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Abstract 33 

Conventional calculations of the global carbon budget infer the land sink as a residual between 34 

emissions, atmospheric accumulation and the ocean sink. Thus, the land sink accumulates the 35 

errors from the other flux terms and bears the largest uncertainty. Here, we present a Bayesian 36 

fusion approach that combines multiple observations in different carbon reservoirs to optimize the 37 

land (B) and ocean (O) carbon sinks, land-use change emissions (L), and indirectly fossil fuel 38 

emissions (F) from 1980 to 2014. Compared to the conventional approach, Bayesian optimization 39 

decreases the uncertainties in B by 41% and in O by 47%. The L uncertainty decreases by 46% 40 

whereas F uncertainty marginally improves through the knowledge of all the other terms.  Both 41 

ocean and net land uptake (B+L) rates have positive trends of 28±8 and 43±17 Tg C yr-2 since 42 

1980, respectively. We explore the possibility of separating the net land flux into gross primary 43 

production (GPP), terrestrial ecosystem respiration (TER) and fire emissions by using proxies for 44 

GPP and TER trends, namely satellite vegetation greenness and the time-series from a global 45 

database of field-scale soil respiration. Between 1980 and 1994, GPP grew faster than TER, 46 

causing an increasing net land sink. After 2000, both GPP and TER growth stalled, leading to the 47 

maintenance of the land sink. This suggests that a different regime of GPP and TER trends 48 

explains the land sink after 2000. Our Bayesian fusion of multiple observations reduces 49 

uncertainties thereby allowing us to isolate important variability in global carbon cycle processes.   50 

  51 



Significance Statement 52 

The conventional approach of calculating the global carbon budget makes the land sink the most 53 

uncertain of all budget terms. This is because rather than being constrained by observations it is 54 

inferred as a residual in the budget equation. Here, we overcome this limitation by performing a 55 

Bayesian fusion of different available observation-based estimates of decadal carbon fluxes. This 56 

approach reduces the uncertainty in the land sink by 41% and in the ocean sink by 47%. These 57 

results are significant because they give unprecedented confidence in the role of the increasing 58 

land sink in regulating atmospheric CO2, and shed light on the past decadal trend where the land 59 

sink continued to grow despite plant carbon uptake having stalled. 60 

 61 

  62 



The land and ocean carbon sinks provide a vital ecosystem service by absorbing on average about 63 

55% of anthropogenic CO2 emissions from fossil fuel combustion and land-use change. Research 64 

has focused on understanding the relationships between year-to-year variability in carbon sinks 65 

and climate (1, 2), as well as the long term trend over the full instrumental period of CO2 66 

monitoring at the Mauna Loa station (3). Quasi-decadal variations of emissions and sinks have 67 

received comparatively less attention. Yet, significant climate variation occurs at this specific 68 

time scale (4). Since 1980, the variable occurrence of different ENSO events, two large volcanic 69 

eruptions (El Chichón and Pinatubo) and the recent slow-down of land surface warming (hiatus) 70 

have modulated the strength of natural carbon sinks. There are also decadal-scale changes in the 71 

rate at which human activities perturb the natural carbon cycle, in particular the recent 72 

acceleration of fossil fuel and cement emissions in the 2000s (5) and the slow-down in global 73 

land-use change emissions (LUC) in the mid-2000s, which appears to be partly driven by reduced 74 

deforestation in Brazil (6).  75 

Here, we provide a data-driven assessment of global CO2 emissions and sinks at 5-year intervals 76 

for the period of 1980-2014. We use a new Bayesian fusion approach whereby different data-77 

streams of ocean and land uptake, LUC emissions, are optimally combined, and their uncertainty 78 

reduced from prior knowledge. This approach estimates the land sink constrained by data, which 79 

is a major improvement over the “conventional” method for calculating the global carbon budget 80 

by Ciais et al. (7) and Le Quéré et al. (8), hereafter LQ15, where the unknown land sink was 81 

determined as a residual from the other components (emissions, atmospheric increase, ocean 82 

uptake). Most of the data-streams used in this analysis start in 1980, and about half of them give 83 

decadal mean values of natural sinks and thus do not allow us to tackle the reconstruction of 84 

interannual variability. Our choice of applying a Bayesian fusion approach to optimize 5-year 85 

average component fluxes of the global carbon budget is therefore a compromise that maximizes 86 

the use of available observations of decadal average fluxes. 87 



The principle of the Bayesian fusion approach is to combine an a priori imperfect knowledge of 88 

fluxes with observations and their uncertainties to infer optimized estimates of fluxes. Here, we 89 

define a priori values of terms in the global carbon budget that are not from observations. 90 

Specifically, we set prior fossil fuel and cement emissions (F) from inventories and the simulated 91 

land, ocean and land-use change carbon fluxes from process-based models (Table S1). 92 

Observational data sets independent from those prior values are applied to constrain land-use 93 

change emissions (L), the ocean uptake of anthropogenic CO2 (O), the land-biosphere sink (B)  in 94 

ecosystems not affected by land-use change, and the net land flux (B+L) (Table S2). A more 95 

uncertain attempt to extend the Bayesian optimization approach is proposed, where the net land 96 

flux is decomposed into three gross carbon fluxes: Gross Primary Production (GPP), Terrestrial 97 

Ecosystem Respiration (TER) and fire emissions (FR). Here the trends of GPP and TER are only 98 

indirectly constrained by the proxies of satellite-based vegetation greenness trends for GPP and of 99 

in-situ soil respiration data for TER. 100 

Results 101 

In the optimization of the global carbon budget (Opt-A, Fig. 1), the prior value of F and its 102 

uncertainty (Table S1) were defined from the mean value and the range of different emission 103 

inventories, namely from CDIAC (9), IEA (10), EDGAR (11) and BP (12) (Methods). These 104 

inventories are not treated as direct observations of emissions, and there is currently no 105 

independent observation to verify F. The prior values of O are from seven ocean biogeochemistry 106 

models (8), and the prior values of B are from the nine TRENDY land carbon models (13) 107 

(Methods). These prior values from state-of-the-art models are without direct observational 108 

constraints. The prior estimates of L are derived from the difference of simulated land carbon 109 

fluxes with and without LUC in the TRENDY carbon models (13). All fluxes are defined as 110 

positive if CO2 is lost to the atmosphere by the land or the ocean reservoir. Uncertainties in the 111 

prior estimates of 5-yearly O, B and L, are set to the maximum between those reported by LQ15 112 



and the standard deviations across models. All uncertainties here refer to 1-σ Gaussian errors. In 113 

this context, the prior uncertainties are 0.5 for O, 0.9 for B and 0.8 Pg C yr-1 for L, thus not 114 

smaller than the values of 0.5, 0.8 and 0.5 Pg C yr-1 from LQ15. It is important that the prior 115 

uncertainties are not too small, so that adding observations can adjust and constrain the sought 116 

fluxes.  117 

Several independent data-streams, each with their specific uncertainty and temporal resolution 118 

(Fig. S1, Table S2), are combined in the Bayesian optimization with the above prior knowledge. 119 

These data-streams are: 1) the atmospheric CO2 growth rate (CGR) from the NOAA/ESRL 120 

atmospheric network (14) which constrains the sum of all fluxes and is determined very 121 

accurately from more than 60 monitoring stations; 2) the atmospheric 5-year mean (negative) 122 

growth rate of O2/N2 in the atmosphere from the Scripps O2 Program (15) which relates to the 123 

combined effect of B+L and F changes, while being insensitive to changes in O (note that O2/N2 124 

has a negative trend in the atmosphere); 3) a set of yearly mean observation-based estimates of O 125 

from shipboard partial pressure of CO2 surveys corrected for natural outgassing (16, 17) and 126 

decadal-mean observations of O from inventories of carbon change in the ocean (18–20); 4) ten-127 

year mean estimates of B from a global synthesis of changes in forest carbon stocks (21) and 128 

inventory-based land carbon storage change from the RECCAP publications (Table S3); 5) 129 

decadal mean B+L based on microwave remote sensing of Vegetation Optical Depth (22); 6) 130 

five-year mean LUC emissions from two independent bookkeeping approaches constrained by 131 

observed carbon stocks (23, 24) and from the RECCAP publications (Table S3). The 132 

uncertainties in each data-stream are either derived directly from the original publications (when 133 

reported) or estimated from expert judgments (details in Table S2). The optimization is performed 134 

for seven consecutive 5-year windows between 1980 and 2014. 135 

In the Bayesian optimization, observations that describe mean fluxes during intervals longer than 136 

5-years are still useful to infer 5-yearly fluxes. For example, the mean ocean sink observation for 137 



the 1990s (19) constrains the mean 5-yearly O during 1990-1999, while other independent 138 

observations (O2/N2 and CGR) help to further separate O values between 1990-1994 and 1995-139 

1999. Despite no direct observation of F, this flux is found to be slightly improved in the 140 

Bayesian fusion, through knowledge of the other terms, and because the sum of all fluxes is very 141 

well constrained from CGR observations (Methods). We are aware that some observation-based 142 

land sink estimates have systematic errors in the way they are included in the optimization. In 143 

particular, the estimate of B from ref. (21) is only for forests and ignores other biomes. However, 144 

the RECCAP studies (25–27) and other estimates (21, 22) of the carbon flux in non-forest biomes 145 

suggest that the forest sink alone accounts for most of the global land sink B.  146 

The improved global budget of anthropogenic CO2 in Opt-A is shown in Fig. 2, and all data are 147 

given in Table S1. After optimization, the a posteriori uncertainty in each flux is reduced. 148 

Compared to the conventional method applied by LQ15 and IPCC-AR5 (7), uncertainties in B 149 

and O are reduced by 41% and 47% in this study.  In the Bayesian data fusion, the land sink is no 150 

longer solely inferred as a residual that accumulates uncertainties from all other terms, and it 151 

exhibits a large reduction in uncertainty. The uncertainty in L decreases by 46% but the 152 

uncertainty in F is marginally improved (by 2%) through the indirect constraints of other terms. 153 

In the absence of direct constraint on F, this small reduction in the F uncertainties compared to 154 

LQ15 and IPCC-AR5 (7) is also because we use multiple emission inventories (while LQ15 and 155 

IPCC-AR5 (7) only used CDIAC (9)) and start at relatively higher prior uncertainties in F (Table 156 

S1) than in LQ15. Despite their improved (smaller) uncertainties, the 5-year mean fluxes shown 157 

in Table S1 (Opt-A) do not differ statistically in their mean values from LQ15. This indicates that 158 

each flux of the Bayesian carbon budget is fully consistent with LQ15 even though we used an 159 

array of data with different measurement methods and with uncertainties estimated in different 160 

ways. Specifically, we obtain emissions from fossil fuel burning and cement production that are 161 

smaller than LQ15 by 0.24±0.16 Pg C yr-1 during 1980-1999 and 2005-2014 (Fig. 2), and higher 162 



by 0.14 Pg C yr-1 during 2000-2004. A downward revision of global F during 1980-1999 is 163 

consistent with the correction of the emissions for China based on evidence of the lower carbon 164 

content for coal burned in that country (28). Compared to LQ15, the optimized ocean sink during 165 

2000-2004 is larger by 0.16 Pg C yr-1 but lower by 0.20±0.12 Pg C yr-1 during all the other 166 

periods. In the past decade (2005-2014), both ocean sink and land sink from our optimization are 167 

smaller than LQ15. The optimized fluxes of L are similar to or lower than those from LQ15. The 168 

trend of F for the seven 5-year periods is positive (p = 0.007), with a probability of a positive 169 

trend for O and B+L of 93%; the trend of B or L individually is not significant for (p = 0.23 and 170 

0.13). The increasing rate of O and B+L are 28±8 and 43±17 Tg C yr-2 since 1980, respectively. 171 

Similar significantly positive trends were also found in the 5-year mean O and B+L between 1980 172 

and 2014 calculated from the yearly budget updated by LQ15 (Fig. S2). Given the robustness of 173 

O inferred by Opt-A (see also Fig. S3), and in view of the many observations constraining this 174 

flux, there is a high confidence that the ocean sink has been increasing over time since 1980. The 175 

land sink from Opt-A is less variable between different 5-year periods than in LQ15 (Fig. S2). 176 

But the ocean sink is more variable, with a standard deviation of 0.36 Pg C yr-1 compared to 0.29 177 

Pg C yr-1 by LQ15 (standard deviations across the seven periods analyzed).  178 

From 1980 to 2014, the average fractions of F+L emission re-absorbed by the land and ocean 179 

carbon reservoirs are 29 ±6% and 26 ±2%, respectively. The ratios of both O and B to F+L 180 

emission do not exhibit any significant trends (p > 0.05, Fig. S4). Even with their reduced 181 

uncertainty in this study compared to LQ15, the variability of O and B between 5-year intervals 182 

prevents us from assessing the very small trends in their ratios to emissions. Similarly, we found 183 

no significant trend in the ratio of O or B to fossil fuel emission (F). The larger variability of the 184 

B-to-(F+L) ratios compared to the O-to-(F+L) ones (Fig. S4) suggests that the efficiency of the 185 

land sink at absorbing emissions is more variable than that of the ocean sink. For instance, during 186 

the period that followed the cooling from the Pinatubo eruption in 1990-1994 (29–31), the B-to-187 



(F+L) ratio increased by 41% above its long-term mean. This ratio was also higher than normal 188 

during 2005-2009, possibly due to the absence of El Niño and to the occurrence of a cooler and 189 

wetter La Niña event in 2008-2009 manifested by lower than normal CGR (3).  190 

A second more exploratory optimization called Opt-B was attempted to further decompose 191 

changes in the net land carbon flux (B+L) into changes of gross fluxes of GPP, TER and FR. This 192 

second optimization (Fig. S5) uses observations to constrain the equation B + L = GPP + TER + 193 

FR, and fire emissions, and proxies to constrain changes of GPP and TER on 5-year successive 194 

intervals. The prior values of GPP, TER and FR are from the TRENDY land carbon models as in 195 

Opt-A (Methods, Table S1) (13). The data constraints on GPP and TER included in Opt-B (Table 196 

S2) are less stringent than those used for net fluxes in Opt-A because there are only indirect 197 

proxies of these fluxes. Namely, we used: 1) the decadal mean value of GPP during 2000-2009 198 

derived from MODIS satellite observations (32) and from a data-driven product using both 199 

satellite and flux tower measurements (33); 2) a proxy of the GPP trend, given by the trend of 200 

satellite global leaf area index (LAI) since 1982 (yearly average of three LAI data sets (34–36)); 201 

3) an indirect proxy of the global TER trend from the global trend observed in long-term field-202 

scale soil respiration measurements (37). For fire emissions, we used 5-year mean values from 203 

three inventory- or satellite-based products (38–40). Only the decadal mean GPP from ref. (33) 204 

during 2000-2009 is used and not the trend of this GPP data-product, because this trend has been 205 

reported to be possibly underestimated (41). 206 

The results of Opt-B are consistent with Opt-A for the net fluxes, which is not surprising because 207 

both optimizations share the same constraints for the net fluxes (Fig. S6). The optimized 5-year 208 

mean GPP and TER estimates are lower by about 10 Pg C yr-1 than their prior values (Fig. 3a), 209 

giving a best value of GPP = -127 ±8 Pg C yr-1 and TER = 124 ±8 Pg C yr-1. The optimized fire 210 

emission (FR) is 2.3 Pg C yr-1 during 1980-2014, with a variability of 0.29 Pg yr-1 across the 211 

different 5-year periods (Fig. 3b). Compared with the prior value, FR decreases after optimization 212 



in all the seven 5-year periods, and its uncertainties are reduced by 54% from the prior (Fig. 3b). 213 

The reductions in both mean values and uncertainties of FR are mainly a result of the constraints 214 

of three inventory- and satellite-based fire emission data sets (38–40) (Tables S1 and S2).  215 

In Opt-B, 5-year GPP and TER are found to increase from 1980 to 2000 (Fig. 3a). After 2000, a 216 

different regime is found: the growth in GPP stalled, but TER did not increase either, so that a net 217 

land sink was maintained (Fig. 3a, Table S1). The proxy data for GPP trends and TER trends used 218 

as observational constraints are sufficient in Opt-B to change the sign of the prior trends after 219 

2000. The break point change in the trend of GPP and TER after 2000 is found to be more robust 220 

than the mean values of these fluxes, across a series of sensitivity tests (Methods, Figure S7). The 221 

GPP trend changed from 1.4 ±0.56 before 2000 to -0.026 ±0.10 Pg C yr-2 after 2000, and 222 

similarly, the TER trend decreased from 1.3 ±0.54 to -0.31 ±0.17 Pg C yr-2. This reduction in the 223 

positive trend of GPP and TER after 2000 was not present in the prior from TRENDY models, 224 

where GPP and TER persistently increase during the last 35 years (13) (Fig. 3a). In Opt-B, the 225 

inferred stalling of growth in GPP is constrained by the stalling of global satellite LAI trend 226 

(consistent across three satellite LAI products (34–36)). Yet, it should not be over-interpreted 227 

since a stalled LAI is no proof of a stalled GPP because the light-use efficiency of plant canopies 228 

might have continued to increase while their fraction of intercepted solar radiation (directly 229 

related to LAI) may have stalled.  230 

Discussion 231 

The Bayesian approach used in this study provides the most robust estimate to date of the strength 232 

and evolution of the land sink and provides hints about how gross fluxes may have changed to 233 

cause this sink. The trend of 5-year mean GPP and TER reflect both decadal climate variability 234 

and long-term drivers such as the increasing concentration of CO2, nitrogen deposition and land 235 

management. During 1990-1994, the five-year period within which the Pinatubo eruption 236 



occurred, we infer from Opt-B that GPP was abnormally high relative to TER (Fig. 3a, Table S1). 237 

This result supports the conclusions of previous studies that a positive effect on GPP occurred 238 

due to the increased fraction of diffuse light produced by volcanic aerosols (42) and TER was 239 

suppressed due to the cooling that followed the eruption (29). The stalled TER since 2000-2004 240 

may reflect the effect of a slow-down soil carbon decomposition in response to the winter cooling 241 

of northern lands (43). It is not possible with our global approach to infer which region was 242 

responsible for the stalling of GPP and TER after 2000. Possible explanations for the recent 243 

stalling of global GPP could involve either emerging biogeochemical limitations (e.g., reduced 244 

nitrogen deposition in some regions, or emerging nutrient limitations elsewhere (44, 45)) or the 245 

slower warming at high latitudes resulting in a slower photosynthetic enhancement and 246 

lengthening of the growing season. Combining spatially explicit observations to constrain 247 

process-based carbon cycle models, as done e.g., in carbon cycle data assimilation systems (46, 248 

47) should provide more insights about the regional processes and explain why GPP and TER 249 

have stalled in the 2000s. If the driver of the GPP stalling proves not to be the slower warming of 250 

the northern hemisphere after 2000, and should high warming rates resume in the coming decade, 251 

then TER would increase while GPP remains stalled. This combination is expected to strongly 252 

reduce the sink strength of land ecosystems, and would require stronger mitigation of 253 

anthropogenic emissions to keep to the climate stabilization pathway of 2°C recently agreed by 254 

187 nations (48).  255 
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Methods 272 

Bayesian Estimation System. Each estimate of the 5-year mean carbon fluxes (and trends for 273 

Opt-B), called hereafter the “control variables” x, is based on the update from a prior estimate of 274 

these variables xb, using some observation-based estimates yo of the fluxes (and trends for Opt-B) 275 

that are connected to the control variables through the relationships H: x→y=H[x]. We follow a 276 

Bayesian statistical approach for this estimation. Assuming that the uncertainties in xb and yo are 277 

unbiased and Gaussian, characterized by the prior and observation uncertainty covariance 278 

matrices B and R respectively, and that H is linear (denoted as a matrix H), the statistical estimate 279 

of x, given xb and yo, is unbiased and Gaussian, and the corresponding optimal estimate xa and 280 

uncertainty covariance matrix A are given (49) as: 281 

( ) 1-1T1- HRHBA −+=                                                       (1) 282 

( )b01Tba - HxyRAHxx −+=                                                                                             (2) 283 

where the superscripts T and “-1” are the transpose of a matrix and the inverse of a matrix, 284 

respectively. 285 

In the optimization, Opt-A, we update the estimate of the mean fluxes of fossil fuel and cement 286 

emissions (F), ocean sink (O), land sink (B) and land-use change emissions (L) for each 5-year 287 

interval from 1980 to 2014 (Fig. 1 and Table S1). The observation vector contains estimates of 5-288 

year mean global atmospheric growth rates of CO2 (CGR, in Pg C yr-1), atmospheric growth rates 289 

of O2/N2 (CGR-O2, per meg unit), observation-based estimates of ocean sinks, land sinks, land-290 

use change emissions and net land sink (B+L) (the data sources for these components of yo are 291 

summarized in Fig. 1 and provided in Table S2). The prior estimates for the different control 292 

variables are built with independent data sets so that there are no correlations between the prior 293 

uncertainties in the different control variables. The correlations between different 5-year intervals 294 



for CGR and O, and potential correlations between two data-driven estimates of O are estimated 295 

using the method in ref. (50). H in Opt-A is defined for each 5-year interval by: 296 

2 F B O2

CGR F O B L
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O O O

:
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where αF, αB and ZO2 are constant coefficients from ref. (15). The optimal estimate xa discussed in 298 

the main text is computed by Eqs. (1) and (2). 299 

In the optimization, Opt-B, we solve for the mean fluxes of F, O, fire emissions (FR), and for the 300 

linear relative trends of GPP (α) and TER (β) for each 5-year interval, as well as for the mean 301 

value of GPP (G0) and TER (T0) in the year 2005 (Fig. S5 and Table S1). The observation vector 302 

contains CGR, CGR-O2, observation-based estimates of ocean sinks, net land sinks, fire 303 

emissions and linear relative trends of GPP (α) and TER (β). The linear relative trend of GPP (α) 304 

is not directly observable and we made the assumption that it is equal to the observable relative 305 

LAI trends from satellites (34–36). The relative trends of LAI (34–36), soil respiration (37) and 306 

G0 (32, 33) are rather uncertain and sparse (Table S2). As for Opt-A, the prior covariance error 307 

matrix in Opt-B is also diagonal, while the observation covariance error matrix accounts for the 308 

potential correlations in the data-driven products (Table S1 and Table S2). The observation 309 

operator H is defined by the following relationship: 310 
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where GPP(G0, α) and TER (T0, β) for a given 5-year interval are functions of G0 and T0 with 312 

corresponding trends: 313 

( )
i 1

i 0 0 i j
j 0

GPP G , G 1 3 5
−

=

 
α = + α + ×α 

 
                                         (5) 314 

( )
i 1

i 0 0 i j
j 0

TER T , T 1 3 5
−

=

 
β = + β + ×β 

 
                                          (6) 315 

where the subscripts i and j are the number of 5-year intervals from the given 5-year to 2005. Eqs. 316 

(5) and (6) and, thus, the observation operator are not linear. However, assuming unbiased and 317 

Gaussian uncertainties in xb and yo, the Bayesian inference indicates that the optimal estimate xa 318 

of the control variables minimizes the following cost function (49): 319 

( ) ( ) ( ) [ ]( ) [ ]( )T T1 11J
2

H H− − = − − + − −  
b b 0 0x x x B x x y x R y x                  (7) 320 

We minimize this cost function using a quasi-Newton iterative approach (49). At each iteration 321 

n+1, the operator H is linearized against the best estimate of the control variables xn given by the 322 

previous iteration (or against xb for the first iteration): 323 

n
n

n

H ∂=  ∂ 
x

x
H

x
                                                           (8) 324 



)-(+][][ nnn xxHxx xHH ≈                                                  (9) 325 

J is thus approximated by a quadratic function, whose minimum xn+1 is given by a revised version 326 

of Eqs. (1) and (2): 327 

( ) 11 T 1
n 1 n n

−− −
+ = + x xA B H R H                                                 (10) 328 

[ ] ( )( )T 1
n 1 n 1 n n

H−
+ += + − − −b 0 b

n nx xx x A H R y x H x x                          (11) 329 

We continue to derive our approximation of xa until the series of xn converges (relative difference 330 

between xn+1 and xn within 1×10-5). We approximate the uncertainty in this final estimate of the 331 

control variable using An+1 (49). 332 

Prior Data. To define the prior F, individual country data from four emission inventories 333 

(CDIAC (9), IEA (10), EDGAR (11) and BP (12)) are grouped into geographic regions as 334 

specified by the United Nations Statistics Division 335 

(http://unstats.un.org/unsd/methods/m49/m49regin.htm). Cement emissions from EDGAR are 336 

added into the IEA and BP data sets that do not include cement emissions. Uncertainties for each 337 

country (51) are used to create regional uncertainty distributions for each emission index using a 338 

bootstrapping method, with the uncertainties of the highest emitters in each region contributing 339 

the most to the uncertainty distributions. This effect is achieved by weighting the sampling 340 

probability (Ps) by the relative contribution of each country’s emissions (EC) to the total 341 

emissions within the region (ER): 342 

Ps = EC / ER (12) 343 

To constrain the temporal component of the emission errors, ten random samples are drawn from 344 

the corresponding regional uncertainty distribution for each country, producing ten random 345 

uncertainties for each country. These country-level uncertainties are used to constrain a random 346 



error time series covering 1980-2014, which is then run through an algorithm incorporating 347 

autocorrelated random noise, such that:  348 

εF(t) = 0.95 × εF(t-1) + ε(t) (13) 349 

where emission error factors for any given year εF(t) are correlated with the emission errors from 350 

the previous year εF(t-1) by an autoregressive coefficient of 0.95 with ε(t) as random error. The 351 

autocorrelated time series are then multiplied and added to the fossil fuel emissions for each 352 

country, and subsequently 500 samples of global fossil fuel emissions are taken for each 5-year 353 

bin. The means and standard deviations of each bin for each inventory are calculated from these 354 

500 samples. Additionally, the correlation in global uncertainty is calculated between 5-year bins 355 

and inventories to produce an error-covariance matrix. The maximum between the uncertainties 356 

calculated above and the standard deviations of the 5-year means across four emission inventories 357 

were adopted as the uncertainties of prior F. 358 

Prior O values are set from the ocean biogeochemistry model values used in LQ15. Note that 359 

LQ15 adjusted their simulated O so as to match ocean observations during the decade of the 360 

1990s and then used these bias-corrected ocean models outside this period. Here, for setting the 361 

prior O values, we consider simply the spread and the mean of ocean models without any 362 

adjustment. 363 

Prior values of L and B are set from simulations in the TRENDY (v2) model intercomparison 364 

project (13). The simulations in TRENDY (v2) are up to 2012, and thus the priors for the period 365 

of 2010-2012 were used for 2013 to 2014. All the prior flux values are summarized in Table S1. 366 

Correlations between Optimized Fluxes. Due to the very small uncertainties in CGR, there are 367 

relatively strong correlations between the optimized flux components related to CGR in Eq. (3) in 368 

the same period (Fig. S8a). To be specific, the fluxes B and O are negatively correlated, as are the 369 

fluxes F and L. Positive correlations can be seen between F and B, and between L and B. The 370 



correlations between fluxes in different periods can be attributed to the autocorrelations in 371 

observed CGR and O and the decadal mean observations used to constrain two consecutive 5-372 

year periods. Similarly, the components related to CGR in Eq. (4) for Opt-B could also be 373 

correlated, because they are all constrained by CGR (Fig. S8b).  374 

Sensitivity Tests. Sensitivity tests were conducted by doubling the uncertainty in prior F, testing 375 

prior F and its uncertainties from individual inventory data sets (IEA, EDGAR, CDIAC and BP), 376 

and using prior B and O from CMIP5 models (52) instead of TRENDY (v2) models and ocean 377 

carbon models from LQ15 in Opt-A (Fig. S3). The ocean sink is very robustly constrained in the 378 

optimization because of the sufficiency of constraining observational data, but the land sink is 379 

dependent on the prior F choice. By doubling the prior F uncertainties or replacing prior B and O 380 

with data from CMIP5, the means of all fluxes remain stable, although posterior uncertainties 381 

change slightly, emphasizing the robustness of this optimizing system. However, caution should 382 

be applied when deciding the means of prior F due to their relatively greater impacts on B and 383 

B+L. 384 

Sensitivity tests for Opt-B were also performed, including: (a) using yearly GPP estimates during 385 

1982-2011 from ref. (33) and removing LAI constraints as a proxy of the GPP relative trend (34–386 

36); (b) only using the average GPP from MODIS (32) to constrain G0; (c) only using the average 387 

GPP from ref. (33) to constrain G0; (d) additionally using the 5-year mean GPP during 2000-388 

2004, 2005-2009 and 2010-2014 from MODIS (32) to constrain the corresponding 5-year mean 389 

GPP; (e) setting prior relative trend of GPP (α) to 0; (f) setting prior trend of GPP (α) to 0 and 390 

removing LAI constraints to the relative trend of GPP (34–36); (g) removing the constraint from 391 

the trend of soil respiration (37); (h) setting prior trend of TER (β) to zero and removing the 392 

constraint from the trend of soil respiration (37); and (i) setting both prior trends of GPP (α) and 393 

TER (β) to 0 and removing LAI constraints (34–36). The optimized fluxes of F, O, B+L and FR 394 

are very stable in these sensitivity tests. The optimized mean values of GPP and TER vary (Fig. 395 



S7) due to the large discrepancy between the GPP from MODIS and from ref. (33). However, the 396 

trends of GPP and TER are generally similar, but with slightly different scales (Fig. S7). This 397 

indicates that the patterns of GPP and TER are very robust and mutually controlled by the prior 398 

values, the LAI trend (34–36) and the soil respiration trend (37). 399 

Trend Test. A Mann-Kendall statistical test was applied as a trend test. To remove 400 

autocorrelations, pre-whitening (53) was performed using the correlations between the posterior 401 

uncertainties (Fig. S8).  402 



References 403 
1.  Wang X, et al. (2014) A two-fold increase of carbon cycle sensitivity to tropical temperature 404 

variations. Nature 506(7487):212–5. 405 

2.  Poulter B, et al. (2014) Contribution of semi-arid ecosystems to interannual variability of the global 406 
carbon cycle. Nature 509(7502):600–3. 407 

3.  Le Quéré C, et al. (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–408 
836. 409 

4.  Ghil M, Vautard R (1991) Interdecadal oscillations and the warming trend in global temperature 410 
time series. Nature 350(6316):324–327. 411 

5.  Raupach MR, et al. (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl 412 
Acad Sci U S A 104(24):10288–93. 413 

6.  Song X-P, Huang C, Saatchi SS, Hansen MC, Townshend JR (2015) Annual Carbon Emissions 414 
from Deforestation in the Amazon Basin between 2000 and 2010. PLoS One 10:e0126754. 415 

7.  Ciais P, et al. (2013) 2013: Carbon and Other Biogeochemical Cycles. Clim Chang 2013 Phys Sci 416 
Basis Contrib Work Gr I to Fifth Assess Rep Intergov Panel Clim Chang:465–570. 417 

8.  Le Quéré C, et al. (2015) Global carbon budget 2014. Earth Syst Sci Data:47–85. 418 
9.  Boden TA, Marland G, Andres RJ (2013) Global, regional, and national fossil-fuel CO₂ emissions. 419 

Carbon Dioxide Inf Anal Center, Oak Ridge Natl Lab USA Oak Ridge, TN Dep Energy. 420 
doi:10.3334/CDIAC/00001. 421 

10.  International Energy Agency (2013) CO2 Emissions From Fuel Combustion Highlights. IEA 422 
Stat:158. 423 

11.  Olivier JGJ, Janssens-Maenhout G, Peters JAHW (2014) Trends in global CO2 emissions: 2014 424 
Report (PBL Netherlands Environmental Assessment Agency Hague). 425 

12.  BP (2015) BP Statistical Review of World Energy 2015. 426 

13.  Sitch S, et al. (2015) Recent trends and drivers of regional sources and sinks of carbon dioxide. 427 
Biogeosciences 12(3):653–679. 428 

14.  NOAA/ESRL NOAA/ESRL calculation of global means. Available at: 429 
http://www.esrl.noaa.gov/gmd/ccgg/about/global_means.html [Accessed August 9, 2015]. 430 

15.  Keeling RF, Manning  a. C (2014) Studies of Recent Changes in Atmospheric O2 Content (Elsevier 431 
Ltd.). 2nd Ed. doi:10.1016/B978-0-08-095975-7.00420-4. 432 

16.  Landschützer P, Gruber N, Bakker DCE, Schuster U (2014) Recent variability of the global ocean 433 
carbon sink. Global Biogeochem Cycles 28(9):927–949. 434 

17.  Rödenbeck C, et al. (2014) Interannual sea–air CO2 flux variability from an observation-driven 435 
ocean mixed-layer scheme. Biogeosciences 11(17):4599–4613. 436 

18.  Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO(2) 437 
concentrations in the ocean. Nature 462(7271):346–9. 438 

19.  McNeil BI, Matear RJ, Key RM, Bullister JL, Sarmiento JL (2003) Anthropogenic CO2 uptake by 439 
the ocean based on the global chlorofluorocarbon data set. Science 299(5604):235–9. 440 

20.  Steinkamp K, Gruber N (2013) A joint atmosphere-ocean inversion for the estimation of seasonal 441 
carbon sources and sinks. Global Biogeochem Cycles 27(3):732–745. 442 

21.  Pan Y, et al. (2011) A large and persistent carbon sink in the world’s forests. Science 443 
333(6045):988–993. 444 



22.  Liu YY, et al. (2015) Recent reversal in loss of global terrestrial biomass. Nat Clim Chang 445 
5(5):470–474. 446 

23.  Hansis E, Davis SJ, Pongratz J (2015) Relevance of methodological choices for accounting of land 447 
use change carbon fluxes. Global Biogeochem Cycles 29(8):1230–1246. 448 

24.  Houghton R a., et al. (2012) Carbon emissions from land use and land-cover change. 449 
Biogeosciences 9(12):5125–5142. 450 

25.  Piao SL, et al. (2012) The carbon budget of terrestrial ecosystems in East Asia over the last two 451 
decades. Biogeosciences 9(9):3571–3586. 452 

26.  Luyssaert S, et al. (2012) The European land and inland water CO2, CO, CH4 and N2O balance 453 
between 2001 and 2005. Biogeosciences 9(8):3357–3380. 454 

27.  King AW, et al. (2015) North America’s net terrestrial CO2 exchange with the atmosphere 1990–455 
2009. Biogeosciences 12(2):399–414. 456 

28.  Liu Z, et al. (2015) Reduced carbon emission estimates from fossil fuel combustion and cement 457 
production in China. Nature 524(7565):335–338. 458 

29.  Lucht W, et al. (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo 459 
effect. Science 296(5573):1687–9. 460 

30.  Mercado LM, et al. (2009) Impact of changes in diffuse radiation on the global land carbon sink. 461 
Nature 458(7241):1014–7. 462 

31.  Frölicher TL, Joos F, Raible CC, Sarmiento JL (2013) Atmospheric CO2 response to volcanic 463 
eruptions: The role of ENSO, season, and variability. Global Biogeochem Cycles 27(1):239–251. 464 

32.  Zhao M, Running SW, Nemani RR (2006) Sensitivity of Moderate Resolution Imaging 465 
Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological 466 
reanalyses. J Geophys Res 111(G1):G01002. 467 

33.  Jung M, et al. (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and 468 
sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys 469 
Res 116:G00J07. 470 

34.  Zhu Z, et al. (2013) Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of 471 
Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and 472 
Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 473 
1981 to 2. Remote Sens 5(2):927–948. 474 

35.  Xiao Z, et al. (2014) Use of General Regression Neural Networks for Generating the GLASS Leaf 475 
Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Trans Geosci Remote 476 
Sens 52(1):209–223. 477 

36.  Liu Y, Liu R, Chen JM (2012) Retrospective retrieval of long-term consistent global leaf area index 478 
(1981–2011) from combined AVHRR and MODIS data. J Geophys Res 117(G4):G04003. 479 

37.  Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil 480 
respiration record. Nature 464(7288):579–82. 481 

38.  Giglio L, Randerson JT, van der Werf GR (2013) Analysis of daily, monthly, and annual burned 482 
area using the fourth-generation global fire emissions database (GFED4). J Geophys Res 483 
Biogeosciences 118(1):317–328. 484 

39.  Mieville A, et al. (2010) Emissions of gases and particles from biomass burning during the 20th 485 
century using satellite data and an historical reconstruction. Atmos Environ 44(11):1469–1477. 486 

40.  Schultz MG, et al. (2008) Global wildland fire emissions from 1960 to 2000. Global Biogeochem 487 
Cycles 22(2). doi:10.1029/2007GB003031. 488 



41.  Huang M, et al. (2015) Change in terrestrial ecosystem water-use efficiency over the last three 489 
decades. Glob Chang Biol 21(6):2366–78. 490 

42.  Gu L, et al. (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced 491 
photosynthesis. Science 299(5615):2035–8. 492 

43.  Cohen JL, Furtado JC, Barlow M, Alexeev VA, Cherry JE (2012) Asymmetric seasonal 493 
temperature trends. Geophys Res Lett 39(4). doi:10.1029/2011GL050582. 494 

44.  Tørseth K, et al. (2012) Introduction to the European Monitoring and Evaluation Programme 495 
(EMEP) and observed atmospheric composition change during 1972–2009. Atmos Chem Phys 496 
12(12):5447–5481. 497 

45.  Davidson EA, et al. (2011) Excess nitrogen in the U.S. environment: Trends, risks, and solutions. 498 
Issues Ecol (15). Available at: https://pubs.er.usgs.gov/publication/70032270 [Accessed September 499 
18, 2015]. 500 

46.  Rayner PJ, et al. (2005) Two decades of terrestrial carbon fluxes from a carbon cycle data 501 
assimilation system (CCDAS). Global Biogeochem Cycles 19(2):n/a–n/a. 502 

47.  Peylin P, et al. (2016) A new step-wise Carbon Cycle Data Assimilation System using multiple 503 
data streams to constrain the simulated land surface carbon cycle. Geosci Model Dev Discuss:1–52. 504 

48.  United Nations (2015) Adoption of the Paris Agreement. Conf Parties its twenty-first Sess 505 
21932(December):32. 506 

49.  Tarantola A (2005) Inverse Problem Theory and Methods for Model Parameter Estimation 507 
(SIAM). 508 

50.  Ballantyne AP, et al. (2015) Audit of the global carbon budget: estimate errors and their impact on 509 
uptake uncertainty. Biogeosciences 12(8):2565–2584. 510 

51.  Andres RJ, Boden TA, Higdon D (2014) A new evaluation of the uncertainty associated with 511 
CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B 66. 512 
doi:10.3402/tellusb.v66.23616. 513 

52.  Anav A, et al. (2013) Evaluating the Land and Ocean Components of the Global Carbon Cycle in 514 
the CMIP5 Earth System Models. J Clim 26(18):6801–6843. 515 

53.  Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to 516 
detect trend in hydrological series. Hydrol Process 16(9):1807–1829. 517 

54.  Jacobson AR, Fletcher SEM, Gruber N, Sarmiento JL, Gloor M (2007) A joint atmosphere-ocean 518 
inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Global 519 
Biogeochem Cycles 21(1). doi:10.1029/2005GB002556. 520 

55.  Van Der Werf GR, et al. (2010) Global fire emissions and the contribution of deforestation, 521 
savanna, forest, agricultural, and peat fires (1997-2009). Atmos Chem Phys 10(23):11707–11735. 522 

56.  King AW, et al. (2007) The North American Carbon Budget and Implications for the Global 523 
Carbon Cycle. 524 

57.  SCHULZE ED, et al. (2010) The European carbon balance. Part 4: integration of carbon and other 525 
trace-gas fluxes. Glob Chang Biol 16(5):1451–1469. 526 

58.  Dolman AJ, et al. (2012) An estimate of the terrestrial carbon budget of Russia using inventory-527 
based, eddy covariance and inversion methods. Biogeosciences 9(12):5323–5340. 528 

59.  Patra PK, et al. (2013) The carbon budget of South Asia. Biogeosciences 10:513–527. 529 
60.  Piao SL, et al. (2012) The carbon budget of terrestrial ecosystems in East Asia over the last two 530 

decades. Biogeosciences 9(9):3571–3586. 531 
61.  Gloor M, et al. (2012) The carbon balance of South America: a review of the status, decadal trends 532 



and main determinants. Biogeosciences 9(12):5407–5430. 533 
62.  Valentini R, et al. (2014) A full greenhouse gases budget of Africa: synthesis, uncertainties, and 534 

vulnerabilities. Biogeosciences 11(2):381–407. 535 
63.  Haverd V, et al. (2013) The Australian terrestrial carbon budget. Biogeosciences 10(2):851–869. 536 

  537 



Figure 1 The framework of Opt-A. The number of constraining data-streams and the specific 538 

data sources are marked on the right. The fluxes that are optimized are 5-year averages of F, O, B 539 

and L representing fossil fuel and cement emissions, ocean sink, land sink, and land-use change 540 

emissions, respectively. The observations used to constrain these fluxes are the five-year 541 

averaged growth rates of CO2 and O2/N2 in the atmosphere, observations of O, B and the net land 542 

sink (B+L) from carbon measurements made in these two reservoirs, and inventory-based 543 

estimates of L. In this framework, the CO2 growth rate constrains the sum of all the fluxes. The 544 

O2/N2 growth rate allows us to separate O and B+L and bring some constraint on F as well. 545 
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Figure 2 (a) The fossil fuel and cement emissions (F), (b) ocean sink (O) and (c) net land flux 554 

(B+L), and (d) land sink (B) and land-use change emissions (L) from prior knowledge, Opt-A 555 

and LQ15. All the fluxes are 5-year means in each period. The error bars represent the 1-σ 556 

uncertainties. 557 
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 559 



Figure 3 (a) The prior and the optimized gross primary production (GPP, shown as reversed sign) 560 

and terrestrial ecosystem respiration (TER) and (b) the prior and the optimized fire emissions 561 

(FR) from Opt-B. The error bars represent the 1-σ uncertainties. Uncertainties in the prior GPP 562 

and TER are not shown because of their large size (about 35 Pg C yr-1). 563 
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Supporting information 567 

Table S1 Prior and optimized values and uncertainties. 568 

  80-84 85-89 90-94 95-99 00-04 05-09 10-14 

pr
io

r 

F (Pg C yr-1) 5.27±0.28 5.79±0.41 6.18±0.35 6.55±0.35 7.19±0.39 8.40±0.53 9.16±0.41 

O (Pg C yr-1) -1.70±0.50 -1.71±0.50 -1.98±0.50 -1.91±0.50 -1.98±0.50 -2.20±0.50 -2.43±0.50 

B (Pg C yr-1) -1.31±0.95 -1.89±0.83 -2.06±0.85 -2.08±0.80 -2.31±0.80 -2.43±0.80 -2.37±1.01 

L (Pg C yr-1) 1.30±0.62 1.39±0.65 1.78±0.94 1.83±1.04 1.20±0.70 0.94±0.65 1.00±0.70 

α (Pg C yr-2) 0.08±0.56 0.61±0.52 -0.19±0.50 1.07±0.13 -0.11±0.55 0.37±0.12 -0.27±0.78 

β (Pg C yr-2) -0.06±0.28 0.55±0.14 -0.17±0.56 0.89±0.42 -0.23±0.24 0.13±0.11 -0.36±0.01 

G0 (Pg C yr-1)      -140.27±36.58  

T0 (Pg C yr-1)      129.54±44.21  

FR (Pg C yr-1) 2.90±1.02 2.85±0.96 3.07±0.95 2.86±0.81 2.71±0.89 2.75±1.17 2.77±1.07 

O
pt

-A
 

F (Pg C yr-1) 5.22±0.27 5.77±0.38 5.98±0.31 6.45±0.32 7.32±0.32 8.28±0.38 9.15±0.37 

O (Pg C yr-1) -1.82±0.40 -1.76±0.33 -2.02±0.19 -1.77±0.22 -2.39±0.24 -2.23±0.24 -2.70±0.26 

B (Pg C yr-1) -1.86±0.53 -1.83±0.52 -3.10±0.45 -2.34±0.44 -2.03±0.43 -2.80±0.45 -2.83±0.50 

L ((Pg C yr-1) 1.43±0.29 1.63±0.30 1.53±0.31 1.55±0.29 1.13±0.27 0.96±0.22 1.24±0.19 

B+L (Pg C yr-1) -0.43±0.70 -0.20±0.69 -1.57±0.67 -0.79±0.64 -0.90±0.59 -1.83±0.56 -1.59±0.59 

O
pt

-B
 

F (Pg C yr-1) 5.24±0.27 5.92±0.40 6.08±0.32 6.54±0.33 7.44±0.32 8.48±0.42 9.33±0.39 

O (Pg C yr-1) -1.77±0.42 -1.66±0.34 -2.03±0.19 -1.74±0.22 -2.32±0.24 -2.15±0.24 -2.60±0.27 

α (Pg C yr-2) -0.08±0.41 0.88±0.33 -0.25±0.39 1.04±0.12 -0.13±0.30 0.36±0.11 -0.79±0.43 

β (Pg C yr-2) 0.03±0.27 0.53±0.13 -0.16±0.40 1.18±0.28 -0.23±0.23 0.14±0.11 -0.36±0.01 

G0 (Pg C yr-1)   -129.91±7.05  

T0 (Pg C yr-1)   126.29±7.08  

FR (Pg C yr-1) 2.31±0.66 2.70±0.57 2.39±0.53 2.61±0.36 2.19±0.32 1.92±0.35 1.98±0.34 

GPP (Pg C yr-1) -122.42±7.56 -123.93±7.49 -126.09±7.32 -127.42±7.21 -130.29±7.11 -130.63±7.05 -130.13±7.10 

TER (Pg C yr-1)) 119.59±7.53 120.75±7.47 122.02±7.33 123.89±7.21 126.98±7.10 126.56±7.08 126.26±7.08 

B+L (Pg C yr-1) -0.52±0.54 -0.49±0.54 -1.69±0.41 -0.92±0.42 -1.11±0.41 -2.14±0.50 -1.89±0.51 



Table S2 Sources and values of different constraining data-streams used in Opt-A and Opt-B. The blue and orange shades indicate the length of 569 
time covered.  570 

 80-84 85-89 90-94 95-99 00-04 05-09 10-14 Opt-A Opt-B Reference  

CGR (Pg C yr-1) 2.94±0.22 3.81±0.22 2.35±0.18 3.89±0.18 3.93±0.16 4.12±0.16 4.80±0.16 x x Means are from NOAA (14), and uncertainties are from 
“Table 1” in Ballantyne et al. (50). 

O (Pg C yr-1) -1.79±1.07 -1.85±1.07 -1.88±1.07 -1.53±1.07 -1.59±1.07 -2.02±1.07 -2.28±1.07 x x Values from Landschützer et al. (16) are added to an 
outgassing of 0.45 Pg C yr-1 and the corresponding 
uncertainties from Jacobson et al. (54). 

O (Pg C yr-1)  -1.82±0.68 -2.03±0.68 -1.68±0.68 -1.76±0.68 -1.56±0.68 -2.39±0.68 x x Values from Rödenbeck et al. (17) are added to an 
outgassing of 0.45 Pg C yr-1 and the corresponding 
uncertainties from Jacobson et al. (54). 

O (Pg C yr-1)   -2.00±0.40    x x Means and uncertainties are from McNeil et al. (19) to 
constrain O from 1990 to 1999. 

O(Pg C yr-1)   -1.80±0.20    x x Means and uncertainties are from Steinkamp and Gruber 
(20) to constrain O from 1990 to 1999. 

O (Pg C yr-1)   -1.91±0.60 -2.05±0.60    x x Means and uncertainties are from Khatiwala et al. (18). 
B (Pg C yr-1)   -2.50±1.08 -2.30±1.12  x  Means are from Pan et al. (21). Given that B here only 

accounts for the carbon sink in global established forests, 
the uncertainties of global residuals in “Table 3” from Pan 
et al. (21) are also included, which may represent the 
uncertainty of land carbon sinks from other ecosystems 
like grassland. 

B (Pg C yr-1)     -1.70±0.57  x  RECCAP (see Table S3) 
L (Pg C yr-1)     1.00±0.19  x  RECCAP (see Table S3) 
L (Pg C yr-1) 1.33±0.50 1.52±0.50 1.56±0.50 1.64±0.50 1.04±0.50 0.87±0.50 0.88±0.50 x  Means and uncertainties are from the bookkeeping model 

by Houghton et al. (24), which is also used in the global 
carbon budget from Le Quéré et al. (8). 

L (Pg C yr-1) 1.76±0.49 1.89±0.52 1.82±0.50 1.54±0.43 1.27±0.40 1.13±0.28 1.36±0.22 x  Means and uncertainties are from the BLUE model by 
Hansis et al. (23). The uncertainties refer to the difference 
to the alternative estimate. 

O2/N2
a (per meg unit)   -6.10±0.22 -7.37±0.69 -8.89±0.30 -9.15±0.35 -10.64±0.37 x x Data are from Scripps O2 program 

(http://scrippso2.ucsd.edu/), and the weighted average of 
data from stations of Alert, La Jolla and Cape Grim are 
taken as the global means as in Keeling et al. (15). The 
standard deviations across data from these stations are 
used as uncertainties. 

B+Lb (Pg C yr-1)     -1.82±0.55  x x Values are from Liu et al. (22). They estimated the 
aboveground biomass carbon from Vegetation Optical 
Depth, extrapolated to the total biomass by the ratios 
between aboveground and belowground biomass in 



different regions, and then calculated the total carbon 
(including litter and soil carbon) trend based on the ratios 
between total carbon and total biomass.  

LAI trendc 0.04±0.02 0.08±0.10 -1.66±0.48 -0.06±0.24 0.26±0.18 -0.04±0.05   x The trend of LAI is calculated from the average of global 
mean LAI from 3 datasets: GIMMS LAI3G (Zhu et al. 
(34)), GLASS LAI (Xiao et al. (35)) and GLOBMAP LAI 
(Liu et al. (36)). The errors in the linear trend regression 
are taken as uncertainties. 

β (Pg C yr-2)   0.10±0.49   x An assumed linear trend of soil respiration from 1989 to 
2008 is calculated from Bond-Lamberty and Thomson. 
(37). Note that the trend of soil respiration here is used as 
a proxy of the global TER trend, and the autotrophic 
respiration is omitted. The value of soil respiration is not 
used to constrain TER, because of the omission of 
autotrophic respiration. 

GPPd (Pg C yr-1)     -110.79±21.17   x GPP values are from MODIS by Zhao et al. (32). The 
average of global yearly GPP between 2001 and 2009 is 
used here. The uncertainties are estimated from the 
variations between different meteorological data required 
in the MODIS GPP calculation by Zhao et al. (32). 

GPPe (Pg C yr-1)     -131.88±7.76   x GPP values are from the upscaling of FLUXNET by Jung 
et al. (33). The average of global yearly mean GPP 
between 2001 and 2009 is used here. The uncertainties 
refer to the standard deviation across different model trees 
in Jung et al. (33). 

FR (Pg C yr-1)    2.50±0.50 1.97±0.39 1.92±0.38 1.83±0.37  x Means are from GFED4 by Giglio et al. (38), and 
uncertainties of 20% are assumed, as by van der Werf et 
al.  (55). 

FR (Pg C yr-1) 2.40±0.96 2.58±1.03 2.78±1.11 2.53±1.01    x Means are from GICC data set, and the uncertainties are 
set as 40% based on the uncertainties on burned areas in 
Mieville et al. (39). 

FR (Pg C yr-1) 2.14±1.07 1.84±0.92 2.42±1.21 2.35±1.17     x Means are from RETRO data set, and the estimated 
uncertainties of 50% by Shultz et al. (40) is adopted here. 

a The relationship of ΔO2 = -αFF + αB(B+L) + ZO2 from Keeling et al. (15) is used. 571 
b B+L is corresponding to B+L in Opt-A and is corresponding to (G0+αt) + (T0+βt) + FR in Opt-B. 572 
c The relative trend of LAI is used to constrain the relative trend of GPP. 573 
d The average of yearly GPP values between 2001 and 2011 (the overlapped period of GPP from FLUXNET) is used to constrain G0. 574 
e The average of yearly GPP values from 2001 to 2011 (the overlapped period of GPP from MODIS) is used to constrain G0. 575 
  576 
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Table S3 The estimates of B and L from Regional Carbon Cycle Assessment and Processes 577 
(RECCAP) international research project. In brief, the observed carbon fluxes in the nine regions 578 
were evaluated and summed to give the global fluxes. The net ecosystem exchange (NEE) 579 
calculated from the mass balance of the emissions and outgassing of carbon to the atmosphere, 580 
net primary production (NPP), and soil heterotrophic respiration (SHR) is taken as B in this 581 
study.  Negative values indicate a flux from the atmosphere to the land. 582 

region flux period Mean 
(Tg C yr-1) 

Uncertainty 
(Tg C yr-1) Reference 

North America L 2000s -130 60 King et al. (56) 
 B 2000-2009 -418 288 Mass balance 
Europe L 2003-2007 -2 1 Schulze et al. (57) 
 B 2000-2007 -234 166 Mass balance 
Russia L 1990-2006 -34 2 Dolman et al. (58) 
 B 2007-2009 -600 224 Mass balance 
South Asia L 2000-2009 -14 50 Patra et al. (59) 
 B 2000-2009 -86 34 Mass balance 
East Asia L 2000-2009 -13 29 Piao et al. (60) 
 B 2000-2009 -256 35 Mass balance 

Southeast Asia L undefined 59 12 Liu et al. (22) only over LUC affected 
grid cells 

 B undefined -97 186 Mass balance 
South America L 1990-2012 525 130 Gloor et al. (61) “Table 12” 
 B 2000-2009 11 284 Mass balance 
Africa L 1990-2009 510 100 Valentini et al. (62) “Table 11” 
 B 2000-2007 12 292 Mass balance 
Australia L 1990-2011 18 7 Haverd et al. (63) 
 B 1990-2011 -71 36 Mass balance 
Globe L 2000-2009 919 184 sum 
 B 2000-2009 -1740 604 sum 
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Figure S1 The values and uncertainties of ocean sinks (O), land sinks (B) and land-use change 584 
(LUC) emissions (L) in different data-streams. The dashed lines indicate the period covered.  585 

 586 
  587 
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Figure S2 The temporal trend of ocean sink (O), land sink (B), land-use change emissions (L) 588 
and net land flux (B+L) from Opt-A and LQ15. 589 

590 
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Figure S3 The fluxes of fossil fuel and cement (F), and land-use change (L) emissions, ocean (O) 591 
and land (B) sink, and net land sink (B+L) using different prior data. The bars around each flux in 592 
each period from left to right represent Opt-A, double prior uncertainties, prior F from IEA, prior 593 
F from EDGAR, prior F from CDIAC, prior F from BP and prior B and O from CMIP5, 594 
respectively. 595 

 596 
  597 
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Figure S4 The partitioning of global total emissions (fossil fuel and cement emissions and land-598 
use change emissions, F+L) into atmosphere, ocean (O) and biosphere (B, background shade). 599 
The markers are absolute absorbed fractions and uncertainties in ocean (blue circles) and 600 
biosphere (green squares). 601 

 602 
  603 
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Figure S5 The framework of Opt-B. The number of data-streams is marked on the right.  604 

 605 
 606 

  607 
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Figure S6 (a) The fossil fuel and cement emissions (F) and (b) the ocean sink (O) and net land 608 
flux (B+L) from prior knowledge, Opt-A and Opt-B. All the fluxes are 5-year means over each 609 
period.610 

 611 
 612 
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Figure S7 The optimized gross primary production (GPP, shown as reversed sign) and terrestrial 614 
ecosystem respiration (TER) in the sensitivity tests for Opt-B. The shaded areas represent their 615 
uncertainties. The differences between sensitivity tests and Opt-B are: (a) using yearly GPP 616 
estimates during 1982-2011 from ref. (33) and removing LAI constraints as a proxy of the GPP 617 
relative trend(34–36); (b) only using the average GPP from MODIS(32) to constrain G0; (c) only 618 
using the average GPP from ref. (33) to constrain G0; (d) additionally using the 5-year mean GPP 619 
during 2000-2004, 2005-2009 and 2010-2014 from MODIS(32) to constrain the corresponding 5-620 
year mean GPP; (e) setting prior relative trend of GPP (α) to zero; (f) setting prior trend of GPP 621 
(α) to 0 and removing LAI constraints to the relative trend of GPP(34–36); (g) removing the 622 
constraint from the trend of soil respiration(37); (h) setting prior trend of TER (β) to zero and 623 
removing the constraint from the trend of soil respiration(37); and (i) setting both prior trends of 624 
GPP (α) and TER (β) to 0 and removing LAI constraints(34–36). 625 

626 
  627 
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Figure S8 Correlations between the posterior uncertainties in (a) Opt-A and (b) Opt-B. The 628 
subscripts 1 to 7 represent the 5-year periods from 1980-1984 to 2010-2014 in sequence. 629 

 630 
 631 


