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ABSTRACT 19 

 20 
Among the many uncertainties presented by poorly studied pathogens is possible 21 

transmission via human faecal material or wastewaters. Such worries were a documented 22 
concern during the 2013 Ebola outbreak in West Africa.  Using published experimental data 23 

on virus inactivation rates in wastewater and similar matrices, we extracted data to construct 24 
a model predicting the T90 (1 x log10 inactivation measured in seconds) of a virus. Extracted 25 
data were: RNA or DNA genome, enveloped or not, primary transmission pathway, 26 

temperature, pH, light levels and matrix.  From the primary details, we further determined 27 

matrix level of contamination, genus and taxonomic family.  Prior to model construction, 28 
three records were separated for verification.  A censored normal regression model provided 29 
the best fit model, which predicted T90 from DNA or RNA structure, enveloped status, 30 

whether primary transmission pathway was faecal-oral, temperature and whether 31 
contamination was low, medium or high.  Model residuals and predicted values were 32 
evaluated against observed values.  Mean values of model predictions were compared to 33 

independent data, and considering 95% confidence ranges (which could be quite large).  A 34 
relatively simple model can predict virus inactivation rates from virus and matrix attributes, 35 

providing valuable input when formulating risk management strategies for little studied 36 
pathogens. 37 
 38 

 39 

  40 



2 
 

INTRODUCTION 41 

 42 

The emergence of new or re-emergence of previously known viral infections is often 43 
followed by concerns about the risks of environmental transmission. This potential exposure 44 
path was identified in the epidemic of SARS infection 1, for avian influenza 2 and more 45 
recently the Ebola epidemic in West Africa 3. When concerns are raised about the risk of 46 
environmental transmission, attention naturally turns to questions of survival and persistence 47 

of the implicated virus in the environment. One of the areas of particular interest in in the 48 
survival of virus in wastewater and latrine sludge.  49 
 50 
In the recent Ebola epidemic in 2014-15, the World Health Organisation (WHO) issued 51 
guidance about handling latrine waste contaminated by Ebola virus (EBOV). However, it was 52 

acknowledged in August 2014 that relevant scientific data were sparse, and initial guidelines 53 
3 stated that EBOV-contaminated latrines should be kept secure for a minimum of four weeks 54 
after last use, with any subsequent desludging to involve wearing full personal protective 55 

equipment. However, other authors expressed concerns that posited transmission risks from 56 
latrine materials were poorly evidenced in emerging research 4. In part, this disagreement 57 
reflected the lack of data on the survival of EBOV in wastewater 5.  58 
 59 

The initial cautionary guidelines on keeping latrine sludge for four weeks proved difficult to 60 
maintain and subsequent hazard and critical control analysis 6 as well as hazard assessment 61 

and experimental data 5, 7, 8 allowed a reappraisal of the guidance.  WHO guidelines about 62 
how long to keep an Ebola-contaminated latrine secure and when desludging could 63 
commence were correspondingly revised in 2015 9 to recommend storage for a minimum of 64 

seven days after last receipt of infectious material. 65 
 66 

Clearly, better knowledge of the environmental survival of viral pathogens early in any future 67 
epidemic would aid guidance formulation. However, as with the Ebola epidemic getting this 68 

data directly through experimental or observational studies may not be easy. Part of the 69 
problem with EBOV was the need to ensure strict safety standards for any experimental work 70 

which delayed the start of any such research 5. This led us to investigate whether or not it was 71 
possible to predict viral survival in environmental matrices given a relatively limited amount 72 

of data on a particular virus.  73 
 74 
The aim of this paper was to collect relevant data useful to explore and quantify 10 the 75 

relationship between possible predictive variables and viral persistence in faecally-76 
contaminated matrices. We did this by constructing a model to best predict virus deactivation 77 

in surface waters, wastewaters and other matrices which are potentially contaminated with 78 
organic matter, especially faecal material. 79 
 80 
 81 

METHODS 82 

 83 
Primary data on virus inactivation in eligible media were collected by extracting data from 84 
published experiments and observational findings.  Potentially suitable articles were found by 85 
searching two bibliographic databases (Pubmed and Scopus) using the below phrase (af = all 86 

text field;, tw = in title, abstract or keywords; exp = expanded alternatives).  We only selected 87 
data from articles in peer-reviewed literature.  There were no date or language restrictions. 88 
 89 

exp viruses/  (or for scopus *virus).tw. 90 
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AND  91 

(stool or feces or faeces or wastewater or manure).af.  92 
AND  93 
(inactivation or survival or removal or persistence or viability).af. 94 
 95 

A single reviewer (JB or KP) screened each title and abstract for articles that indicated they 96 
contained time-series data about virus inactivation in eligible media.  Articles were excluded 97 
if they only had data for sterile water-based media or tissue culture.  Note that data for sterile 98 
media were included for extraction when reported in an article that also reported data about 99 
virus inactivation in contaminated media.  This data selection strategy was done purposefully 100 

so as to collect some data on sterile media for our modelling, but to not try to exhaustively 101 
search and record all such data for sterile media.  Full text of each article that could not be 102 
excluded from title and abstract was screened to confirm or reject eligibility.  In addition, 103 
some other articles were known to the authors to have suitable data, and we also checked 104 
references in two previously compiled literature inventories for information about virus 105 

persistence in faecally-contaminated material, fresh-water, wastewaters or wet tissue culture 106 
11, 12. 107 

 108 
Data concerned with virus removal by physical means (eg, filtering), or matrices that were 109 

purposefully disinfected by a chemical agent, were ineligible.  Inactivation data for matrices 110 
exposed to temperatures > 55 degrees C were excluded (because we wanted to exclude 111 

infeasible outdoor air temperatures, and did not want to capture data relating to efficacy of 112 
sterilization methods).  Data were extracted by a single investigator (JB or KP) and verified 113 
by another researcher (KP or JB).  Data about virus inactivation expressed as T90 (1 x log10 114 

decline) in any faecally-contaminated matrix, water-based media or (wet) cell culture were 115 
extracted.  Dried media, or media to which disinfection agents had been added, were both 116 

excluded.  From all eligible articles, the following variables were extracted into standardised 117 
forms:  118 
 119 

Bibliographic details, virus, temperature of experiment, matrix virus was kept in, inactivation 120 

time (T90, in seconds), lighting conditions (that matrix was exposed to during experimental 121 
run) and pH.  Where a large number of very similar experiments were undertaken (see for 122 
example, Magri et al. 2015 13), which had very similar media, temperature and other 123 

conditions, with corresponding similar T90 results, then a grouped average T90 was recorded 124 
with median/mean values extracted for predictors (such as temperature, contamination level, 125 

pH, etc). This grouping was done to try to prevent a large set of data from a relatively small 126 
number of articles (and their specific experimental methods) dominating the model outputs. 127 
 128 

Using the data available from primary extraction, and by consulting a large range of sources 129 
(Supporting Information, List S1) we also recorded various characteristics of the virus: 130 

genetic material (RNA or DNA), enveloped virus or not (a binary 1/0 variable), and primary 131 
transmission pathway(s) (airborne, body contact/fluids, faecal-oral, insect vector, respiratory, 132 

rodents or multiple).  The variable ‘faecal-oral’ was generated for each record and defined to 133 
equal 1 for primary transmission pathway = faecal-oral, and 0 otherwise.  Some reports gave 134 
experiment temperature as ‘room temperature’, which was recoded to 20° C.  The matrix was 135 
also categorized as having a high, medium or low level of faecal contamination according to 136 
the logic: media with no faecal or urine content were categorized as low, while wastewaters 137 

and media with unclear faecal content or ≥ 10% faecal material were categorized as high.  All 138 
other matrices were categorized as medium level of contamination, except when diluted to ≤ 139 

1%, causing the contamination category to move down one level (ie, faecally-contaminated 140 
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wastewater diluted to 1/1000 moved from high to medium).  Light conditions that matrices 141 

were exposed to were recorded (eg., dark, solar UV, etc).  Matrix pH during the monitoring 142 
period from start until final time point or T90 was reached, was also extracted.  A variable, 143 
pHdiff7, was generated which was the absolute difference in pH from 7.0 (ie. pHdiff7 = 144 
abs(pH – 7)). 145 

 146 
Inactivation times (T90s, time in seconds to decline 90% or log10 1) were often stated 147 
precisely (usually in tables), but sometimes only available to read on graphic figures or in 148 
supplemental data.  Incomplete and imprecise data were common, often due to a finite 149 
monitoring period. Hence T90s were sometimes recoded as follows:  <5% apparent decline 150 

during the full observation period meant the record was excluded (insufficient information). 151 
Decline of 50%-89% of peak value at the last time-monitoring point, the last time point was 152 
recorded as T90, and as a censored value (relevant to regression modelling, see below).  If 153 
last observed viral load was 26%-49% of peak viral load, T90 was recoded as 1.5 x last time 154 
point (right censored).  Where observed viral load at last monitoring point was less than peak 155 

but below 26% of peak viral load value, T90 was coded as 2 x last observation time (also 156 
right censored).  If viral load had fallen below limit of detection at first time period, the first 157 

time point was taken as T90 and the data noted as left censored. 158 
 159 

After eligibility screening but prior to model construction, three records in three studies 8, 14, 15 160 
were separated to provide independent data to test the final model against. These three 161 

articles were chosen because they were relatively recently published (2013-15), included both 162 
DNA and RNA viruses, provided a diversity of primary transmission pathways (faecal-oral, 163 
body fluids and respiratory), three different levels of faecal contamination (low, medium, 164 

high) and three different genera. 165 
 166 

The extracted data were input to a regression model within Stata (v.14.0, cnreg command 16) 167 
to predict virus inactivation (logarithm with base 10, of T90 expressed in seconds) as a 168 
function of available attributes of either or both virus and matrix.  Many transformations of 169 

predictor and response variables were tried (square roots, logarithmic, exponential, etc).  The 170 

primary aim of the model was to best predict T90 from the available data.  The preferred 171 
model utilized easily obtainable virus and media attributes while minimizing overall 172 
uncertainty, as indicated by the robust standard error of the residuals 17, 18. The robust 173 

standard error was determined using a clustered sandwich estimator for the standard deviation 174 
of model residuals (vce option in Stata 19, clustering by genus).  Other desirable model 175 

features were statistically significant p-values (≤0.05) for variable coefficients, and credible 176 
relationships between predictors and dependent variable.  For the preferred model, fit and 177 
reliability were explored by comparing residuals to fitted values, comparing fitted with 178 

predicted values and by comparing model predictions with independent data not used in 179 
model construction.   180 

 181 
 182 

RESULTS AND DISCUSSION 183 

 184 
The data search and study selection is described in Figure 1.  Article searches were 185 
undertaken on 18 May 2016.  From 2088 partly duplicated articles found in the primary 186 
search, there were 619 studies that could not be excluded after screening title and abstract.  187 
Of those, 583 articles were excluded after full text review.  A further 19 articles were known 188 
by the authors to have relevant data, or were found by reading other literature inventories.  A 189 
final total of 55 articles (containing 467 data points representing 52 unique viruses) were 190 
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found that had observation data points suitable for input to or testing of our regression 191 

model(s).  Three papers 8, 14, 15 each containing one record suitable for model testing were 192 
removed from the model construction data set (as described in Methods).  The final number 193 
of observations used in model construction was 464, from data in 52 papers about 51 unique 194 
viruses.  195 

 196 
In the models discussed below, the square root of the Logarithmic (base 10) transformation of 197 
the T90 (expressed in seconds) value was the dependent variable.  T90 expressed in seconds 198 
allowed for observations taken within one minute of virus inoculation into a matrix.  The 199 
logarithmic and square root transformations led to minimal robust standard error for the 200 

residuals.  Censored linear regression was appropriate due to the observation limits of the 201 
dependent variable 16, 20; the dependent variable (T90) was sometimes only recorded as below 202 
or above a specified detection limit (see Methods).  203 
 204 
Light and pH.  Only about 25% of records had data on matrix exposure to light; we judged 205 

this insufficient for our study purposes and light levels were thus disregarded in the 206 
modelling.  There were also several problems with using pH as a predictor of T90.  About 207 

30% (141 of 464) of records did not provide information on matrix pH during the T90 208 
observation period.  Observed values of pH were relatively limited compared to possible real 209 

world conditions (extracted pH values = 2.1-2.6, and 6-9.3).  Moreover, many of the 210 
experiments reported pH that changed during the experimental run; this variability is likely to 211 

be replicated in field conditions and yet could be difficult to reliably predict prospectively.   212 
We therefore decided that our preferred model should not include pH as a predictor.  A 213 
possible best fit model that incorporates the variable pHdiff7 as a predictor, with additional 214 

discussion about possible caveats is described in Supporting Information (Section S2). 215 
 216 

  217 
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Figure 1. Study Selection Flow Chart. 262 
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Model 1. Model 1, in Table 1, is our preferred model that does not use pH.  An analysis of 264 

how well response and predictor meet required model data assumptions is available 265 
(Supporting Information).  Coefficients, standard error, 95% confidence intervals, t- and p-266 
values are shown below. There are five inputs: faecal-oral as a primary transmission pathway 267 
(or not), enveloped structure (or not), DNA rather than RNA structure, temperature and level 268 

of matrix contamination with faecal material.  Linear temperature was a better predictor than 269 
logarithmic transformed temperature values or linear difference from room temperature (20° 270 
C). The robust standard error for residuals generated from Model 1 was 0.0190121. 271 
 272 
 273 

Table 1.  Model 1 coefficients and attributes, Censored regression to predict   274 
sqrt(T90secs).  275 
 276 

  
               95% CI for coeff. values 

 Coefficient Lower bound Upper bound p-value 

Model constant 2.56883 2.49456 2.64310 < 0.001 
Faecal oral transmission 
pathway (y) 0.12877 0.07305 0.18448 < 0.001 

Enveloped virus (y) -0.09392 -0.15091 -0.03925 0.001 

DNA virus (y) 0.01523 -0.02873 0.05918 0.496 

Temperature in C° -0.00971 -0.01136 -0.00805 < 0.001 

Low contamination 0 na na Na 

Medium contamination 0.00428 -0.04468 0.05323 0.864 

High contamination  -0.11271 -0.15790 -0.06752 < 0.001 

 277 
Notes: sqrt(T90secs) = square root[log10(T90 in seconds)]. Enveloped virus (y) = 1 when enveloped, else 0.  278 
Faecal oral (y) = 1 when faecal oral is primary transmission pathway, else 0. DNA virus (y) = 1 for DNA virus, 279 
else 0.  Model default is when level of contamination = low, else model adjusts for when contamination is 280 
medium or high as indicated.   281 
 282 

 283 
Figure 2 shows (a) residuals plotted on fitted values for all uncensored data; (b) fitted plotted 284 
on all uncensored observed values. Depicting and analyzing only uncensored residuals is 285 

appropriate because of the expected high errors for censored data.  Mean value of residuals = 286 
-0.1898, standard deviation = 0.1920. An alternative model fit to the same data minus the 287 

most influential observations is available in Supporting Information (Section S4); the 95% 288 
confidence intervals for coefficients in this alternative model overlap generously with our 289 
preferred model so we do not explore this alternative further. 290 

 291 
 292 
 293 
  294 
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 295 

 
2a. Residuals plotted on predicted values. 2b. Predicted plotted on observed values. 

 296 

Figure 2.  Model 1 residuals, fitted and observed T90 values (log10 transformation). (a) 297 
Residuals (= observed – predicted values) plotted against prediResicted values, (b) fitted 298 
values plotted against observed values.  299 
 300 

 301 
Virus inactivation as a function of temperature only in Model 1.  Model 1 predicts T90 as 302 
a function of three binary variables, a three level categorical variable (contamination) and one 303 

interval input (temperature). There are eight combinations for the three binary variables 304 
(DNA or not, enveloped or not and faecal-oral or not, which are listed in Table 2.  The 305 

opportunity arises to forecast T90s as a function of these finite combinations and the three 306 
levels of matrix contamination (low, medium or high), to relate the predicted T90s otherwise 307 
to only temperature, as shown in Figures 3a-3c.   Figure 3a shows estimated virus survival 308 

(T90s expressed in hours) for a matrix with low contamination, Figure 3b shows 309 

corresponding data for a matrix with medium contamination, and estimated virus survival 310 
times in a highly contaminated matrix are shown in Figure 3c. 311 
 312 
 313 

Table 2.  Finite combinations of virus attributes applicable to Model 1 and Figure 3.  314 
 315 

Group Primary 

transmission 

pathway = 

 Faecal-Oral 

Enveloped  

virus 

DNA = 

nucleic acid 

Examples % of input 

records within 

each group 

A 0 1 1 Herpes simplex 3.9% 

B 0 1 0 SARS coronavirus 23.7% 

C 0 0 1 H. Adenovirus 2 5.6% 

D 0 0 0 Human rhinovirus 3.4% 

E 1 1 1 (none found) 0% 

F 1 1 0 Swine fever 6.7% 

G 1 0 1 Phi-X174 phage 19.4% 

H 1 0 0 Poliovirus 37.3% 
Note: 1=yes, 0 = no. 316 
 317 
 318 
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At the scale shown on Figures 3a-3c, Groups C and E are indistinguishable from each other, 319 

and likewise for Groups D and F.  There are otherwise three visually apparent macro-320 
groupings, (1) A and B, (2) C-F, (3) G and H. Groups A and B yield similar predicted T90s, 321 
the lowest predicted.  Groups A and B are different from the other groups in being enveloped 322 
and not primarily faecal-oral-transmitted viruses.  In contrast, groups G and H are the most 323 

long-lived groups: these are not-enveloped viruses with faecal-oral as their primary 324 
transmission pathway. The other four virus groups (C-F) form a third visually distinct cluster 325 
on Figures 3a-3c, comprising attribute combinations not in A,B, G and H.  T90s for the 326 
Groups in matrices that have low or medium contamination are extremely similar: it is hard 327 
to tell Figures 3a and 3b apart.  This result may be expected because of the lack of 328 

significance for the p-value on the medium level of contamination (category 2) in Model 1.  329 
However, estimated T90s are noticeably much more reduced when the matrix is highly 330 
contaminated (Figure 3c). The highly contaminated environment is relatively much more 331 
hostile to viral persistence, even for those viruses which are highly adapted to be transmitted 332 
through the faecal-oral route.   333 

 334 
The uncertainty on the mean model estimates is high; some 95% confidence intervals for the 335 

model predictions (using medium contaminated matrices as an example) are shown in 336 
Supporting Information Section 5. 337 

  338 
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 339 

 3a 

 3b 

 3c 
 340 
Note: See Table 2 for Group descriptions, A-H.  341 
 342 

Figure 3.  T90 plotted for finite virus and matrix attribute combinations.  3a: Matrix 343 
has low level of faecal contamination; 3b: medium contamination; 3c: highly 344 
contaminated matrix. 345 
 346 
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Independent test data.  Table 3 shows the predicted T90 (in hours) as a function of 349 

temperature and the virus/experimental conditions, for data in each of the independent test 350 
papers, as predicted by Model 1.  Means and 95% confidence intervals were generated for 351 
predicted values, based on the 95% confidence intervals for each variable coefficient (as 352 
shown in Table 1).  All of the confidence intervals are relatively large demonstrating high 353 

model uncertainty; still, the mean predictions are sometimes quite encouraging.  The 354 
midpoint match is good for Fischer et al. 2015 8, with less than 10% error: Ebola virus, 355 
predicted T90 (expressed in hours) = 40.0, observed T90 = 43.2 hours. The mean predicted 356 
T90 value is within 30% of the true value for Ahmed et al. 2014 15: human adenovirus, 357 
predicted T90 = 232 hours, observed T90 = 312 hours.  The model output is a poorer fit, at 358 

40% mean underestimate for the data in Adhikari et al. 2013 14: P22 phage, predicted T90 = 359 
356 hours and observed T90 = > 500 hours.  The observed value of 500 hours from Adhikari 360 
et al. is still comfortably within the 95% confidence intervals predicted by Model 1, but the 361 
censored nature of this test observation makes it impossible to confirm that the true T90 value 362 
is within these boundaries. 500-356 = 144 hours = six days.  In absolute terms, six days is not 363 

a small error. 364 
 365 

 366 

Table 3.  T90 predictions tested against independent observations. 367 
 368 

Reference 
Adhikari et al. 

2013 

Ahmed et al. 

2014 

Fischer et al. 

2015 

Virus P22 phage 
Human 

adenoviruses 
Ebola 

Faecal oral Y N N 

Enveloped N N Y 

Nucleic acid DNA DNA RNA 

Environmental variables 

Level of 

contamination 
 High Medium Low 

Temperature 14° C 16.7° C 21° C 

Model estimates and Observed T90 (hours) 

Lower bound  38  44  7.5 

Mean estimate  356  232  40.0 

Upper bound  3360  1147  241.6 

Observed T90  >500 312 43.2 

 369 
Notes: Faecal-oral as primary transmission pathway (or not); Enveloped virus (or not).  Predicted lower/upper 370 
bounds are bounds of 95% confidence interval. 371 
 372 
 373 

  374 
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Practical issues and limitations.  With a much larger dataset, it could be valuable to develop 375 

models for each of the individual scenarios described in Table 2 (Groups A-H).  Such 376 
customization might well improve model predictions for each combination of virus and 377 
environmental traits.  It was not practical in this article to develop individual group models, 378 
or assess model fit by group, due to diverse sample sizes.  For instance, Group E is described 379 

in no records in our dataset, whereas Group G conditions apply to 173 (37%) of 464 records).   380 
There is also merit in considering whether predictions could be clustered by group: ie, mean 381 
predicted inactivation was similar for three distinctive clusters: Groups A-B, C-F and G-H. 382 
Guidelines could be developed that treat these clusters of groups as similar in risk 383 
management, with regard to expected inactivation rates. 384 

 385 
More data are required before we feel confident about including pH in our models.  Many 386 
previous articles showed links between pH and rates of virus inactivation 21-24, although these 387 
sources are not consistent about the optimal pH for virus survival.   It is problematic that 388 
available pH data are relatively limited in range, while pH data may be hard to reliably obtain 389 

or estimate in field conditions.  57% of our records had pH between 6 and 7.99, and another 390 
42% of records had pH between 8 and 9.3.  The remaining (1%) four experiments (with 391 

specific pH data) reported on pH below 6 (range = 2.1-2.6).  Therefore, observed pH data 392 
were somewhat incomplete compared to the full possible pH range, and relatively discreet 393 

(noticeable gap in distribution of possible pH values).   394 
 395 

We tried transformations of other variables in the predictive model, including quadratic and 396 
exponential transformations of temperature (away from a relatively microbial friendly 397 
condition of 20° C).  These variable expressions did not improve model performance. 398 

 399 
Geoghegan et al. 2016 10 undertook somewhat similar research to ours, to explore whether 400 

biological features of viruses could indicate the likelihood of inter-human transmissibility. 401 
They determined that viruses with low host mortality, that establish long-term chronic 402 
infections, and that are non-segmented, non-enveloped, and not transmitted by vectors were 403 

more likely to be transmissible among humans.  However, genome length, genome type, and 404 

recombination frequency were not predictive of human transmissibility.  Our approach to 405 
modelling virus deactivation did not consider as wide a variety of biological traits, but we 406 
also did not find biological traits to be the strongest predictors in our modelling: in our Model 407 

1, t-values were greatest for the environmental traits = contamination level and temperature. 408 
 409 

There was an inevitable element of subjective judgment in the categorization of 410 
contamination level (low, medium or high). Some experimental data were grouped (sets of 411 
similar results from many very similar experiments within the same article); there was 412 

inevitable subjectivity in the grouping. Some variables were not clearly reported in the 413 
eligible articles; we mutually discussed the best representative value to record in such cases 414 

(such as for temperature, pH, T90, etc).   415 
 416 

Clearly, the models we have described could be improved.  Many of the papers did not report 417 
all potential predictor variables. In particular pH and whether or not the experiments were run 418 
in light or dark conditions was often not reported, even though both these variables are likely 419 
to impact on viral survival. To have included both these variables in the model would have 420 
meant losing a high proportion of the studies. For the ordinal variable representing degree of 421 

contamination of the matrix there was a degree of arbitrariness in the thresholds between the 422 
categories. Looking at the primary model it could be argued that the low and moderate 423 

contamination categories could be combined meaning that the important cutoff was between 424 
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the moderate and high contamination categories. Also, it was usually but not always clear 425 

what to assign to the variable ‘primary transmission pathway’. If a virus was not normally 426 
faecally transmitted, it was not categorized as faecal-oral.  However, we acknowledge that 427 
transmission pathways for some viruses are not very well understood and most, if not all, 428 
viruses can be transmitted via a faecal-oral route in at least some circumstances.  An example 429 

is the epidemic of SARS which was mainly respiratory in transmission, but for which there 430 
was evidence of some spread via wastewater 1. 431 
 432 
Implications for Public Health.  We demonstrated that it is feasible to predict viral survival 433 
in different media from key virus and matrix attributes.  Clearer reporting in future studies 434 

about matrix pH, light level exposure and temperature would probably reduce model 435 
uncertainty.  While not perfect the model was successful at predicting virus survival to a 436 
reasonable degree of accuracy. The model also gives confidence intervals for its predictions. 437 
In the absence of more definitive experimental evidence this use of this model would give 438 
policy makers estimates of viral survival in different matrices to allow guideline development 439 

early in a new epidemic threat. This model should not be seen as an alternative to 440 
experimental evidence and does not remove the need to generate such evidence. Clearly, 441 

where experimental evidence subsequently conflicts with the predictions of this model then 442 
the former should take precedence and guidelines revised in light of this new experimental 443 

evidence. 444 
 445 

 446 
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