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Dear Editor, 28 

 29 

Bone is an endocrine organ that produces key hormones and cytokines (Green et al., 2015b). 30 

Paget’s Disease of Bone (PDB) is a polygenic disorder of bone turnover first described by Sir 31 

James Paget in 1876. PDB is characterised by hyper differentiation and hyper activity of 32 

osteoclast cells which induces increased bone remodelling by osteoblasts. The resultant 33 

mosaic of bone is structurally weaker, larger, more vascular and porous with an increased 34 

susceptibility to fracture. On histology the osteoclasts are increased in size, population and 35 

number of nuclei, expressing a “pagetic phenotype” that distinguishes them from normal 36 

osteoclasts. Malignant transformation is a rare complication of PDB reported to arise in <1% 37 

of PDB patients. Paget’s associated osteosarcoma (PDB-OS) consistently arises in sites of 38 

pagetic bone and may present with multifocal lesions (Hansen et al., 2006). On histology the 39 

lesions are osteoblastic and characterised as an exaggerated form of the accelerated bone 40 

remodelling that manifests in PDB. Median survival at diagnosis is 21 months for those treated 41 

with curative intent and 7 months for those treated palliatively (Shaylor et al., 1999).  42 

 43 

PDB has a strong genetic component. A number of loci have been linked to the disorder with 44 

sequestosome 1 (SQSTM1) variants associated with more severe symptoms, polyostotic foci 45 

and heritable transmission (Hansen et al., 2006). SQSTM1 is multifunctional protein which 46 

serves as a signalling hub for diverse cellular events including activation of nuclear factor 47 

kappa B (NFKB) and tumour necrosis factor superfamily member 11 (TNFSF11). SQSTM1 48 

also serves as an autophagy receptor for degradation of ubiquitinated molecules via its 49 

ubiquitin binding domain (Katsuragi et al., 2015). SQSTM1 variants associated with PDB are 50 

typically located within the coding region of the ubiquitin binding domain. Impairment of 51 

autophagy is accompanied by massive accumulation of SQSTM1 and formation of SQSTM1-52 

positive aggregate structures (Katsuragi et al., 2015). As the role of SQSTM1 has not been 53 

fully elucidated in transformation and there is no transcriptomic analysis of this cancer, we 54 
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took a next generation sequencing approach to evaluate the expression of small RNAs such 55 

as microRNAs (miRNAs) in PDB and PDB-OS.  56 

 57 

MiRNAs are key regulators of gene expression through gene silencing. MiRNAs can also be 58 

used as biomarkers to classify poorly differentiated cancers and cancer tissue origin (Green 59 

et al., 2015a). We extracted RNA using the miRCURY RNA isolation kit (Exiqon) from two 60 

tissue specimens of PDB-OS with a proven histological diagnosis of osteosarcoma in Paget’s 61 

affected bone (ages 73 and 81, 2 men). We extracted RNA from four SQSTM1-positive PDB 62 

tissue specimens taken from affected trabecular bone (ages 79-87, 2 women and 2 men). We 63 

extracted RNA from five control bone tissue specimens taken from the femoral heads of 64 

trauma patients (ages 68-86, 3 women and 2 men). Tissue samples were collected and 65 

preserved at -20 oC. RNA was stored at -80 oC. We generated small RNA libraries using high 66 

definition (HD) adapters as previously described (Xu et al., 2015). HD adapters increase the 67 

annealing efficiency between small RNAs and adapters. An increased annealing efficiency 68 

significantly reduces the RNA ligase-dependent ligation bias in next generation sequencing 69 

studies (Xu et al., 2015). We performed sequencing on the HiSeq 2500 Ultra-High-Throughput 70 

Sequencing System (Illumina) at the Earlham Institute, Norwich Research Park.  71 

 72 

Raw fastq files were converted to fasta format. The HD signatures of the sequencing reads 73 

were trimmed. Quality checking was performed using The UEA Small RNA Workbench 74 

(www.srna-workbench.cmp.uea.ac.uk). Reads were mapped with no gaps allowed to the 75 

human genome v38 using PatMaN. Small RNA expression levels were normalised using a 76 

scaling approach, reads per total, to a fixed total of 10 million reads (Mohorianu et al., 2011). 77 

Comparison  of  the  samples  was  conducted  using  scatter plots,  size-split  boxplot  of the 78 

replicate-to-replicate differential  expression,  intersection  and Jaccard  similarity  analyses 79 

(Mohorianu et al., 2011). Differentially expressed reads between the control, PDB and PDB-80 

OS samples were identified using both an expression interval approach and pairwise 81 

comparison using offset fold change (Mohorianu et al., 2011; Mohorianu et al., 2013). Analysis 82 

http://www.srna-workbench.cmp.uea.ac.uk/
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was conducted using custom made Perl (5.24.0.1) and R (3.2.2) scripts. We observed a high 83 

proportion of reads matching to the reference genome (Table 1). The size class distributions 84 

were bimodal with peaks at 22 and 32 nt (Figure 1). These peaks correspond to miRNAs and 85 

tRNA fragments which was confirmed using annotations. The small number of unique 86 

sequences with high abundance is also visible in the complexity distributions (Figure 1). The 87 

lower complexities correspond to 22 and 32 nt which indicate a small number of highly 88 

abundant sequences (Figure 1). As with all human studies there was variability in the number 89 

of reads assigned to either miRNAs or tRNA fragments in the control samples (when 90 

compared to inbred genetic models such as mice and fruit flies where variability is minimal). 91 

We identified a low expression of miR-16 in PDB compared to controls and a high expression 92 

of miR-16 in PDB-OS compared to controls and PDB. We also identified a downregulation of 93 

miR-144 and upregulation of miR-21 in PDB-OS compared to controls. Downregulation of 94 

miR-144 is in line with previous data in osteosarcoma cells. Upregulation of miR-21 is 95 

associated with many types of cancer. In this study we explored miR-16 further.   96 

 97 

Total RNA used for next generation sequencing was quantified by density measurement after 98 

separation by agarose gel electrophoresis with ethidium bromide staining. Equal amounts of 99 

RNA across the sample pools were reverse transcribed using the TaqMan advanced miRNA 100 

cDNA synthesis kit (Thermo Fisher Scientific). Differential expression of miR-16 was validated 101 

three times in triplicate using TaqMan miRNA advanced assays (Thermo Fisher Scientific). 102 

Digital PCR was performed on the QuantStudio 3D Digital PCR System using the GeneAmp 103 

PCR System 9700 (Thermo Fisher Scientific). After PCR the chips were imaged on the 104 

QuantStudio 3D Instrument which assesses raw data and calculates the concentration of the 105 

cDNA sequence targeted by FAM and VIC labelled probes by Poisson distribution (Fazekas 106 

de St, 1982). For more in depth analysis the QuantStudio 3D AnalysisSuite was used to report 107 

the data as copies/µL. Probe sequence used was miR-16-5p (5’-108 

UAGCAGCACGUAAAUAUUGGCG-3’). We confirmed the downregulation of miR-16 in PDB 109 
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compared to controls and upregulation of miR-16 in PDB-OS compared to controls and PDB 110 

(Figure 1).  111 

 112 

To elucidate a mechanistic role of miR-16 in PDB-OS we used TargetScan v7.1 to search for 113 

its messenger RNA targets. SQSTM1 was identified as a candidate which was supported by 114 

performing a second search and identification on miRSearch v3. Target identification of 115 

miRNAs is computationally difficult due to the relatively low homology between miRNAs and 116 

their targets. We searched the literature and identified SQSTM1 as an experimentally 117 

confirmed target of miR-16, i.e. levels of SQSTM1 are reduced by miR-16 overexpression 118 

(Selbach et al., 2008). We find that miR-16 is downregulated in PDB which means there is a 119 

loss of SQSTM1 negative regulation. In line with previous data SQSTM1 variants in PDB are 120 

activating mutations. SQSTM1 is a signalling hub for the activation of TNFSF11. TNFSF11 is 121 

the primary ligand for stimulating the differentiation of monocyte progenitors to osteoclasts 122 

through interaction with tumour necrosis factor receptor superfamily member 11a 123 

(TNFRSF11A). TNFSF11 is produced by osteoblasts and downstream repercussions of the 124 

TNFSF11-TNFRSF11 interaction is the increase of bone resorption. Bone resorption achieved 125 

by various osteoclast-produced cytokines is set within a positive feedback loop which 126 

encourages osteoblast proliferation and activity. Increased proliferation of osteoblast cells 127 

containing SQSTM1 activating variants repeats the bone remodelling cycle each time 128 

increasing the number of SQSTM1 positive osteoblasts. PDB does not typically present until 129 

patients are >55-years-old. In patients harbouring SQSTM1 variants, presentation can appear 130 

earlier. Presentation may be due to the speed of the bone remodelling cycle or the gradual 131 

loss of miR-16 mediated silencing of SQSTM1.  132 

 133 

We find a high expression of miR-16 in PDB-OS. The effect of upregulated miR-16 means 134 

there is increased negative regulation of genes including SQSTM1. Loss of SQSTM1 has little 135 

effect on autophagy (Katsuragi et al., 2015). The lack of phenotypic impact might be explained 136 

by the presence of other autophagy regulators including optineurin (OPTN) (Katsuragi et al., 137 
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2015). As a signalling hub SQSTM1 is a partner of the Kelch like ECH associated protein 1 138 

(KEAP1)-nuclear factor erythroid 2 like 2 (NFE2L2) pathway, a major cellular defence 139 

mechanism against oxidative stress (Katsuragi et al., 2015). In normal conditions NFE2L2 is 140 

constitutively degraded by the ubiquitin-proteasome system because its binding partner 141 

KEAP1 is an adapter of ubiquitin ligases. Upon exposure to oxidative stress KEAP1 is 142 

structurally modified which releases NFE2L2 to translocate to the nucleus. NFE2L2 is a 143 

transcription factor which then induces a multitude of antioxidant and anti-inflammatory genes. 144 

SQSTM1 is able to abrogate the interaction between KEAP1 and NFE2L2 leading to protection 145 

against oxidative stress (Katsuragi et al., 2015). We propose miR-16 mediated silencing of 146 

SQSTM1 incapacitates the cell’s ability to protect itself against oxidative stress-induced 147 

oncogenesis. This proposal warrants further molecular investigation to show an inverse 148 

correlation between the expression of miR-16 and SQSTM1.  149 

 150 

Molecular testing may help provide a robust diagnosis and is particularly useful in rare 151 

cancers. This is especially true in PDB where transformation to osteosarcoma is often missed 152 

until late stage. Radiograph morphology is subtly different between PDB and PDB-OS. 153 

Symptoms of PDB-OS can be similar to the day-to-day symptoms experienced by a PDB 154 

patient. Biomarkers such as serum total alkaline phosphatase used in the diagnosis of PDB 155 

are the same biomarkers used to aid the diagnosis of PDB-OS. These features combined 156 

make it difficult to distinguish between a chronic non-life threatening disorder and a fatal 157 

disease which require very different treatment strategies. Quantitative PCR or next generation 158 

sequencing performed on RNA extracted from a biopsy of a presenting lesion is precise for 159 

detecting a reduced expression of miR-16 in ‘normal PDB’ and high expression of miR-16 in 160 

PDB-OS. The switch in miR-16 expression could alert physicians to the change to an 161 

osteosarcoma phenotype.  162 

 163 

A limitation of this study is the size of the cohorts studied. PDB-OS arises in <1% of PDB 164 

patients and donation to tissue banks is scarce. We are in the process of collecting a larger 165 
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cohort of tissue specimens to validate the findings from this study. Our data highlights the 166 

value of being able to provide a robust tissue diagnosis in addition to identifying regulatory 167 

transcriptomic molecules that could be exploited for targeted therapy. Expression of miR-16 168 

could also be investigated in paediatric osteosarcoma to evaluate similarities and/or 169 

differences between the two age-related incidence peaks of osteosarcoma.  170 

 171 

DATA AVAILABILITY  172 

 173 

The  data  presented  in  this  study  is  publicly  available  on  Gene Expression  Omnibus  174 

under the accession numbers GSE85809 (GSM2284729 to GSM228473 are control samples; 175 

GSM2284736 and GSM2284736 are PDB-OS samples) and GSE87018 (GSM2318966 to 176 

GSM2318970 are PDB samples). 177 
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