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Abstract 

Femtosecond stimulated Raman Spectroscopy (FSRS) is applied to study the photocycle of a 

blue light using flavin (BLUF) domain photoreceptor, AppABLUF.  It is shown that FSRS 

spectra are sensitive to the light adapted state of the protein and probe its excited state 

dynamics. The dominant contribution to the most sensitive excited state Raman active modes 

is from flavin ring modes.  However, TD-DFT calculations for excited state structures 

indicate that reproduction and assignment of the experimentally observed spectral shift will 

require high level calculations on the flavin in its specific protein environment.  
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Introduction 

Time resolved vibrational spectroscopy has proven to be a rich source of information on a wide 

variety of light driven processes in proteins.[1, 2] Two complementary methods have found wide 

application, time resolved infra-red (TRIR)[3] and transient Raman,[4] especially femtosecond 

stimulated Raman spectroscopy (FSRS)[5]. TRIR has been applied to a very wide range of photoactive 

proteins, from blue light sensing flavoproteins[6-9] to the red sensitive phytochromes[10] (including 

some proteins in which photoactivity has been artificially induced[11]) with sub 100 fs time 

resolution and an accessible time window spanning femtoseconds to seconds. However, the method 

is somewhat limited by strong IR absorption of the aqueous medium and the difficulty of 

distinguishing evolution of vibrational modes associated with the chromophore from those 

associated with structural changes amongst the surrounding amino acids, necessitating extensive 

isotope labelling experiments.[12, 13]  In contrast to TRIR, FSRS is an all optical method which can 

exploit electronic resonances which selectively highlight chromophore or (in the case of a UV Raman 

pulse) amino acid localised modes.  This has led to a surge in interest in applying FSRS to photoactive 

proteins, but to date the palette of proteins probed by the method is much more limited than for 

TRIR, including the robust green fluorescent protein family,[14-16] photoactive yellow protein 

(PYP)[17, 18] and isolated examples from the families of phytochromes,[19] bacteriorhodopsins[20, 

21] and light harvesting complexes.[22]  In particular, there are as yet no reports on the FSRS of the 

three distinct families of the blue light sensitive photoactive flavoproteins,[23] which utilise the 

isoalloxazine chromophore in the co-factors flavin adenine dinucleotide (FAD) and flavin 

mononucleotide (FMN).  These represent an important class of proteins responsible for mediating 

the effects of light on a wide range of plants and bacteria.[23, 24] Moreover, a number of such 

proteins have been adopted as photoswitchable elements in the emerging field of optogenetics.[25] 

Thus, the application of Raman methods to probe the excited state vibrational dynamics providing 

essential details on the mode of action of these photoswitchable proteins is of a great interest, 

especially for their future application. 
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In this communication we apply FSRS to probe the transient spectroscopy of the BLUF domain 

protein - AppABLUF, and complement those measurements with preliminary time dependent density 

functional theory (TD-DFT) calculations.  AppABLUF has previously been studied by TRIR and transient 

electronic spectroscopy.[7, 8, 26]  Excitation of the flavin ring in dark adapted AppABLUF (dAppABLUF) 

gives rise to a light induced structural change in an adjacent glutamine residue (Q63) which in turn 

leads to a change in the H-bonding environment of the isoalloxazine ring of the FAD. (Figure 1)  This 

change is also observed through a 10 - 15 nm red shift in the FAD absorption spectrum of the light 

adapted form, lAppABLUF, which relaxes back to the dark state in minutes.[27]  The mechanism of the 

light driven structure change and the subsequent evolution in the protein structure has been 

discussed elsewhere.[6, 7, 28] In this letter we demonstrate that the excited state Raman spectrum 

is sensitive to the light adaptation state of AppABLUF, and thus that FSRS can be applied to probe 

photodynamics in the three families of blue light sensing flavoproteins. In doing so, we build on the 

comprehensive transient electronic and FSRS study of FAD in solution reported by Weigel et al.[29] 

 

Experimental 

The (FSRS) experiment is driven by an amplified 1 kHz titanium:sapphire laser that provides the input 

to two optical parametric amplifiers (OPA) and a second harmonic bandwidth compressor (SHBC). 

One OPA generates pump pulses for sample excitation (80 fs pulse duration) at 440 nm. The second 

generates pulses centred at 1100 nm which are focused onto a sapphire window to generate a 

white-light continuum.  The pulsed continuum spans a 480 – 1000 nm spectral region and is used as 

the broadband probe in the FSRS experiment. The narrowband (10 cm-1) SHBC output pumps an 

additional picosecond OPA to generate a Raman pump pulse at 750 nm, which is resonant with the 

excited state absorption of the photoexcited isoalloxazine chromophore.[29]  The resonant (440 nm) 

pump and white-light probe pulses were focused at the sample position by reflective optics to spot 

sizes (FWHM) of 170 µm and 30 µm, respectively. For all measurements the pump pulse energy was 
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1 µJ (excitation intensity of 4 W cm-2).  The Raman pulse (which is not resonant with the ground state 

absorption) was focused and overlapped with the pump and probe pulses.  The Raman pulse spot 

size is 100 µm with a pulse energy of 4 µJ (intensity 50 W cm-2).  All pulses had the same polarization.  

Detection with spectral resolution <10 cm-1; was achieved with a SPEX 500M spectrometer and a 

single CCD detector.   

In our experiment the spectra were recorded at 1 kHz, with the pump and Raman pulses modulated 

by synchronized and phase locked optical choppers operating at 500 Hz and 250 Hz, respectively.  

This resulted in a four pulse measurement sequence: Excited state (ES) FSRS spectrum (Pump + 

Probe + Raman pulses); ground state (GS) FSRS spectrum (Raman + Probe pulses); transient 

absorption (TA) spectrum (Pump + Probe pulses); probe spectrum (Probe only).  The ES-FSRS 

spectrum, measured when the actinic pump, Raman pump and probe pulses are all incident on the 

sample, consists of Raman signal pathways originating from the sample excited by the actinic pump 

pulse, and typically includes background Raman signals from unexcited sample and solvent.[30]  To 

extract the transient FSRS signal we calculate: 

               
                

           
  

The FSRS signal typically appears on top of a strong background TA signal, which is fit to a polynomial 

and subtracted from the unprocessed FSRS signal.  Following this, an additional baseline fit is made 

using an appropriate order polynomial to correct for a remaining baseline offset, which arises from 

the interaction between the Raman pulse and the excited state population.[29]  An additional step is 

to remove the contribution of the depleted ground state Raman spectrum, which was not 

implemented as no ground state Raman spectrum was observed under the excitation conditions 

used.  Finally, a five pixel moving filter is applied to remove high frequency noise that accumulates 

during the initial difference calculation.  The effect of the filter on the spectral resolution was shown 

to be negligible  
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For all measurements AppABLUF samples were prepared using expression and purification protocols 

described previously [7].  In all measurements AppABLUF in 50 mM sodium phosphate buffer at pH 8.0 

had an optical density of 0.45 at 450 nm in a 200 µm pathlength flow cell.  The samples were flowed 

at a rate sufficient to refresh the sample between each laser shot.  Data sets are presented as the 

average of 10 scans.  Each data set was acquired over a period of 100 mins.  The dAppABLUF sample 

was converted to lAppABLUF by illumination with a 400 mW 455 nm LED weakly focused onto the 

sample reservoir (0.13 W cm-2) during the experiment. 

Geometry optimisations of the ground state have been carried out on lumiflavin, lumiflavin 

surrounded by four water molecules situated at the C2O, N3H, C4O and N5 positions, and lumiflavin 

surrounded by three water molecules with the water located at N5 removed, somewhat analogous 

to the dark and light adaptations respectively (Figure 1). The calculations were carried out at the 

B3LYP[31-33]/TZVP[34] level of theory using the Gaussian 09 program[35]. These optimised ground 

state structures were subsequently characterised through a frequency analysis and shown to be at 

legitimate minimum energy, stationary point geometries (see supporting information). Single-point 

TD-DFT calculations were performed on the ground state optimised structures in order to determine 

the vertical excitation energies of each of the systems. The vertical excitation energies recovered 

were in good agreement with literature values.[29, 36] Significantly, the breaking of the H-bond at 

N5 did not result in a red shift in the calculated excitation energy, as observed in the experiments. 

Finally, following identification of the first ten excited states, a TD-DFT/TZVP geometry optimisation 

was performed on the first singlet excited state. 

 

Results and Discussion 

In Figure 2A we compare FSRS spectra for three samples, FAD in water, dAppABLUF, and lAppABLUF.  

These spectra are time integrated between 0 and 50 ps to improve signal-to-noise ratio.  For the 

aqueous FAD solution there is very good agreement between the present measurement and the 
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data of Weigel et al..[29] Significantly there are clear differences between the FSRS spectra for lAppA 

and dAppABLUF, showing that FSRS is indeed a complementary tool to TRIR, which can probe BLUF 

domain protein (and therefore presumably other photoactive flavoprotein) dynamics, yielding 

information on excited state structure and the evolution of that structure in response to time 

dependent changes in the chromophore environment. Confirmation that the FSRS spectra indeed 

arise from the excited states of the two different forms of AppABLUF is obtained from the FSRS signals 

measured as a function of time after the pump pulse. These are measured and compared with the 

TA of the electronically excited singlet state in Figure 2B.  It was previously shown that the lAppABLUF 

excited state is more strongly quenched than that of dAppABLUF, due to efficient electron transfer to 

the excited flavin in lAppABLUF from nearby tyrosine and tryptophan residues.[26]  The FSRS intensity 

accurately tracks the excited state absorption intensity in both cases (Figure 2B) confirming the 

assignment of the spectra to the dark and light adapted forms. 

Significantly the FSRS spectra measured separately for dAppABLUF and lAppABLUF are themselves 

independent of time, as shown in supporting information (Figure S2). This is consistent with previous 

transient IR studies for dAppABLUF, where the main changes in the vibrational spectrum were 

ultrafast and associated with an excitation induced perturbation of amino acids around FAD, rather 

than a structural transformation of the chromophore itself. We expect that the resonant FSRS signal 

will be more focused on the chromophore.[26, 28] 

The sensitivity to light adaptation shown in Figure 2A must reflect the changes in the H-bond 

environment illustrated in Figure 1. The effect of this change on vibrational spectra of the ground 

electronic state has already been reported in IR experiments, where photoinduced reorganisation of 

the H-bond network gives rise to significant shifts in IR spectra associated with the C2=O and C4=O 

carbonyls stretches (1663 cm-1 and 1706 cm-1 respectively), which are coupled with the N3-H 

wag.[13]  The red shift of the C=O modes on irradiation was ascribed to the formation of the 

additional H-bond interaction at C4=O and the breaking of an H-bond to N5 (Figure 1).   
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The C=O modes are weak in both ground and excited state Raman experiments (Figure S2 shows 

FSRS to 1750 cm-1, with no carbonyl stretch signal observed above the noise). Instead the change in 

H-bond structure is manifest in significant blue shifts in the strong Raman active modes at 1390 cm-1 

and 1205 cm-1. Similar small blue shifts on formation of lAppABLUF were reported in ground state 

Raman measurements.[37] In contrast other well resolved modes in the excited state are unshifted 

on formation of the light adapted state, e.g. at 1505 cm-1 (Figure 2A). Two calculations have already 

been performed on the excited state vibrational modes of the flavin ring containing molecule 

riboflavin.[29, 36]  On the basis of those it is difficult to propose a clear assignment for the 

differential sensitivity of the FSRS bands to their environment. For example, the normal mode 

analyses reveal that both the blue shifted 1390 cm-1 and the unshifted 1505 cm-1 bands both have 

major contributions from C4a-C10a and C5a-C9a ring II stretches.  However, the same analyses 

shows multiple contributions to each calculated mode and also that a number of different modes 

are able to contribute to the broad bands observed experimentally (Figure 2).[29, 36] Thus a more 

detailed assignment is not possible without further experiments, such as isotope exchange.   

In an effort to gauge the role of the different H-bond configurations in determining the vibrational 

frequencies, we compared the optimized geometries of the flavin ring in its singlet excited state in 

the presence and absence of the H-bond at N5, here represented by water molecules (Figure 3). As 

can be seen, there are small changes in the optimized structures, but these are not apparent in the 

central ring (ring II) of the flavin, where the C4a-C10a and C5a-C9 stretches are important. From this 

we conclude that calculations, and hence assignments of the experimental spectral shifts observed 

in FSRS, will require more sophisticated calculations, which should at least include interactions with 

the amino acid residue Q63, responsible for the H-bond switch in the S1 excited state (Figure 1).  This 

conclusion is in line with observation in TRIR measurements, which suggest that the strong 

interactions between the flavin ring and its binding pocket have a profound influence on the TRIR 

spectra.[37] 
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Conclusion 

Excited state vibrational spectra of a photoactive flavoprotein, AppABLUF, have been measured for 

the first time.  It has been shown that the excited state Raman spectra are sensitive to changes in 

the H-bonding environment of the flavin chromophore, and are thus a useful new tool in 

characterising the structural dynamics induced by electronic excitation. The largest shifts observed 

on photoconversion were blue shifts in a number of flavin ring modes. The origin of those shifts 

could not be easily assigned to specific interactions, and was not reproduced by simplistic TD-DFT 

calculations. These results point to the requirement for TD-DFT calculations incorporating at least 

the most strongly interacting amino acid residues to be developed for the assignment of the FSRS 

spectra. A combination of FSRS and such TD-DFT calculations will prove a valuable new approach to 

probing the photocycle of photoactive proteins. 
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Figure Legends 

Figure 1.  A representation of the structure change in the environment of the flavin chromophore 

accompanying the dAppABLUF to lAppABLUF photoconversion. 

 

Figure 2. FSRS spectra and time dependence. A. The FSRS spectra were obtained using an actinic 

pulse at 440 nm with the Raman pulse tuned to the excited state absorption at 750 nm for FAD in 

water (red), dAppABLUF (blue) and lAppABLUF (green).  Data are integrated over the first 50 ps. B. 

Transient FSRS intensity compared with transient absorption. The red and aqua coloured lines plot 

the normalised band integral for the observable excited state absorption region (786 nm – 851 nm).  

The blue and green lines plot the band integral for the ~1500 cm-1 peak in the FSRS spectrum.  The 

amplitudes of the blue and green lines have been scaled to demonstrate their similar relaxation 

dynamics.  

 

Figure 3. TD-DFT optimised structure for S1 state in the presence and absence of the specific water 

H-bonded at N5 (cf Figure 1). The four water system, presented in cyan, has been overlaid onto the 

three water system, shown in red. The dashed lines have been added in manually to highlight the H-

bonds present in these systems.  
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Figure 2 
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Figure 3 
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Graphical abstract 
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Highlights 

 Femtosecond Stimulated Raman Spectra are measured for a photoactive flavoprotein, 

AppABLUF. 

 FSRS can probe photodynamics in flavoproteins. 

 The FSRS spectra for dark and signalling states are disctinct. 

 Simulationo of spectral shifts require calculations incorporating the chromophore 

environment. 

 


