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ABSTRACT 

Identifying and quantifying the dominant processes of erosion and tracking the 

fate of sediment, wood, and carbon eroded during floods is important for understanding 

channel response to floods, downstream sediment and carbon loading, and the influence 

of extreme events on landscapes and the terrestrial carbon cycle. We quantify sediment, 

wood, and organic carbon (OC) from source to local sink following an extreme flood in 



Publisher: GSA 

Journal: GEOL: Geology 

DOI:10.1130/G38935.1 

Page 2 of 16 

the tectonically quiescent, semiarid Colorado (USA) Front Range. Erosion of >500,000 

m3 or as much as ~115 yr of weathering products occurred through landsliding and chan-

nel erosion during September 2013 flooding. More than half of the eroded sediment was 

deposited at the inlet and delta of a water supply reservoir, resulting in the equivalent of 

100 yr of reservoir sedimentation and 2% loss in water storage capacity. The flood dis-

charged 28 Mg C/km2, producing an event OC flux equivalent to humid, tectonically ac-

tive areas. Post-flood remobilization resulted in a further ~100 yr of reservoir sedimenta-

tion plus export of an additional 1.3 Mg C/km2 of wood, demonstrating the ongoing im-

pact of the flood on reservoir capacity and carbon cycling. Pronounced channel widening 

during the flood created accommodation space for 40% of flood sediment and storage of 

wood and eroded carbon. We conclude that confined channels, normally dismissed as 

transport reaches, can store and export substantial amounts of flood constituents. 

INTRODUCTION 

Extreme floods in mountainous regions typically coincide with mass movements 

through intense precipitation. This combination profoundly alters hillslopes, riparian are-

as, and channel geometry, and introduces large volumes of sediment, wood, and nutrients 

such as organic carbon (OC) into rivers. Identifying and quantifying the magnitudes and 

processes of erosion of sediment, wood, and OC from hillslopes and channels and track-

ing the fates of flood constituents through budgeting are important for understanding 

channel response to floods, as well as for informing management and restoration. 

Budgets for fluvial materials can also be used to create context for short-term, 

small-scale measurements of mass fluxes, particularly during episodic extreme events, 

and to understand the relative importance of diverse local sources and sinks at varying 
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time and space scales. Mass budgets thus form a vital part of studies of the critical zone, 

yet they rarely combine the triad of sediment, wood, and carbon. Existing studies of sed-

iment and/or wood-derived fluxes come from tropical and/or tectonically active regions 

(e.g., Hilton et al., 2008; Wohl and Ogden, 2013). Mountainous mid-latitude regions have 

been highlighted as hotspots of OC accumulation (Schimel and Braswell, 2005), yet we 

lack details of OC dynamics for these regions (e.g., Smith et al., 2001), particularly with 

respect to the significance of extreme events to OC fluxes and partitioning of OC fluxes 

into sediment and wood. 

We present an integrated sediment, wood, and OC budget derived from a semiar-

id, tectonically quiescent catchment in the southern Rocky Mountains (western USA) that 

underwent an extreme rainstorm and associated hillslope failures and flooding in Sep-

tember 2013. The Ralph Price Reservoir at the lower end of North St. Vrain Creek (NSV) 

in the Colorado Front Range allows us to develop a source-to-sink budget of sediment, 

wood, and OC fluxes during the 2013 storm. Unlike other canyons in the Front Range 

where extensive post-flood sediment and wood removal occurred, no unquantified post-

flood clearance was carried out along NSV Creek, thus it provides an ideal setting to 

document the immediate and ongoing effects of the flood. We quantify fluxes of sedi-

ment, wood, and carbon within the catchment during the 2013 event and quantify post-

flood remobilization to understand the fate of flood-derived constituents and the process-

es of continued downstream transport and loading to the reservoir. Fluxes during and af-

ter the extreme disturbance are then compared to decadal and long-term average rates 

from the study area to assess the significance of the event geomorphically and for the ter-

restrial carbon cycle. 
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STUDY SITE AND METHODS 

NSV Creek is underlain by Precambrian granite and biotite schist (Braddock and 

Cole, 1990) and drains the east side of the Continental Divide in northern Colorado (Fig. 

1). The mountainous portion of NSV Creek has cascade, step-pool, or riffle-run morphol-

ogy formed in cobble to boulder-size sediment. Valley geometry varies longitudinally, 

although the study reach is laterally confined, with the valley bottom generally less than 

eight times the bankfull channel width. A 15 km reach of NSV Creek is bounded up-

stream by a low-gradient beaver meadow where 2013 flood effects were minimal (over-

bank deposition of sand and gravel; Wohl et al., 2017) and downstream by Ralph Price 

Reservoir where the trapping efficiency for sediment (>0.63 mm), wood, and OC is effec-

tively 100%. As it enters the reservoir, NSV Creek is ~15 m wide and drains 245 km2. 

The upper basin is within Rocky Mountain National Park and a city preserve and has un-

dergone minimal logging, land development, or flow regulation. 

From 9–15 September 2013, a large tropical storm produced >350 mm of precipi-

tation (Gochis et al., 2015), generating a >200 yr flood (Yochum, 2015) that swept 

through towns along the base of the Front Range, causing multiple deaths and extensive 

damage to infrastructure. Peak flood discharge measured through the spillway of Ralph 

Price Reservoir was estimated as 280 m3/s (K. Huson, 2013, personal commun.; mean 

annual peak flow of 20 m3/s; Wohl et al., 2004). This discharge was sustained for at least 

a day following peak rainfall intensity. Abundant landslides stripped hillslopes in the 

NSV (Coe et al., 2014; Rengers et al., 2016). Erosion by landsliding of hundreds to thou-

sands of years of hillslope weathering projects was determined in basins to the south 

(Anderson et al., 2015), but our study is the first (of which we are aware) to quantify the 
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fate of the eroded sediment, along with wood and carbon, and to document the ongoing 

implications for reservoir storage and carbon cycling. 

A combination of field work and analysis of remotely sensed data was used to 

quantify sediment, wood, and OC budgets along a 15 km reach (100 km2) of NSV Creek 

upstream from the reservoir in which rainfall and flood effects were concentrated (Fig. 

1A). We quantified flood-derived sediment, wood, and OC inputs (I) and outputs (O) and 

compared these to stored volumes (S), using the simple budget equation I – O = S, 

where O is sediment, wood, and carbon delivered to Ralph Price Reservoir. No flushing 

of sediment, wood, and associated OC has occurred since dam closure in May 1969, al-

lowing us to compare flood and post-flood sedimentation rates with decadal rates prior to 

the flood. 

Sediment Input, Output, and Storage 

Inputs of sediment were quantified through a digital elevation model (DEM) of 

difference (DoD) produced from 2011 (pre-flood) and 2013 (post-flood) lidar-derived 

DEMs with Geomorphic Change Detection (GCD) software (Wheaton et al., 2010). We 

identified a minimum level of detection as 2 standard deviations of elevation change in 

areas with no expected change, setting a threshold of ±0.34 m for the DoD. We mapped 

the aerial extent of landslides initiated during the 2013 storm as well as processes of 

channel erosion and deposition and performed a budget segregation with GCD to associ-

ate volumes of erosion and deposition with these different processes. Volumetric uncer-

tainty associated with the 0.34 m threshold is propagated into the sediment budget and 

typically ranges from 7% to 40% for a particular geomorphic unit. 
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We quantified output sediment volume at the reservoir inlet from the DoD, along 

with repeat ground-based topographic surveys. We quantified sediment deposited in the 

reservoir delta by differencing sonar bathymetry collected in March 2014 and preim-

poundment topography. We determined the flood contribution of sedimentation in the 

delta from a reservoir core (Fig. 1E) collected after the flood that showed clear flood and 

pre-flood stratigraphy, as well as through extensive probing of delta sediment to deter-

mine representative aggradation over the broader delta area. The core was collected from 

the distal portion of the delta toe where large lateral variability in sediment composition 

is unlikely. 

Remobilization of sediment along the approach channel during snowmelt 2014 

was quantified using field surveys. Horizontal and vertical error averaged 1–6 cm and 6–

9 cm, respectively. We collected another reservoir core in 2016 (Fig. 1E) to quantify ad-

ditional contributions to the delta following 2 yr of above-average snowmelt runoff in 

2014 and 2016. 

Wood Input, Output, and Storage 

We quantified wood input from the area of floodplain erosion estimated from the 

DoD. We applied an average volume of wood per area, V = 234 m3/ha, calculated from 

undisturbed sections of the riparian corridor using V = AH, where A is mean trunk basal 

area, H is mean tree height, and  is mean stem density. Hillslope input of wood is con-

sidered negligible because the hillslopes affected by landsliding were not heavily vege-

tated pre-flood (Rengers et al., 2016). Wood output at the reservoir inlet was based on an 



Publisher: GSA 

Journal: GEOL: Geology 

DOI:10.1130/G38935.1 

Page 7 of 16 

estimate of wood removed by contractors following the flood (Fig. DR1 in the GSA Data 

Repository1). 

OC Input, Output, and Storage 

Organic carbon addressed herein is that within sediment eroded from hillslopes 

and riparian areas distinguished as soil, litter, and large wood, and organic material ana-

lyzed in core sediment collected from the reservoir delta. Input of carbon is based on area 

of disturbance estimated by lidar differencing and on values of carbon in soil, litter, and 

above-ground biomass of 85, 30, and 100 Mg C/ha, respectively (DeLuca and Aplet, 

2008). These values are representative of montane, fire-maintained, ponderosa pine for-

ests with a stand age of ~100 yr (DeLuca and Aplet, 2008), accurately describing our 

study area. 

RESULTS 

2013 Flood Sediment, Wood, and Carbon Budget 

More than 500,000 m3 of sediment were eroded in the flood with nearly equal in-

puts from hillslope and channel erosion (Fig. 2; Table DR1). Landsliding dominated 

hillslope erosion, with 108 landslides (10–23,000 m3) eroding a volume of 218,000 m3, or 

43% of the total flood eroded volume. Tributary channels contributed a further 152,400 

m3 (30%) of sediment. Erosion along the trunk channel accounted for the remaining 

135,500 m3 (27%) of flood eroded sediment, with lateral erosion through processes of 

bend adjustment (widening without avulsion) and bank erosion accounting for 97% of the 

total (Figs. 1B and 3). 

                                                 
1GSA Data Repository item 2017158, tabulated sediment, wood, and carbon volumes; pre- and post-flood 

sediment yields and carbon loading; total organic carbon compared to extreme events worldwide (with Fig-

ures DR1–DR7 of reservoir core and 210Pb ages); electrical resistivity and ground-penetrating radar results; 

and grain size analyses, is available online at http://www.geosociety.org/datarepository/2017/ or on request 

from editing@geosociety.org. 
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Approximately 60% (298,200 m3) of eroded sediment was discharged into the 

reservoir; ~50% (258,200 m3) was deposited in the inlet, forming a new approach chan-

nel (Figs. 1C and 1E), and an additional 10% (31,000 m3) of sediment was deposited 

within the reservoir delta based on a comparison of post-flood reservoir bathymetry with 

pre-dam topography and sediment core. Summing inlet and delta sediment deposition in-

dicates a loss of total water storage capacity of ~2%. 

The remaining ~40% of flood-eroded sediment (222,000 m3) was deposited in the 

catchment upstream from the reservoir (Fig. 1B), predominantly within the accommoda-

tion space created by lateral erosion across the valley bottom or at the scoured toes of 

hillslopes in highly confined reaches. Flood erosion of the NSV channel occupied the en-

tire width of the valley along ~90% of the study reach (Fig. DR2). We observe a strong 

correlation between sediment aggradation and channel widening (Fig. 3). The greatest 

widening and sediment aggradation were associated with the processes of bend adjust-

ment and avulsions, which were in turn associated with large wood accumulation in the 

channel that possibly caused log jams (Fig. 3; Figs. DR2 and DR3B). 

The difference between sediment input (507,800 m3) and output (298,200 m3) 

plus storage (222,000 m3) produces a discrepancy of only 12,400 m3 in our budget, al-

lowing us to account for the fate of 98% of total eroded sediment (Fig. 2; Table DR1). It 

is likely that the missing 2% is due to large amounts of unquantified suspended sediment 

in the reservoir, evident in post-flood images (Fig. 1E). Therefore, the budget is a mini-

mum estimate of loading to the reservoir. 

Lateral erosion of the floodplain input 6200 m3 of wood. This is nearly balanced 

by 4300 m3 of wood that was removed after the flood from a large floating jam in the res-
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ervoir (Figs. 1E and 2; Fig. DR1). We estimate that ~2000 m3 wood remains stored in 

sediment in the new reservoir approach channel and within log jams in the upper catch-

ment (Table DR1). 

Approximately 7300 Mg C eroded during the flood, with 2200 Mg C as soil OC 

from channels and hillslopes, and 5100 Mg C stripped from the channel corridor as wood, 

litter, and soil carbon (Table DR1). Organic carbon deposited in the reservoir was esti-

mated as 2800 Mg C, with 1100 Mg C of this deposited as wood in a large log jam at 

mouth of the reservoir (Fig. 1E) and the remainder as fine organic matter in the reservoir 

delta. We treat the OC component in the budget as an order of magnitude approximation. 

Long-Term Significance of the Flood Geologically and for the Carbon Cycle 

The flood resulted in a lowering of 3.4 mm averaged over the 100 km2 area of li-

dar analysis (Table DR2); this is ~57–115× greater than cosmogenic nuclide erosion rates 

for the region of 0.03–0.06 mm/yr (Dethier et al., 2014). We estimate that a minimum of 

420 mm of flood sedimentation occurred within Ralph Price Reservoir, nearly 100× 

greater than the 5.4 mm/yr background sedimentation rate over the 44 yr life of the dam. 

The flood carbon yield of 28 Mg C/km2 was ~50× greater than pre-flood carbon yield of 

0.5 Mg C/km2 (Table DR3). 

Post-flood Remobilization 

Snowmelt runoff in 2014 resulted in 3 m of channel incision of unconsolidated 

flood deposits in the reservoir approach channel (Figs. DR5 and DR6), remobilizing 

41,000 m3 of sediment into the reservoir delta (Fig. 2; Table DR1). A further 1.30 Mg 

C/km2 was remobilized into the reservoir as large wood, equivalent to a further 21 yr of 

carbon loading based on pre-flood carbon yield. 
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DISCUSSION 

We document the fate of sediment, wood, and carbon in a highly flood-affected 

catchment in the Colorado Front Range. The 2013 flood caused 57–115 yr of erosion and 

100 yr of reservoir sedimentation. Notably, the 5.4 mm/yr pre-flood sedimentation rate is 

comparable to modern post-fire erosion rates from burned areas of similar elevation in 

Colorado (Moody and Martin, 2001). High decadal rates of sedimentation likely reflect 

the crystalline geology and location of the study reach downstream from a knickzone 

formed by rapid incision of rivers through the softer sediment of the Front Range pied-

mont (Anderson et al., 2015). 

NSV flooding produced 28 Mg C/km2 through erosion of soil carbon, litter, and 

wood. This value is comparable, on an order of magnitude, to estimates of storm-derived 

carbon in wetter and/or tectonically active areas (Table DR3). High-OC storm inputs into 

NSV Creek are likely related to a longer storm recurrence interval and extensive lateral 

channel erosion that denuded valley bottom OC in soils, litter, and riparian vegetation. 

Post-flood wood removed from the reservoir was identified primarily as riparian in 

origin. Furthermore, recovery of hillslope weathering products, riparian vegetation, and 

overbank sediment deposition, the basis for reestablishing pre-flood carbon stocks, will 

take much longer along NSV Creek than for tropical counterparts, and may be ~102–103 

yr. 

Although flood yields of sediment and carbon (particularly as wood) were very 

high for the NSV catchment both historically and in comparison to extreme events else-

where, much eroded material remains stored in the catchment in the accommodation 

space created through pronounced channel widening. The stored sediment represents an-
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other potential 1% loss of total water storage capacity within the reservoir. Our results 

indicate that many flood-affected Front Range rivers store, and therefore will export, sed-

iment, wood, and carbon for years to come, posing ongoing challenges to downstream 

communities and reservoirs and with implications for carbon cycling on lower order 

streams that make up a majority of stream length. Continued high discharges may result 

in disproportionate transport of coarse particulate organic matter (Turowski et al., 2016). 

In a disturbance context, confined channels have long been treated as transport reaches 

(Montgomery, 1999). A flood-induced change in channel confinement, however, brings 

new focus to flood-affected confined channels regionally and to rivers worldwide that 

function as important post-flood source areas. 

CONCLUSIONS 

We developed an integrated sediment, wood, and organic carbon (OC) budget 

from source to anthropogenic sink following an extreme flood in the Colorado Front 

Range through a combination of lidar differencing, reservoir surveying, and coring. Ex-

tensive landsliding and channel erosion during September 2013 flooding transformed the 

reservoir inlet into an approach channel, deposited ~100 yr of sediment into the reservoir, 

accounting for ~2% loss in capacity, and produced an OC flux equivalent to those docu-

mented in more humid, tectonically active areas. Approximately 40% of flood sediments 

remain stored in the upper catchment, predominantly within accommodation space creat-

ed by flood-induced channel widening. Post-flood snow melt remobilized and redeposit-

ed a flood-equivalent volume of sediment from the approach channel to the reservoir. Our 

results indicate that many flood-affected Front Range rivers will export sediment, wood, 

and carbon for years to come, posing ongoing challenges for water-supply management, 
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with implications for terrestrial carbon cycling. Although confined rivers function as 

dominantly transport reaches, pronounced channel widening during extreme events may 

accommodate sediment storage and switch these channels to post-flood source areas. 
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FIGURE CAPTIONS 

Figure 1. Flood impacts in the North St. Vrain Creek catchment, northern Colorado, 

USA. A: Catchment location, topography, and study sites with respect to total flood rain-

fall and landslides. B: Digital elevation model of difference (DoD) between pre-flood and 

post-flood lidar for the study reach highlighted in A. C: DoD showing extensive flood 

deposition in the reservoir inlet, forming a new approach channel. Vertical change in 

range of red to blue, and horizontal scale in C, applies to B and C. D: Reservoir inlet 

shown in C. Images in D and E are from Google Earth. E: Locations of a large log jam 

formed during the flood, new approach channel, and reservoir delta cores. 

 

Figure 2. Flood and post-flood sediment, carbon, and wood flux diagram for the North St. 

Vrain Creek catchment, Colorado, USA. Pie diagrams represent organic carbon as soil, 

litter, and wood, and illustrated wood jams represent volumes of large wood. Colors of 

boxes, arrows, and text are consistent for sediment (tan) and wood (brown), with pie dia-

gram colors for soil (gray), litter (dark gray), and wood (black) as carbon. The sediment 

flux component is based on Fryirs and Brierley (2001). 

 

Figure 3. Associations between flood sediment aggradation, channel widening, processes 

of bend adjustment and avulsion, and potential log jams along North St. Vrain Creek, 
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Colorado, USA. Channel-width change was measured as the difference between pre-

flood and post-flood channel corridor (see Fig. 1B) at 20 m increments averaged by 100 

m reach compared to sediment aggradation. Marker size is proportional to sediment 

availability calculated as the cumulative net change downstream. 

 


