3, Switzerland). 

To obtain a homogenous bulk grain sample, only grains weighing 34-45 mg were used for analysis. 

Parts of the grain were separated by dissection, the endosperm including the nutrient-dense 

aleurone layers and embryo and bran layers, which were combined and analysed together. 

Dissected samples were oven-dried at 60°C for 5 days. Samples of tissues consisting of 12 grains 

collected from three different plants were analysed in triplicate. 
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Dithizone staining of mature grains 

Grains were placed in Milli-Q water for two hours, before they were directly excised 

longitudinally along the crease with a scalpel. The sectioned grains were then added to 1.95 x 10-3M 

DTZ dissolved in 100% methanol for 1 h, the grains were then washed in water for 2 h (Ozturk et al., 

2006). Next they were dried using medical wipes, before being placed on adhesive tape under a 

dissecting microscope. Grains were imaged using Qcapture software and analysed using ImageJ 

(Abramoff, 2004), in which they were converted to 8-bit grey scale JPEGs and the mean grey value 

was calculated. The ‘polygon selections’ tool was used to select the endosperm for analysis. Five 

grains selected at random were analysed per genotype and this was repeated 3 times.  

Quantitative RT-qPCR analysis 

Total RNA was isolated from tissues of developing grains at 21 DAP (containing high level of 

starch) as described previously (Li and Trick, 2005). The RNA pellets were washed carefully with 70 % 

ethanol and re-suspended in RNase free water followed by TURBOTM DNase (Applied Biosystems, 

Austin, TX, USA) treatment. First-strand cDNA synthesis was performed with oligo dT and reverse 

transcriptase (M-MLV, Invitrogen, Carlsbad, CA, USA) using 1 μg of RNA. Quantitative real-time PCR 

(RT-qPCR) reactions were performed in 96-well plates in a CFX96 Touch™ Real-Time PCR Detection 

System (Bio-Rad, Hercules, CA, USA) using 10 μl SYBR Green master mix (Life technologies, Carlsbad, 

CA, USA), 5 μl of 1:20 diluted cDNA and 5 pmol of forward and reverse primers in a total volume of 

20 μl. The HvMTP1 was amplified from cDNA with HvMTP1_RT_F and HvMTP1_RT_R and as 

reference gene HvTUB2 with HvTUB2_F and HvTUB2_R (Table S2). The standard thermal profile was 

95°C for 5 min, followed by 40 cycles of 95°C for 30 s, 60°C for 30 s and 72°C for 30 s. Data were 

analysed using iQ5 Optical System software version 2.1 (Bio-Rad, Hercules, CA, USA). The 

comparative Ct (threshold cycle) method (Livak and Schmittgen, 2001), was applied to calculate the 

relative expression levels. 

Synchrotron X-ray fluorescence (SXRF) 

Longitudinal sections (70 µm thick) of barley grains were obtained following the procedure 

described previously (Lombi et al., 2009), with a few modifications. Briefly, grains were soaked in 

water for 12 h to soften the samples for longitudinal sectioning using a razor blade. The flat 

longitudinal surface was glued to a metal support and sectioned using a vibrating blade microtome 

(VT1000S; Leica). A piece of Kapton polyimide film (DuPont, Eleutherian, Delaware, EUA) was 

pressed on the grain surface with the blade of the microtome cutting underneath to prevent the 

sliced section from crumbling apart. Two 70 μm thick longitudinal sections from two independent 
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grains (except for line 1 with only one section analysed) were analysed per sample using Synchrotron 

μ-XRF at the Diamond Light Source, UK, on the I18 microfocus beamline. The incident X-ray energy 

was set to 11 keV using a Si(111) monochromator. The X-ray fluorescence spectra of Zn and other 

trace elements were collected using a Si drift detector. The beam size and step size were 5 μm with a 

dwell time of 0.2 seconds. Elements quantification was carried out using an external calibration with 

XRF reference materials. Elemental distribution in longitudinal sections was very similar for Zn and 

therefore only one set of images for each grain type is presented in the paper (second set is 

presented in the Supplementary data). All grains analysed in this experiment are from plants grown 

in compost without Zn supplementation. Furthermore, a line scan across the grain, away from the 

embryo region, beginning on the dorsal outer margin (5 µM wide) and continuing 1000 µm towards 

the endosperm was recorded. The endosperm-aleurone ratio accounts the areas under the peak (1 

to 150 µm assigned to the aleurone layers and 151 to 1000 µm to the endosperm), calculated by 

Reimann sums, in parental and transformed lines. 

Statistical Analysis 

Data sets were analysed by general linear modelling, with standard errors calculated by 

analysis of variance and statistical significance tested by Fisher’s protected least significant 

difference (GenStat 18th edition VSN International, Hemel Hempstead, UK). 
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FIGURE LEGENDS 

Figure 1. Quantitative real-time RT-PCR analysis of the relative expression levels of HvMTP1 in grains 

of T6 barley plants, at 21 DAP. Expression of HvMTP1 relative to HvTUB2 is shown in parental lines, 

plants expressing GFP under the CaMV35S promoter (GFP) and transformed lines 1-3 expressing 

HvMTP1 under D-hordein promoter. Plants were grown in the greenhouse in compost without 

addition of Zn. Bars represent means ± SE (n=3). Values indicated with stars are statistically 

significant different from parental and GFP lines (analysis of variance; P<0.001). 

 

Figure 2. Concentrations of (a), zinc (Zn), (b), iron (Fe), (c), copper (Cu) and (d), manganese (Mn) in 

barley whole grains as measured by ICP-OES in parental plants, plants expressing GFP under the 

CaMV35S promoter (GFP) and transformed lines 1-3 expressing HvMTP1 under the D-hordein 

promoter. Plants were grown in the greenhouse in compost without (black) or with addition of 150 

mg kg-1 ZnSO4 (grey). Bars represent means ± SE (n=3) calculated by analysis of variance of log10-

transformed data. Lines 2 and 3 had very significantly greater whole-grain cation concentrations 

than the parental and GFP-expressing plants (P<0.001). 

 

Figure 3. Distribution of Zn in barley grains shown through DTZ staining. (a) DTZ staining of grains 

grown in compost supplemented with 150 mg kg-1 ZnSO4. (b) Mean grey values of endosperm DTZ 

staining of parental line, plants expressing GFP under the CaMV35S promoter and transformed lines 
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1-3 expressing HvMTP1 under the D-hordein promoter. Plants were grown in the greenhouse in 

compost without (black) or with addition of 150 mg kg-1 ZnSO4 (grey). Bars represent means ± SE 

(n=15 with 2 technical replicates per grain). Values indicated with three stars are significantly 

different from parental and GFP lines (analysis of variance; P<0.001). 

 

Figure 4. Concentration of zinc (Zn) in the (a), embryo plus bran layer and (b), endosperm (including 

the aleurone layers) as measured by ICP-OES in the parental line, plants expressing GFP under the 

35S promoter and transformed lines 1-3 expressing HvMTP1 under the D-hordein promoter. Plants 

were grown in the greenhouse in compost without (black) or with addition of 150 mg kg-1 ZnSO4 

(grey). Bars represent means ± SE (n=3). Values indicated with stars are significantly different from 

those of parental and GFP-expressing lines with or without added ZnSO4 as appropriate (analysis of 

variance; * 0.05>P>0.01, ** 0.01>P>0.001, *** P<0.001). 

 

Figure 5. Grain line scans for Zn in parental line (purple) and transformed lines 1-3 (blue, pink and 

black, respectively) expressing HvMTP1 under D-hordein promoter. Line scans begin on the outer 

margin of the grain (5 µm width) and continue 1000 µm towards the endosperm; data are displayed 

as Zn concentration in mg kg-1. Distance 1 to 150 µm was assigned to the aleurone layers and 151 to 

1000 µm to the endosperm. The insert shows μ-XRF Zn maps of longitudinal sections of the grain 

(0.2 mm width and 1 mm length) in parental and transformed lines 1-3. The colour scale represents 

different concentrations, with blue and red corresponding to the lowest and highest concentration, 

respectively. R, endosperm/aleurone ratio of areas under the line scan peaks calculated by Reimann 

sums. 

 

SUPPLEMENTARY INFORMATION LEGENDS 

Figure S1. Representative plants. 

Figure S2. Concentration of iron, copper and manganese in the endosperm and embryo. 

Figure S3. μ-XRF elemental maps of longitudinal sections of the grain of parental and HvMTP1 lines 

1-3. 

Figure S4. μ-XRF elemental maps of longitudinal sections of the grain of parental and HvMTP1 lines 2 

and 3. 

Table S1. Germination percentage of grains. 

Table S2. List of primers. 
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Figure 1 

 

 
 

Figure 1. Quantitative real-time RT-PCR analysis of the relative expression levels of HvMTP1 in grains 

of T6 barley plants, at 21 DAP. Expression of HvMTP1 relative to HvTUB2 is shown in parental lines, 

plants expressing GFP under the CaMV35S promoter (GFP) and transformed lines 1-3 expressing 

HvMTP1 under D-hordein promoter. Plants were grown in the greenhouse in compost without 

addition of Zn. Bars represent means ± SE (n=3). Values indicated with stars are statistically 

significant different from parental and GFP lines (analysis of variance; P<0.001).
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Figure 2 

 

 
 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright All rights reserved

Figure 2. Concentrations of (a), zinc (Zn), (b), iron (Fe), (c), copper (Cu) and (d), manganese (Mn) in 

barley whole grains as measured by ICP-OES in parental plants, plants expressing GFP under the 

CaMV35S promoter (GFP) and transformed lines 1-3 expressing HvMTP1 under the D-hordein 

promoter. Plants were grown in the greenhouse in compost without (black) or with addition of 150 

mg kg-1 ZnSO4 (grey). Bars represent means ± SE (n=3) calculated by analysis of variance of log10-

transformed data. Lines 2 and 3 had very significantly greater whole-grain cation concentrations 

than the parental and GFP-expressing plants (P<0.001). 
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Figure 3 

 

 
 

Figure 3. Distribution of Zn in barley grains shown through DTZ staining. (a) DTZ staining of grains 

grown in compost supplemented with 150 mg kg-1 ZnSO4. (b) Mean grey values of endosperm DTZ 

staining of parental line, plants expressing GFP under the CaMV35S promoter and transformed lines 

1-3 expressing HvMTP1 under the D-hordein promoter. Plants were grown in the greenhouse in 

compost without (black) or with addition of 150 mg kg-1 ZnSO4 (grey). Bars represent means ± SE 

(n=15 with 2 technical replicates per grain). Values indicated with three stars are significantly 

different from parental and GFP lines (analysis of variance; P<0.001). 
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Figure 4 

 

 
 

Figure 4. Concentration of zinc (Zn) in the (a), embryo plus bran layer and (b), endosperm (including 

the aleurone layers) as measured by ICP-OES in the parental line, plants expressing GFP under the 

35S promoter and transformed lines 1-3 expressing HvMTP1 under the D-hordein promoter. Plants 

were grown in the greenhouse in compost without (black) or with addition of 150 mg kg-1 ZnSO4 

(grey). Bars represent means ± SE (n=3). Values indicated with stars are significantly different from 

those of parental and GFP-expressing lines with or without added ZnSO4 as appropriate (analysis of 

variance; * 0.05>P>0.01, ** 0.01>P>0.001, *** P<0.001). 
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Figure 5 

 

 
 

Figure 5. Grain line scans for Zn in parental line (purple) and transformed lines 1-3 (blue, pink and 

black, respectively) expressing HvMTP1 under D-hordein promoter. Line scans begin on the outer 

margin of the grain (5 µm width) and continue 1000 µm towards the endosperm; data are displayed 

as Zn concentration in mg kg-1. Distance 1 to 150 µm was assigned to the aleurone layers and 151 to 

1000 µm to the endosperm. The insert shows μ-XRF Zn maps of longitudinal sections of the grain 

(0.2 mm width and 1 mm length) in parental and transformed lines 1-3. The colour scale represents 

different concentrations, with blue and red corresponding to the lowest and highest concentration, 

respectively. R, endosperm/aleurone ratio of areas under the line scan peaks calculated by Reimann 

sums. 

 


