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Abstract  

Energy Harvesting Devices (EHD) have been widely used to generate electrical power from the 

bio-kinetic energy of human body movement. A novel Piezoelectric Flex Transducer (PFT) based 

on the Cymbal device has been proposed by Daniels et al. (2013) for the purpose of energy 

harvesting. To further improve the efficiency of the device, optimal design of the PFT for 

maximum output power subject to stress and displacement constraints is carried out in this paper. 

Sequential Quadratic Programming (SQP) on metamodels generated with Genetic Programming 

from a 140-point optimal Latin hypercube design of experiments is used in the optimization. 

Finally, the optimal design is validated by finite element simulations. The simulations show that 

the magnitude of the electrical power generated from this optimal PFT harvesting device can be 

up to 6.5 mw when a safety design factor of 2.0 is applied.  
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Introduction 

In recent years, the rapid development of low power consuming devices, such as aircraft structural 

health monitoring (Sohn, et al., 2002) and portable communication devices (Olodort R and 

Cazalet P, 2004), have resulted in high demands for mobile energy harvesters, whose primary 

function is to reduce the use of battery. Consequently, the energy conversion efficiency of energy 

harvesters has become a challenging topic for researchers because the low power output of the 

mobile energy harvesters cannot satisfy the high power requirement of the devices.  

There are many energy resources that can be harvested from the ambient environment. According 

to Harb (2011), micro-energy, which is produced on a small-scale from a low carbon source, can 

be mechanical, electromagnetic, thermal, electrical, solar or biological energy. Various micro 

energy harvesters have been designed to harvest energy from ambient environment and to power 

mobile devices, such as the wearable thermoelectric generator(TEG) (Krishna et al., 2011) and 

the cantilevered bimorphs piezoelectric vibration harvester (Khalid et al., 2015). The development 
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and applications of micro-scale energy harvesters, including thermoelectric, thermo-photovoltaic, 

piezoelectric, and microbial fuel cell energy harvesters, have been reviewed by Krishna and 

Mohamed (2014). Piezoelectric energy harvesting has received great attentions since 

piezoelectric materials have good electrical–mechanical coupling effects. There have been a 

number of reviews that are specifically on piezoelectric energy harvesters and piezoelectric 

materials (Heung et al., 2011; Li et al., 2014; Siddique et al. 2015), which evidenced the recent 

and rapid development of this special form of energy harvesters.  

To improve the efficiency of mobile piezoelectric harvesting devices, design optimization has 

been carried out to maximize the power output. Reinhard (1990) developed finite element 

equations for modelling piezoelectric structures and Silva and Kikuchi (1999) applied topology 

optimization method (TOM) to obtain the efficient layout of piezoelectric materials. They found 

an optimal distribution of the materials and void phases using finite element model and then 

generated the optimal design of the piezoelectric transducer. Kögl and Silva (2005) proposed a 

new material model that was based on the SIMP (solid isotropic material with penalization) to 

improve the design of piezoelectric actuators using topology optimization. Anton and Sodano 

(2006) concluded in a review that the efficiency of a piezoelectric power generator could be 

improved by better piezoelectric configurations, circuit or method of energy storage. Lu et al. 
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(2011) proposed a maximum power point tracking scheme based on a time-multiplexing 

mechanism for general piezoelectric energy harvesters to improve the efficiency of energy 

harvesting from the circuit. Deng et al. (2015) maximized the output of a piezoelectric vibration 

energy harvester by finding the optimal damping ratio and electromechanical coefficient. Using 

TOM and SIMP, Kiyono et al. (2016) successfully improved the performance of piezoelectric 

energy harvesters. Zhou et al. (2016) proposed a flexible longitudinal zigzag structure (FLZS) to 

improve the low frequency piezoelectric vibration energy harvesting. Zhao et al. (2016) employed 

the synchronized charged extraction circuit to enhance the galloping piezoelectric energy 

harvesting.  

In this paper, the novel piezoelectric energy harvester, Piezoelectric Flex Transducer (PFT) that 

was developed base on the Cymbal device (Newnham et al., 2000), is optimized to achieve the 

maximal bio-kinetic energy conversion. First, an introduction of a coupled piezoelectric-circuit 

finite element model (CPC-FEM) representing the Cymbal energy harvesting device is given and 

the model is validated against published results. Based on the developed CPC-FEM model, the 

response functions are calculated and then replaced by metamodels, which are constructed using 

Genetic Programming from a 140-point optimal Latin hypercube design of experiments. Finally, 

parametric optimization of the PFT is carried out using Sequential Quadratic Programming (SQP) 
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on the metamodels to obtain the optimal design. The finite element simulation of the final optimal 

design shows that the magnitude of the electrical power by this PFT harvesting device can be up 

to 6.5 mw when a safety design factor of 2.0 is applied. 

 

Development of the coupled piezoelectric-circuit finite element model and its validation  

The Cymbal device was originally designed as a piezoelectric actuator. The structure, function 

and applications of the Cymbal device were reviewed by Newnham et al. (2000). The cymbal 

device consists of two endcaps and a piezoelectric disk, which can increase power output by up 

to 40 times compared to the use of only a piezoelectric disk alone (Kim et al. 2007). However, 

the traditional Cymbal transducer was unable to stand a force of more than 50N, which means 

that it cannot harvest the bio-kinetic energy from, e.g., foot fall of human. In order to improve the 

Cymbal device for the purpose of bio-kinetic energy harvesting, Daniels et al. (2013) developed 

the Piezoelectric Flex Transducer (PFT) using a coupled piezoelectric-circuit finite element 

model (CPC-FEM) in ANSYS (2010). The CPC-FEM model was validated by comparing the 

simulation results of the Cymbal device with the ones from experiments.  

Based on the research by Daniels et al. (2013), the CPC-FEM model is further developed for the 

optimal design of the PFT in this paper. The PFT was composed of a top endcap, a bottom endcap, 
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two substrate layers and a piezoelectric plate. The PFT was made into a rectangular shape to 

retrofit into a shoe and tested subject to a force greater than 1kN. This configuration of the PFT 

device can efficiently transfer the force from the endcaps to the piezoelectric disk. In order to 

increase the strength of the joint part, the area of the vulnerable adhesive interface between the 

endcaps and the piezo disk has been enlarged and substrate layers are also added. The geometric 

parameters of the PFT are shown in Figure 1(a) and (b). The detailed FE model of the PFT shown 

in Figure 2 is used to perform the simulations and structural optimization for maximal electrical 

power output. In the FE model, SOLID226 element was selected for modelling the PZT plate. 

This element is a 3-D couple field hexahedron of 20 nodes and suitable for the analysis of 

piezoelectric structural responses. SOLID95 element was selected for endcaps, which is also a 

hexahedral element type with 20 nodes. CIRCU94 element was used for the resistor connected 

between the positive and negative electrodes. The adhesive layers between the metal endcaps and 

the piezoelectric material are ignored in the finite element model since they are very thin. The 

geometric and material parameters are the same as those chosen in Daniels (2014). 
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(a)                                   (b) 

Figure 1. (a) Cross section view of PFT (b) Value of geometric parameters of PFT. 

 

                       Figure 2. FEM of piezoelectric flex transducer. 

In general, the accuracy of the predictions using the above CPC-FEM model depends on the size 

of the elements used. A discussion on how the meshing density affects the simulation results will 

be presented in the Convergence analysis of the developed PFT Section. To validate the model 

developed in this paper, a comparison with the results by Daniels (2014) is shown in Figure 3 for 
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the PFT subjected to 1kN uniformly distributed load (UDL) downward from the apex with a 

frequency of 2Hz, where a resistor connecting the top and the bottom surface of the piezoelectric 

layers as the respective positive and negative electrodes. A resistant load ranging from 0.5MΩ to 

10MΩ is used to study its effect on the electrical power output. 

 

Figure 3. Comparison of the results from the current model and Daniels (2014). 

A good agreement between the results from the converged CPC-FEM model and the ones 

obtained in Daniels (2014) is shown in Figure 3. Therefore, the converged CPC-FEM model will 

be used as the virtual experimental tool in the following metamodel based optimization process 

to maximize the power generation capacity of the original PFT design. 

 

Parametric Optimization of the Piezoelectric Flex Transducer (PFT) Device 
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To determine the geometric parameters of the PFT device for the best design configuration in 

terms of the maximal power generation subject to stress and displacement requirements, 

parametric optimization of the PFT device is performed in this section. The design for the PFT 

structure is a multi-parameter optimisation problem, for which a metamodel-based optimization 

technique is used to obtain the optimal solution describing the PFT geometry. The methodology 

for performing parametric optimization consists of five steps and they are: 

I. Design of Experiments (DOE) 

II. Metamodel building by Genetic Programming (GP) 

III. Finite element analysis of the PFT 

IV. Design Variables, Constraints, and Loads for Parametric Optimization 

V. Optimal design of the PFT by Sequential Quadratic Programming (SQP)  

These five steps are integrated to perform the multi-parameter optimization of the PFT device 

design and explained in the following sub-sections. In this paper, parametric optimization is 

applied to obtain the detailed PFT design using Sequential Quadratic Programming on the global 

metamodels generated with Genetic Programming from a 140-point optimal Latin hypercube 
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Design of Experiments, each of which represents a specific PFT design defined by a set of 

parameters input.  

Design of Experiments (DOE) 

Design of Experiments (DOE) is a powerful statistical technique (Box, 1980) to study the effect 

of multiple variables simultaneously. The DOE can economically satisfy the needs of problem 

solving and successfully deal with design optimization projects in various engineering subjects. 

By applying this technique, the time required for experimental investigations or computer 

experiments can be significantly reduced. Therefore, an approximation model for the response of 

the interest built by DOE design points is utilized to solve complex optimization problems to 

reduce computational cost, where a design point is related to a specific set of design parameters. 

However, the quality of a metamodel strongly depends on an appropriate choice of the Design of 

Experiments (DOE) type and the sampling size (Forrester et al., 2008). To improve the quality 

and efficiency of DOE, a uniform Latin hypercube DOE based on the use of the Audze-Eglais 

optimality criterion (Audze and Eglais, 1977), is used in this paper. The main principles in this 

approach are as follows: 
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 The number of the set of design variables (same for each design variable) is equal to the 

number of experiments and for each set of the design variables, there is only one 

experiment allowed; 

 The points corresponding to the experiments are distributed as uniformly as possible in 

the domain of design space where each design parameter is defined as an independent 

coordinate in the design space. Thus the distance between two neighboring points, e.g., 

points p and q representing two different sets of designs, can be calculated as Euclidean 

distance using Pythagorean formula. There is a physical analogy of the Audze-Eglais 

optimality criterion with the minimum of potential energy of repulsive forces for a set of 

points of unit mass, if the magnitude of these repulsive forces is inversely proportional to 

the squared distance between the points. 

As a result, one has 
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where, P is the total number of points, Lpq is the distance between points p and q (p≠q). 

Minimizing U produces a system (DOE) where points are distributed as uniformly as possible in 

the design space.  

Following this extended optimal Latin hypercube design of numerical experiments (DOE),  the 

FE analyses of the proposed DOE are performed at the 140 uniformly distributed design points 

to optimise the PFT. The bar chart of the minimum distances between the sampling points is 

shown in Figure 4, which indicates a good uniformity of the DOE. 

 

Figure 4. Minimum distances between points in 140–point optimal Latin hypercube design of 

experiments. 

Metamodel building by Genetic Programming (GP) 
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Genetic programming methodology (GP) (Armani et al, 2011; Koza, 1992) is a systematic way 

of selecting a structure of high quality global approximations. Selection of the structure of an 

analytical approximation function is a problem of empirical model building. Selection of 

individual regression components in a model results in solving a combinatorial optimization 

problem. Even if a bank of all regressors is established (which is a difficult problem on its own), 

the search through all possible combinations would result in prohibitive computational effort. GP 

is based on the same basic methodology as genetic algorithms (GA). While a GA uses a string of 

numbers to represent the solution, GP creates a population of computer programs of a certain 

structure. In this case of design optimization, the program represents an empirical model to be 

used for approximation of a response function. For example, a tree structure-based typical 

program, representing the expression (x1/x2+x3)
2, is shown in Figure 5. 
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The genetic programming code was first developed according to the guidelines provided by Koza 

(1992), then implemented for symbolic regression tasks by Armani et al. (2011). The common 

genetic operations used in genetic programming are reproduction, mutation and crossover, which 

are performed on mathematical expressions (metamodels) stripped of their corresponding 

numerical terminals. Parameters are inserted in the offspring and then optimised during the fitness 

evaluation. The whole process presenting the Genetic Programming (GP) methodology in this 

paper is shown schematically in Figure 6. 

More details and implementations about genetic programming used in this paper can be found in 

Armani (2014). 
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Figure 6. A flowchart of Genetic Programming methodology. 
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In order to encourage the evolution of compact, smooth, and accurate mathematical expressions 

and to avoid ‘bloating’ (Poli et al. 2008), the definition of fitness values F(i,t) of individual i at 

generation t has been represented in the form of a weighted sum of different terms or objectives, 

as an approach to solve the multi-objective optimization using the evolution-based algorithm: 

),(
44

),(
3

610
3

),(
22

),(
11

),( tiFatiFatiFatiFatiF    (2) 

14321  aaaa   (3) 

where F1 is the root mean square error (RMSE) of the ith individual in the tth generation evaluated 

on the given data set, divided by the average RMSE of the archive individuals at the previous 

generation; F2 is the square of the number of numerical coefficients (parameters) present in the 

individual; F3 is the number of operations not defined (i.e. division by zero) in the individual at 

any of the DOE sample point; F4 is the number of nodes that the individual is made of and a1, a2, 

a3 and a4 are weighting factors (that add up to 1) determined by the exhaustive testing and tuning 

of the GP algorithm (Armami et al. 2011). Their values were: a1=0.8989, a2=0.001, a3=0.1 and 

a4=0.0001. 

In total, 140 FE analyses of the PFT device (corresponding to 140 DoE points) are performed to 

generate the response sets for building the metamodels, which will be used to explore the 
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structural properties of different geometries for the maximal output power of the PFT device in 

the optimization section. 

Finite element analysis of Piezoelectric flex transducer (PFT) 

Using the ANSYS Parametric Design Language (APDL), a finite element analysis tool for the 

parameterized modelling of the PFT is developed as a large number of similar models must be 

analyzed to study the responses of the PFT for the purpose of design optimization. The correctness 

of the CPC-FEM model has been described in previous section. This automated tool is able to 

generate efficient and reliable models, facilitate data collection, as well as alter the PFT geometry 

with acceptable programming effort in order to analyse their mechanical-electrical coupled 

responses under specified loads. Detailed information about the FE modelling of the PFT has 

been given in the Development of the coupled piezoelectric-circuit finite element model and its 

validation Section, and the material properties of the device are listed in Table 1. A mesh 

sensitivity study is also performed to obtain a converged solution, as shown in the Convergence 

analysis of the developed PFT Section. 

 

Table 1. Material properties used in PFT.



18 

 

AK Stainless Steel: Austenitic stainless steel 304, MatWeb, LLC 

Young's Modulus (GPa) 193 

Yield Strength (MPa) 251 

Density (Kg/m^3) 8030 

Poisson's Ratio 0.24 

Piezoelectric Material: DeL Piezo DL-53HD 

Elastic Compliance (x10^-12 m^3/N) 

S11 15.1 

S12 -4.5 

S13 -9.4 

S33 24.8 

S44 37.1 

S66 39.2 

Relative Dielectric Constant (at the constant stress) 

ε T
 r11

 3550 

ε T
 r33 3850 

Density (Kg/m^3) 7900 

Piezoelectric strain constants (x10^-12 m/volt) 

d15 810 

d31 -300 

d33 680 

Piezoelectric Coupling Coefficient k31 0.42 

Mechanical quality factor Q 20 
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Convergence analysis of the developed PFT 

The boundary conditions of the simulations for the PFT are shown in Figure 7. The fix base is set 

at the bottom endcap while the distribute load applies at the top endcap. The magnitude of the 

load is 1kN. The resistor is connected between the top and bottom surface of the piezoelectric 

layer. 

 

Figure 7. Boundary conditions of PFT simulations. 

In theory, more accurate FE solution of a mathematical model can always been achieved with 

finer meshes. However, increasing the accuracy of the FE model by reducing the mesh size will 

be penalised by significant increase of computing time. Therefore, before building the metamodel 
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using GP, a mesh convergence study needs to be performed to identify an appropriate mesh size 

for achieving sufficient accuracy of the FE analysis with acceptable computational cost. The 

initial CPC-FEM model for the PFT had an element size of 3mm in length, height and width. In 

order to find a more favourable element size, the electric power output and the maximal principal 

stress are plotted against measure of mesh density in Figures 7 and 8. The numbers along the x-

axis in the Figures stand for the integer that are used to divide the original mesh size, for example, 

4 stands for 1/4 of the original size. 

 

Figure 8. Maximum principal stress vs. mesh size. 
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Figure 9. Electrical power vs. mesh size. 

From Figures 8 and 9, it is clear that the predicted electric power converges faster than the 

maximum principal stress does before the level of mesh refinement is below 4. The slower 

convergence of the principal stress was due to the fact that the stress was calculated point by point 

within the materials, while the electric outputs were calculated from the average stress of the 

material, which are less sensitive to mesh size.  

By changing the size of the element required in the PFT model, the variations of magnitudes of 

the output current (I), voltage (V) and power (P) are shown in Table 2. It is obvious that a good 

convergence has been achieved for all the electric outputs when the mesh size is reduced to four 

times less than the original size. 
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Table 2. Electrical output vs. mesh size.

 
I V P 

original mesh -2.49739E-05 -249.739 0.00567255 

mesh/2 -2.51175E-05 -251.175 0.00575408 

mesh/4 -2.50425E-05 -250.425 0.00573282 

mesh/5 -2.52266E-05 -252.266 0.00580307 

mesh/8 -2.50340E-05 -250.34 0.00573358 

Based on the convergence analysis shown in Figures 8, 9 and Table 2, it can be concluded that 

the FE results of the PFT model are sufficiently accurate when the element size is reduced to 1/4 

of the original element size, which is 0.75mm. 

Design Variables, Constraints and Loads for Parametric Optimization 

The PFT device consists of a piezoelectric (PZT) plate sandwiched between two metal endcaps 

with shallow cavities as shown in Figure 10 and its CAD sketch is depicted in Figure 11. Two 

geometric parameters, i.e., the total length (D=52mm) and the width (W=30mm), are kept 

constant in the optimization process. Clearly, the effective design should amplify and redirect the 

downward applied mechanical force to a horizontal force so that the majority of the applied force 

acts to stretch piezo-plate horizontally. The design should also allow a certain amount of space 
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between the piezo-plate and the endcaps so that the piezo-plate can actuate more freely for a 

higher elastic deformation or elastic strain, which will generate more electricity. 

 

Figure 10. Geometrical parameters describing the PFT configuration. 

 

 

Figure 11. CAD sketch of three-dimensional PFT geometry. 
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Taking into account all the above, the design variables chosen to vary the geometry of the PTF 

include the cavity length (Dc), the apex length (Da), the endcap internal angle (θ) and the 

respective thicknesses of the piezoelectric plate (tp), the substrate layer (ts), and the cap (tc). By 

altering the cavity length, the internal angle, and the apex length, the overall height of the cap (H) 

will be changed. The joint length (J) can be defined as a function of the cavity length. 

Consequently, seven parameters are selected as the design variables in the optimization process 

of the PTF for maximum power generation. The design parameters are summarized in Table 3 

with their minimum and maximum bounds given for the practical and manufacturing restraints. 

Other constraints are also considered in the optimization. The measure of the maximum principal 

stress has been taken throughout the structure and the critical areas have been identified nearby 

the sharp corners of the endcap component. Hence, the endcap fails if it is stressed beyond the 

strength of the material. In this research, a safety factor of 2.0 has been selected for the strength 

constraint that will be activated when the maximum principal stress reaches the half value of the 

yield stress of the endcap material. The logic behind this is to find a desirable and practical design, 

which is in the feasible region far away from the brink of violating the yield stress constraint. The 

apex downward displacement should not exceed the height H so that the contact between the cap 

and the substrate can be avoided in the process of energy harvesting. Thus, the optimization 

problem is formulated as shown below: 
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Max 𝑃 

Subject to: 

𝐷𝑑𝑖𝑠𝑝

𝐻
 < 1  (4) 

𝜎

𝜎𝑦
≤ 0.5  (5) 

 

where P means the non-dimensional electrical power and it is normalized by the maximum 

electrical power among all 140 sampling points without considering yielding of the material. This 

rule is also employed to calculate the normalized stress and displacement. The principal stress is 

normalized by the yield stress of the material and the displacement of the metal cap is normalized 

by the distance between the metal cap and the piezoelectric material. 

H is the height of endcap and can be computed by  

H= 
𝐷𝑐−𝐷𝑎

2
 tan 𝜃   (6) 

J is the joint length, 

J= 
𝐷𝑝−𝐷𝑐

2
  (7) 

Ddisp is the displacement of the apex, 
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𝜎𝑦 is the yield stress of the endcap material, 

𝜎 is the maximum principal stress in the cap component. 

Table 3. Bounds of Design variables 

DVs Lower Bound Upper Bound 

Thickness of PZT, tp (mm) 0.5 9 

Thickness of substrate, ts (mm) 0.6 0.9 

Thickness of endcap, tc (mm) 0.5 4 

Length of cavity, Dc (mm) 25 40 

Length of apex, Da (mm) 9.8 18.2 

Internal angle, θ (deg) 5 45 

Resistive loads, R (MΩ) 1 19 

 

A uniformly distributed downward pressure is applied to the upper surface of the upper endcap 

as shown in Figure 10. The total force applied to the top endcap is 1kN at a low frequency of 2Hz 

and this is an approximation of what a solider might exert on the ground. 

 

Optimal design of PFT by Sequential Quadratic Programming (SQP)  
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The explicit expressions for the responses related to the electrical power, current, voltage, 

normalized maximum principal stress of the cap component, and displacement of the apex in the 

PFT design are built by GP which is described in the section Metamodel building by Genetic 

Programming (GP). As an example, the expression for the normalized maximum principal stress 

is: 

𝜎 = 0.2614  − 0.01449Z3 + 0.002264Z4 −
0.0027Z5

Z1
+

1.92Z5

Z2Z42
−

9.429Z5

Z4Z6
− 0.0028Z6

+
0.002746(−2.71206Z4 −

3.10105Z3Z4
Z2

+ 1.64421Z6)

Z32
+

0.00000634Z66

Z26Z36Z42Z53Z7

+
1

Z6
0.0463(86.2934  −

3.48637Z1Z32

Z22Z4
− 2.14548Z4 +

17.4637Z5

Z3

−
187.722Z5

Z3Z4
− 1 (Z2Z3Z6)⁄ 1.891Z4(17.7753  +

28.1429Z52

Z2Z42
−

113.415Z5

Z4Z6

−
126.518Z1Z35Z53

Z45Z6
− 3.70283Z6 −

0.04565Z62

Z1
−

1559.6Z18

Z23Z310Z4Z54Z6Z77

−
0.3615Z6Z7

Z3Z4
 

   (8)

where Z1 to Z7 are the design variables detailed in Table 4. A graphical representation of the 

quality of the fit of the GP approximation for the normalized maximum principal stress 𝜎 is 

shown in Figure 12, where a point on the diagonal represents a perfect fit. 
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Figure 12. Indications of the difference between the normalized maximum principal stress 

response (predicted) and the training data (measured) 

 

In this paper, the parametric optimization of the GP-derived analytical metamodels for the novel 

PFT device was performed by Sequential Quadratic Programming (SQP) technique. SQP (Wilson, 

1963 and Powell, 1977) is widely used to solve nonlinear constrained optimization problems due 

to its typically fast convergence. With a solid theoretical and computational foundation, SQP 

algorithms have been developed and used to solve a remarkably large set of practical problems 

with continuous design variables. Since SQP is sensitive to the selection of initial designs, 

optimizations with three different initial designs, shown in Table 4 as Case one, Case two and 

Case three, respectively, are performed to obtain a converged optimal solution. Numerical results 
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shown that the predicted optimal power outputs and the associated maximum principle stresses 

from the three initial designs converged to almost the same optimal solution. Without loss of 

generality, the predicted optimal power output of design Case one using the metamodel-based 

optimization technique (see Table 4) is compared with the one before optimization and the one 

from FE validation on the optimized design (see Table 5). 

Table 4. Optimal designs of the PFT using SQP with different starting points

 

 

 

 

 

 

 

 

 

DV SQP 

Design Case 

one 

Design Case 

two 

Design Case 

three 

Z1 Thickness of PZT, tp 

(mm) 

2.0 4.5 7.0 

Z2 Thickness of substrate, ts 

(mm) 

0.6 0.9 0.8 

Z3 Thickness of endcap, tc 

(mm) 

2.0 0.7 1.0 

Z4 Length of cavity, Dc 

(mm) 

40.0 32.3 40.0 

Z5 Length of apex, Da (mm) 14.0 12.6 9.8 

Z6 Internal angle, θ (deg) 8.75 11.7 14.0 

Z7 Resistive loads, R (MΩ) 10.0 9.8 13.4 

electrical power (mW) 7.91 7.05 7.91 

principle stress (MPa) 126 125 126 
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Table 5. Structural and electrical response values for the optimum design case one. 

Structural response type Normalized 

Electrical power 

Normalized maximum 

principal stress 

Normalized 

displacement 

Results before optimization 

(Daniels, 2014) 

0.24 0.51 0.01 

Predicted by metamodel 0.46 0.50 0.01 

Validation by FE analysis 0.38 0.49 0.009 

The initial design Case one in Table 4 is the design of Daniels (2014) before optimization giving 

a normalized electric power 4.13mW and a maximum stress of 128MPa. After optimization using 

the metamodel, the electric power is increased to 7.91mW, though a detailed FE analysis on the 

optimized design produces a power of 6.54mW, representing an improvement of more than 58%. 

The results in Table 5 show also that the output power is very sensitive to the structural stress in 

the device, especially in searching the optimal design. Considering the PFT design with a safety 

factor of 2.0, the metamodel-predicted optimum has a zero margin of principal stress of 0.50 with 

a normalized electrical power of 0.46. However, the normalized electrical power computed from 

the FE model for the optimized design is smaller (0.38), representing a total of 6.5mW harvested 

from the device, with a small increase of the stress margin by 0.01.  The discrepancies between 

the metamodel and the FE results can be explained by the limited sampling points (140 points) in 
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the design space for generating a globally accurate surrogate. To address this issue, a global-local 

metamodel strategy will be proposed to predict the response of electrical power more accurately 

in future research. The normalized displacement (0.01) predicted by the metamodel is slightly 

larger than the displacement (0.009) obtained by the FE analysis. This is acceptable as it is not 

the critical constraint in this design optimization problem. In comparison with the results from 

the original design (Daniels, 2014), the normalized electrical power generated by the optimal 

design is increased from 0.24 to 0.38 (by 58%) and the value of the normalized maximum 

principal stress (0.49) is very close to half of the stress limit defined in the stress constraint. For 

a better comparison, the design variables of the original and the final optimum designs are listed 

in Table 6. 

Table 6. Optimum Design variables subjected to the stress and displacement constraints.

Design 

variable

s 

Thickness 

of PZT, 

tp (mm) 

Thickness 

of 

substrate, ts 

(mm) 

Thickness 

of 

endcap, tc 

(mm) 

Length of 

cavity,  

Dc (mm) 

Length 

of apex, 

Da (mm) 

Internal 

angle, θ 

(deg) 

Resistiv

e loads, 

R (MΩ) 

Original 

value 

4 0.6 2 40 14 15.07 10 

Optimum 

value 
9 0.6 1.8 40 10 16 18.5 
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The thickness of the optimal PFT design is 9mm reaching its upper bound. The same observation 

applies to some other design variables, such as the length of cavity and the resistive loads. 

However, the optimal values for the thickness of the substrate and the apex length are very close 

to the lower bounds. As expected, the thickness of the endcap and the internal angle are the key 

parameters that significantly affect the electrical power generation of the PFT. The smaller they 

are, the higher the electrical power output will be. 

 

Conclusions 

A metamodel-assisted optimization approach for designing piezoelectric flex transducer (PFT) 

was proposed to generate the maximum electrical power output from the biokinetic energy of 

human body movement. The PFT was modelled by coupled piezoelectric-circuit finite element 

and further optimized using the Sequentail Quadratic Programming technique on the metamodels 

generated with Genetic Programming from a 140-point optimal Latin hypercube design of 

experiments. The optimized design was further validated by finite element simulations. When a 

safety design factor of 2.0 is applied, the magnitude of the electrical power generated from the 

optimal PFT harvesting device was up to 6.5 mw, representing a more than 58% improvement of 

the initial design. It is concluded that the global metamodel-assisted optimization approach allows 
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the problem to be solved with acceptable accuracy and provides the designers with a wealth of 

information on the structural behaviour and energy output of the PFT harvesting device. 
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