
1 
 

Bifidobacterium breve reduces apoptotic epithelial cell shedding in an 1 

exopolysaccharide and MyD88-dependent manner 2 

 3 

K.R. Hughesa,b,1, L.C. Harnischa,b, C. Alcon-Ginera,b, , S.Mitraa, C.J. Wrighta,b, J. Ketskemetya, D. van 4 

Sinderenc, A.J.M Watsona,b,1 and L.J. Halla,1 5 

 6 

aThe Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, 7 

Colney, Norwich, NR4 7UA, UK 8 

bNorwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ 9 

cAPC Microbiome Institute, University College Cork, Cork, Ireland 10 

1To whom correspondence should be addressed, kevinhughes79@gmail.com, 11 

Alastair.watson@uea.ac.uk, Lindsay.Hall@ifr.ac.uk   12 

mailto:kevinhughes79@gmail.com
mailto:Alastair.watson@uea.ac.uk
mailto:Lindsay.Hall@ifr.ac.uk


2 
 

Abstract  13 

Certain members of the microbiota genus Bifidobacterium, are known to positively influence host 14 

well-being. Importantly, reduced bifidobacterial levels are associated with Inflammatory Bowel 15 

Disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of 16 

apoptotic extrusion of small intestinal epithelial cells from villi; a process, termed ‘cell shedding’. 17 

Using a mouse model of pathological cell shedding, we show that mice receiving B. breve UCC2003 18 

exhibit significantly reduced rates of small intestinal epithelial cell shedding. Bifidobacterial-induced 19 

protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and 20 

interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic 21 

responses to protect epithelial cells under highly apoptotic conditions. Our results reveal an 22 

important and previously undescribed role for B. breve, in positively modulating epithelial cell 23 

shedding outcomes via bacterial- and host-dependent factors, supporting the notion that 24 

manipulation of the microbiota affects intestinal disease outcomes. 25 
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Introduction  30 

Bifidobacteria represent one of the first colonisers of the infant gut and are prominent members of 31 

the adult gut microbiota [1, 2]. They have been linked to a number of health-promoting activities 32 

including the promotion of anti-tumour immunity [3], modulation of antimicrobial activities against 33 

pathogenic bacteria [4] and protection against relapse of Ulcerative Colitis [5, 6]. Despite these 34 

purported benefits, the molecular mechanisms underlying these protective effects by bifidobacteria 35 

remain largely unknown, although recently, components of their surface, including the 36 

exopolysaccharide (EPS) have been shown to play a significant role in modulating protective effects 37 

[7]. It is critical to obtain detailed insights into the mode of action by which microbiota members 38 

sustain and improve host health, as this will be central to future disease treatment/prevention 39 

strategies. 40 

There is a growing body of evidence suggesting that the microbiota influences intestinal epithelial 41 

cell (IEC) function, including gene expression, cell division and energy balance [8-11]. These 42 

symbiotic bacterial/host relationships have co-evolved to the extent that the microbiota is 43 

indispensable for the maintenance of gut homeostasis [12]. Importantly, microbial dysbiosis, as 44 

indicated by a reduction in overall diversity, including specific reductions in Bifidobacterium, has 45 

been linked to Inflammatory Bowel Disease (IBD) [13-15], underlining the critical importance of 46 

host/microbe interactions in maintaining a steady state within the intestine.  47 

The epithelium of the small intestine represents the first line of defence against entry of bacteria 48 

into host tissues. Cell division in the crypt, under physiological conditions, is counter-balanced by cell 49 

shedding from the villi to maintain homeostasis and integrity of the crypt/villus axis. When the 50 

epithelial cell is shed, a discontinuity in the villus epithelial monolayer is created, which potentially 51 

compromises the epithelial barrier. In health, epithelial barrier function is maintained [16], due to a 52 

dramatic redistribution of apical junction complex proteins including Zonula Occludin 1 (ZO-1), 53 

occludin 1 and E-cadherin, which form a funnel that surrounds the shedding cell and plugs the 54 
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resulting gap until the movement of neighbouring epithelial cells restores epithelial continuity [17-55 

19].  56 

TNF-α is a key cytokine in IBD. We and others, have shown that TNF-α induces apoptosis of villus tip 57 

epithelial cells causing excessive shedding, leading to breakdown of the epithelial barrier and micro-58 

ulceration [16, 20]. Delayed repair of epithelial defects caused by excessive cell shedding contributes 59 

to the development of macroscopic ulceration [21]. Our studies with confocal endomicroscopy of 60 

patients with IBD in clinical remission have demonstrated that those patients with high rates of cell 61 

shedding are more likely to relapse than those with low shedding rates, demonstrating a causative 62 

link between barrier function and the inflammatory response [21].  63 

Given reports of beneficial effects of certain members of the gut microbiota in IBD and potential 64 

roles of microbial dysbiosis in these diseases we hypothesized that certain health-promoting 65 

microbiota members, including Bifidobacterium, may play a role in protecting against the cell 66 

shedding response by modulating IEC function. To determine the contribution of bifidobacteria in 67 

cell shedding, we employed a well characterised in vivo mouse model in which pathological cell 68 

shedding is induced by intraperitoneal administration of Lipopolysaccharide (LPS), driving 69 

mononuclear cell expression of TNF-α and subsequent capase-3-positive shedding cells [22]. Our 70 

results suggest a particular bifidobacterial strain (i.e. human isolate B. breve UCC2003) positively 71 

modulates the small intestinal cell shedding response via host MyD88- and bacterial 72 

exopolysaccharide-dependent interactions which serve to significantly reduce apoptotic signalling in 73 

the epithelial compartment. This points at a previously unknown mechanism by which this 74 

Bifidobacterium microbiota member protects its host against pathological cell shedding. These 75 

findings may thus have important implications for the future design of therapeutic strategies in the 76 

context of intestinal diseases. 77 

Materials and Methods 78 
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Animals 79 

C57 BL/6 Jax mice (6-10 weeks) were obtained from Charles River. Vil-cre Myd88 transgenic mice 80 

(i.e. Cre recombinase expression causes truncation and resulting non-function of the MYD88 protein 81 

in IECs) were obtained from the Wellcome Trust Sanger Centre (kind gift from S. Clare).  82 

Bacterial culture and inoculations 83 

Bifidobacterium breve strains UCC2003, UCC2003del and UCC2003inv were used for animal 84 

inoculations. These strains and corresponding culturing conditions have been previously described in 85 

detail [7]. In brief, colonies were established from frozen glycerol stocks onto reinforced clostridial 86 

agar (RCA) plates before being subcultured to reinforced clostridial medium (RCM) and subsequently 87 

Man Rogosa Sharpe (MRS) medium (Oxoid, Hampshire) under anaerobic conditions. Bacteria were 88 

then purified by centrifugation and washing in PBS containing L-cysteine before being reconstituted 89 

in sterile PBS at a final concentration of approximately 1 x 1010 bacteria mL-1. 0.1 mL of inoculum was 90 

then administered to mice by oral gavage in 3 x 24 h doses followed by plating of faecal pellets on 91 

RCA containing 50 mg L-1 mupirocin to confirm stable colonisation. Control mice received oral gavage 92 

of PBS only.  93 

LPS injections and tissue collections 94 

24 hours after the last doses of B. breve or PBS control, mice received an IP injection of 1.25 mg kg-1  95 

LPS from Escherichia coli 0111:B4 (Sigma) or sterile saline (control) and mice were sacrificed 90 96 

minutes post-challenge with LPS. Proximal small intestine was collected in 10% neutral buffered 97 

formalin saline (Sigma) and fixed for 24 h followed by paraffin embedding. Samples of proximal small 98 

intestine were also collected into RNA later (Manchester) for transcriptome analysis or frozen on dry 99 

ice for subsequent ELISA analysis. In some cases, proximal small intestine was also collected into 100 

Hanks buffered saline solution (HBSS) for isolation of intestinal epithelial cells. 101 

Immunohistochemistry 102 
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5 μm sections of paraffin embedded small intestinal tissue were sectioned and used for 103 

immunohistochemistry. Following de-parafinisation and rehydration, tissue sections were treated 104 

with 1% hydrogen-peroxide in methanol to block endogenous peroxidases. Subsequently, slides 105 

were treated using heat-induced antigen retrieval in 0.01 M citrate acid buffer (pH 6) followed by 106 

incubation with a rabbit polyclonal anti-active Caspase-3 antibody (AF835:R&D systems). 107 

Visualisation of caspase-3 positivity was via a peroxidase-labelled anti-rabbit EnVision™ secondary 108 

antibody (Dako) and 3,3'-diaminobenzidine followed by counterstaining with haematoxylin. For 109 

macrophage staining, antibody against F4/80 antigen (ab6640:Abcam) was employed using 110 

biotinylated anti-rat (BA-9401) and Avidin-Biotin reagent (PK-6100) (Vector laboratories). 111 

Quantification of caspase-3 positivity 112 

IECs were counted on a cell positional basis from villus tip (Cell position (CP) 1) down towards the 113 

crypts under 400x magnification. 20 well orientated hemi-villi were counted per mouse and analysed 114 

using the Score, WinCrypts [23] and PRISM analysis software. IECs were defined as “normal” in cases 115 

where staining for active Caspase-3 was absent. Immuno-labelled cells with either unaltered or 116 

shedding morphology were treated as caspase-3 positive. Imaging was performed with an Olympus 117 

BX60 microscope and C10plus digital camera. 118 

RNA isolation and real-time PCR 119 

Samples fixed in RNAlater solution were processed through RNeasy plus mini spin columns to isolate 120 

total RNA (Qiagen). In brief, samples were homogenised using a rotor stator hand held homogeniser 121 

in buffer RLT before processing through a QIAshredder column and subsequently RNeasy mini-spin 122 

columns. Purified RNA was eluted into RNAase free water. Reverse transcription was performed 123 

using the Quantitect reverse transcription kit (Qiagen) and cDNA used for real-time PCR analysis. For 124 

real-time PCR, transcripts were amplified using Quantifast SYBR green mastermix (Qiagen) and 125 

Quantitect primer assays for TNF-α, TNF-R1, and F4/80 (EMR1). Expression of the housekeeping 126 
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gene Hypoxanthine-guanine phosphoribosyltransferase (HPRT; 5’-GACCAGTCAACAGGGGACAT-3’ 127 

(sense) and 5’-AGGTTTCTACCAGTTCCAGC-3’ (antisense) [24] was also determined. Cycling was 128 

performed on a Roche LightCycler 480 using the following conditions: 95oC, 5 min then 40 cycles of 129 

95oC, 10 s; 60oC, 35 s. Relative quantification of levels of transcript expression was calculated using 130 

the Pfaffl method [25] by comparing cycle threshold (Ct) value of each target gene to the CTvalue of 131 

housekeeper. Data are presented as a ‘‘fold change’’ in expression (normalized against control 132 

untreated mice/cells). 133 

Isolation of IECs and FACS analysis 134 

IECs were isolated using a modification of the Weiser methodology [26]. In brief, whole small 135 

intestine was collected in ice cold HBSS before being chopped into 0.5 cm2 pieces and washed in a 136 

solution containing 0.154 M NaCl and 1 mM DTT and subsequently a solution containing 1.5 mM KCl, 137 

96 mM NaCl, 27 mM Tri-sodium citrate, 8 mM NaH2PO4 and 5.6 mM Na2HPO4, pH 7.3. IECs were 138 

then isolated by incubation in PBS containing 1.5 mM EDTA and 0.5 mM DTT, shaking at 200 rpm and 139 

at 37oC. Purity of epithelial preparations was confirmed by histological analysis of stripped intestinal 140 

mucosa and by FACS analysis of isolated cells. For FACS analysis 5x106 cells were stained with anti-141 

mouse CD45-A700 (Biolegend) on ice for 30 min. After two washes in HBSS containing 0.01 BSA, 2 142 

mM EDTA, 20 mM HEPES, 0.01% NaN3, propidium iodide was added (Biolegend) and samples 143 

analysed on a Sony FCS SH-800 flow cytometer. Data were analysed using FlowJo (TreeStar). 144 

ELISA 145 

Frozen proximal small intestinal samples were homogenised in extraction buffer containing protease 146 

inhibitors (Roche), cleared by centrifugation and analysed using a commercial ELISA kit TNF-α 147 

(eBioscience) as per manufacturer’s protocol. Measurement of TNF-α immunoreactivity was at 450 148 

nm using a Fluostar Optima plate reader (BMG Labtech). 149 

Native PAGE, SDS-PAGE and Western blotting 150 
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Isolated intestinal epithelial cells were lysed in CelLytic MT reagent (Sigma) before centrifugation at 151 

10,000 rpm for 10 minutes to pellet cellular debris. Supernatants were mixed with 2 x Laemmli 152 

sample buffer before being separated by sodium dodecyl sulfate (SDS)-PAGE with 3-14% acrylamide 153 

gel and transferred to Hybond-P PVDF membrane (GE Healthcare, Buckinghamshire, UK) and 154 

blocking with 5% marvel in with tris(hydroxymethyl)aminomethane. (Tris)-buffered saline containing 155 

Tween 20 (TTBS), immuno-staining was performed with 1/1000  156 

anti-TNF-R1 antibody (Abcam) and 1/5000 Goat anti-Rabbit IgG HRP conjugate (Millipore) on 157 

reduced gel. Macrophage expression was analysed similarly using antibody against F4/80 antigen 158 

(Abcam) at 1:1000 and goat anti-rat IgG-HRP (SantaCruz, at 1:3000), on a non-reduced gel. Washes 159 

were in TTBS. For detection, ImmobilonTM Western chemiluminescent HRP substrate (Millipore) was 160 

applied to the membrane as recommended by the manufacturer and signal was detected using a 161 

FluorChem E imaging system (Protein Simple). Band densities were quantified using Fiji [27].  162 

PCR array analysis 163 

Real Time ready Custom Panel 480 – 96+ PCR arrays were obtained (Roche) and quantitative PCR 164 

analysis performed. RNA was extracted from whole small intestinal tissue preserved in RNAlater 165 

reagent (Sigma) using RNeasy plus mini kits (Qiagen). Reverse transcription was performed using 166 

Transcriptor First Strand cDNA Synthesis Kit followed by analysis of targets using LightCycler 480 167 

Probes Master on a LightCycler 480 platform (all Roche). Standard protocols as per manufacturer 168 

recommendations were followed. CT values of target genes were normalised to expression of the 169 

housekeeping gene HPRT and fold change versus control samples calculated using the delta/delta CT 170 

method [25].  171 

Statistical analysis  172 

Experimental results were plotted and analysed for statistical significance with Prism5 software 173 

(GraphPad Software Inc). A p value of < 0.05 was used as significant in all cases. 174 
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Results 175 

Lipopolysaccharide induces cell shedding from small intestinal villi in a dose dependent manner 176 

Caspase-3 is activated in intestinal epithelial cells during their extrusion from the tips of small 177 

intestinal villi [18, 28]. Similar to previous reports, we found that control C57BL/6 mice receiving 178 

intra-peritoneal (IP) PBS injection showed low levels of cell shedding as evidenced by low level 179 

expression of cleaved caspase-3 (CC3) in the epithelial cell layer (Fig. 1A). Recent studies have 180 

demonstrated that following IP injection of mice with Lipopolysaccharide (LPS) isolated from 181 

Escherichia coli 0111:B4, a potent cell shedding response is induced, similar to that observed in 182 

relapsing IBD patients [22]. In agreement with these studies, we found a significant increase in CC3-183 

mediated cell shedding at 90 minutes post-injection of 1.25 mg kg-1 LPS, not only at the villus tip, but 184 

also along the shoulders and sides of the villus (Fig. 1B). Effects of LPS on the cell shedding response 185 

were found to be dose dependent, in agreement with previous observations [22] (data not shown). 186 

B. breve modulates LPS-induced cell shedding 187 

Various members of the microbiota are known to promote a healthy gut [29], although the precise 188 

mechanisms behind this remain incompletely understood. We reasoned that because the integrity of 189 

the intestinal epithelium is intrinsically linked to the well-being of the host and because the 190 

microbiota is expected to impact on epithelial crosstalk, such health-promoting species might play a 191 

role in regulating cell shedding. To test this, groups of C57 BL/6 mice were initially dosed with 192 

vehicle control (PBS) or with 1 x 109 B. breve UCC2003 (isolated from a healthy infant) in 3 x 24 h 193 

doses orally to establish stable colonisation [7]. Colonisation was confirmed by faecal CFU counts on 194 

day 4 (Fig. S1). Mice were then administered LPS to induce pathologic cell shedding, followed by 195 

sacrifice at 1.5 h. Following dosing with B. breve UCC2003 and induction of cell shedding with LPS, 196 

mice showed a marked reduction in the levels of CC3-positive shedding cells compared to LPS 197 

treated control mice receiving PBS gavage (Fig. 2A-B). Cell count analysis confirmed significant 198 
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reduction in cell shedding at the majority of positions along the length of the villus in B. breve 199 

UCC2003 treated mice (Fig. 2C; p< 0.001, ANOVA). Thus, B. breve appears to modulate epithelial 200 

integrity/survival during periods of inflammatory insult. 201 

Previous studies have indicated that bifidobacteria may modulate the composition of other 202 

microbiota members, and within the context of IBD, studies have linked microbiota disturbances 203 

with active disease. Thus, to determine if bifidobacterial colonisation impacts the gut microbiota, we 204 

analysed the community composition using a 16S rRNA-based sequencing approach. We found 205 

minor changes to the community structure in B. breve UCC2003 versus control treated mice 206 

(C57BL/6), but overall, no notable differences (but expected increase in Actinobacteria in the B. 207 

breve UCC2003 group) in microbiota class abundance between the treatment groups (Fig. S2). 208 

Bifidobacterial colonisation takes place along the gastrointestinal tract including the small/large 209 

intestine and caecum. RNAscope analysis showed that B. breve UCC2003 was found in intimate 210 

contact with the IECs of the small intestine in colonised C57BL/6 mice (Fig. S3). Together, these data 211 

suggest that colonisation with B. breve does not produce significant shifts in the overall gut 212 

microbiota community structure and that the observed protective effects after colonisation are 213 

more likely related to direct effects of B. breve , possibly through interactions with the intestinal 214 

epithelial cells. 215 

The mechanism of protection against LPS-induced cell shedding is TNF-α independent 216 

LPS-induced cell shedding is caused by the release of TNF-α from lamina propria tissue-resident 217 

macrophages, which binds to TNF-receptor 1 (TNF-R1), on intestinal epithelial cells [22], thereby 218 

driving the apoptotic response. Conditioning of macrophage responses by the microbiota has been 219 

reported previously [30] and, consistent with this data, bacteria such as B. breve have been 220 

described to possess immune-modulatory properties [31]. Thus, to determine whether the cell 221 

shedding outcome, as modulated by B. breve, was caused by reduced expression of TNF-α from 222 

macrophages, we isolated RNA and protein from whole small intestine of control and B. breve 223 
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UCC2003-treated C57BL/6 mice following LPS-mediated induction of cell shedding. As shown in Fig. 224 

3A no significant difference in levels of TNF-α protein was observed between groups and this was 225 

confirmed at the transcriptional level (data not shown). We also found no changes in expression of 226 

TNF-α in the plasma of B. breve UCC2003 -treated versus control mice following LPS-induced cell 227 

shedding (Fig. 3B) or any significant difference in the numbers/levels of F4/80+ macrophages 228 

infiltrating the small intestine (Fig. 3C-F). Together, these data suggest that modulation of the 229 

reduced cell shedding response is independent of TNF-α induction. Since the microbiota may be able 230 

to interact directly with IECs we postulated that B. breve modulates a signalling pathway 231 

downstream of the TNF-α ligand. To test whether expression of TNF-R1 was altered in the 232 

epithelium following dosing with B. breve UCC2003, IECs were isolated from whole small intestinal 233 

tissue using a modified Weiser methodology [32], after which purity of the IEC population was 234 

confirmed by histological analysis of stripped intestinal tissue and FACS analysis (Fig. 3G&H). 235 

Subsequent quantitative RT-PCR and Western blot analysis of isolated IEC populations showed no 236 

changes to expression of the TNF-R1 transcript or protein following exposure to B. breve UCC2003 237 

(Fig. 3I-K), suggesting that there is no impairment of signalling at the level of the receptor.  238 

Functional epithelial MyD88 signalling is required for B. breve-mediated protection against cell 239 

shedding  240 

Intestinal epithelial cells sample microbe-associated molecular patterns (MAMPS) of the intestinal 241 

luminal contents using a variety of receptors including members of Nucleotide-binding 242 

Oligomerization Domain (NOD) family, C-type lectin receptors (CLR) family and the Toll-like receptor 243 

(TLR) superfamily. MyD88 is a critical adaptor protein in signalling downstream of the majority of the 244 

TLR family members [33]. We thus used epithelial-specific (Vil-Cre) MyD88 knockout mice to 245 

determine whether B. breve elicits its protective effects via epithelial TLR signalling pathways. 246 

C57BL/6 MyD88-/- villin-cre mice (i.e. IEC MyD88 KO mice) colonised with B. breve UCC2003, showed 247 

similar rates of LPS-induced cell shedding to PBS gavaged IEC MyD88-/- mice. In comparison, control 248 
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mice (i.e. C57BL/6 MyD88+/+ villin-cre), showed the expected protection against cell shedding in the 249 

presence of B. breve  UCC2003 (Fig. 4A-D). Furthermore RT-PCR analysis of IEC homogenates showed 250 

increased expression of TLR2 in B. breve UCC2003 colonised mice when compared to control mice 251 

(i.e. PBS, Fig. 4E). Taken together, these data indicate that functional MyD88 signalling, potentially 252 

via TLR2is required for modulating the protective effect of B. breve against cell shedding outcomes.  253 

B. breve EPS plays a role in modulating protection against LPS-induced cell shedding  254 

Recently, a number of functions modulated by bifidobacteria have been shown to be mediated 255 

through surface-associated EPS including resistance to gut infection [7]. Interestingly, the eps gene 256 

clusters represent a relatively conserved feature of bifidobacterial genomes, including those of the 257 

species B. breve [34]. In order to investigate the role of EPS in modulating the response against cell 258 

shedding, we used a deletion mutant (B. breve UCC2003-EPSdel) that expresses neither EPS1 nor 259 

EPS2 [7]. Mice were stably colonised by dosing with B. breve EPS-positive or EPS-negative strains 260 

followed by challenge with LPS (Fig.S1). Strikingly, when colonised with the B. breve UCC2003-261 

EPSdel, no protection against cell shedding was observed in control (i.e. PBS) versus colonised mice 262 

(Fig. 5A&B).  263 

B. breve UCC2003 controls EPS biosynthesis via a bidirectional gene cluster which results in 264 

expression of either EPS1 (B. breve UCC2003) or EPS2 (B. breve UCC2003-EPSInv) [7]. Thus, to gain 265 

further insights into the role of a different EPS in the protective cell shedding response, we 266 

undertook studies using B. breve UCC2003-EPSInv. Colonisation with EPS2 expressing B. breve  (i.e. 267 

B. breve UCC2003-EPSInv) also failed to show any protection against LPS-induced cell shedding, 268 

suggesting considerable variation in the protective response dependent upon EPS genetic and 269 

chemical structure and organisation (Fig. 5C&D). All strains are directly compared in Fig.S4.  270 

Together, these studies emphasize the striking strain variant specificity that is observed with regard 271 

to the individual protective effects of these bacteria following LPS-induced cell shedding. This is 272 
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likely regulated by the specific molecules produced by each strain, including the EPS. This highlights 273 

the critical need to fully genetically characterise ‘probiotic’ strains of bacteria to enable a detailed 274 

dissection of their functional effects in vivo for optimal translation to human patients.  275 

 276 

B. breve EPS attenuates inflammatory and apoptosis signalling  277 

In order to gain further insight into the changes taking place in the small intestine following 278 

colonisation with B. breve UCC2003 and the influence of EPS, whole small intestinal samples from 279 

control (i.e. PBS) and colonised (EPS-positive, B. breve UCC2003 and EPS-negative, B. breve 280 

UCC2003-del) mice following challenge with LPS were analysed using a custom RT-PCR array (Fig. 6: 281 

49/84 targets are shown, full set of data is displayed in Fig. S5A&B) to look for transcriptional 282 

changes to key inflammatory transcripts and those involved in the apoptotic cascade. Interestingly, 283 

small intestinal samples from B. breve UCC2003-EPSdel colonised mice (Fig. 6A and Fig. S3A&B) 284 

showed significant increases (> 2-fold and p< 0.01) in IL-6 and Tnfrs15 when compared to control 285 

and LPS challenged mice. Moreover numerous other apoptotic and inflammatory genes were 286 

significantly upregulated (> 2-fold, p<0.01) including Bad, Cycs (Cytochrome C, Somatic), casp4, Fas, 287 

Traf5 and Tnfrs9. In contrast in EPS-positive colonised mice (i.e. B. breve UCC2003) our analysis 288 

showed only subtle changes to the expression of the majority of the targets, when compared to 289 

control LPS animals. In addition, whilst significant elevation (> 2-fold and p< 0.05) in IL-6 and Tnfrs15 290 

was observed following colonisation with B. breve UCC2003, Tnfrs15 expression was markedly 291 

decreased versus B. breve UCC2003-EPSdel colonised mice (3-fold vs 16-fold increase). These data 292 

suggest that signalling via EPS may downregulate inflammatory and apoptotic networks which would 293 

otherwise lead to elevated cell shedding.  294 
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Discussion 295 

We report that colonisation of mice with B. breve significantly reduces pathological/apoptotic 296 

epithelial cell shedding, through a previously unknown mechanism involving bifidobacterial EPS-297 

MyD88 signalling. 298 

 299 

The gut microbiota appears central to maintaining epithelial barrier integrity and importantly 300 

disturbances in the microbiota appear pivotal in IBD pathogenesis. Indeed, IBD patients (paediatric 301 

and adult cohorts) have been shown to possess a reduced overall microbiota diversity and 302 

reductions in specific genera including Clostridium, Bacteroides, Faecalibacterium and, of particular 303 

interest here Bifidobacterium [6, 15, 35]. Previous clinical trials have shown that administration of 304 

bifidobacterial strains can reduce the incidence of relapse in patients suffering from IBD [36]. 305 

Following LPS-induced cell shedding, we observed that a priori administration of B. breve UCC2003 306 

(which is a human-isolated strain, thus more translationally relevant) conferred a significant level of 307 

protection which manifested as significantly reduced caspase-3 positivity within the villus epithelium 308 

(Fig. 2A-C). Previous studies have highlighted that bifidobacterial supplementation may also 309 

modulate the wider microbiota in mouse models [37]. However, our data indicates that whilst there 310 

are modest differences between PBS and B. breve colonised mice (as indicated by taxa abundance), 311 

there are no notable differences (with high variability between animals) suggesting limited effects on 312 

overall microbiota profiles (Fig. S1). These data therefore suggests a more direct link between 313 

bifidobacteria and maintenance of epithelial integrity in the prevention of intestinal inflammation.  314 

Previous studies have indicated that Bifidobacterium predominantly colonises the colon of infants 315 

and adults, as determined from faecal, mucosal scrapings or biopsy samples [38, 39], however, in 316 

this work (using a murine model), we have described SI-specific responses. From a translational 317 

perspective, in humans these protective cell shedding responses may result from bifidobacteria 318 
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cross-talk in the lower SI. Although difficult to measure in humans, previous studies have indicated 319 

Bifidobacterium colonisation in the lower SI (i.e. the ileum, as we observe in our model).  Notably, 320 

select studies using Ileostomy effluents and illeum biopsies have indicated Bifidobacteria (specifically 321 

B. animalis subsp. lactis and B. breve respectively) are present in this area of the infant and adult 322 

gastrointestinal (GI) tract [40, 41]. Therefore, in the human context, we may observe direct SI 323 

signalling via resident bifidobacteria and/or remote SI feedback signalling from colonic bifidobacteria 324 

epithelium cross-talk, which could be tested in future clinical intervention studies.   325 

As previously mentioned, studies have shown that this experimental model of LPS-induced cell 326 

shedding is driven by an induction in expression of TNF-α from the intestinal mucosa [22, 42]. One of 327 

the key functions of the gut microbiota is induction of tolerogenic or anti-inflammatory immune 328 

responses and thus we hypothesised that bifidobacteria may reduce cell shedding as a direct result 329 

of inhibiting TNF-α and macrophages – a potential source of TNF. However, we were unable to 330 

detect any changes in levels of TNF-α expression or macrophage infiltration from B. breve UCC2003-331 

treated or control (i.e. PBS) mice (Fig. 3C), suggesting that the protection conferred by 332 

Bifidobacterium strains is TNF-α independent. Previous studies have indicated that colonisation of B. 333 

breve UCC2003 during homeostatic conditions does not induce differences in splenic TNF-α-positive 334 

macrophage numbers when compared to non-colonised controls [7]. Coupled with the lack of 335 

change in expression in TNF-R1 following colonisation (Fig. 3H&I), it appears that macrophages, TNF-336 

α production and TNF-R1 signalling are not involved in modulating this protective response and 337 

suggests that B. breve UCC2003 acts preferentially from the luminal side through interactions with 338 

the intestinal epithelial cells. However, we cannot exclude the potential for EPS to block signalling 339 

via TNF-R1, however TNF-R1 expression appears to be restricted to the basolateral surface of 340 

epithelial cells and thus it would not be expected that B. breve (and thus the EPS) would have direct 341 

access to this cellular compartment for direct inhibition via binding [43]. Furthermore, quantification 342 

of downstream effectors (Fig. S3) including FADD, TRAF2 and caspase 2 and 8 does not significantly 343 
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differ between B. breve UCC2003 and B. breve UCC2003-del colonised mice, which suggests EPS does 344 

not play a key role via TNF-R1.   345 

To delineate these protective luminal bifidobacterial-epithelial interactions, we utilised epithelial-346 

specific MyD88 KO mice which is a key adaptor protein downstream of microbe-TLR signalling. 347 

Notably, mice carrying truncated epithelial MyD88 (i.e. C57BL/6 MyD88-/- villin-cre) showed no 348 

protection against cell shedding after colonisation of B. breve UCC2003 (Fig. 4B&D), which was in 349 

stark contrast to MyD88-positive control animals that again showed significant protection against 350 

LPS-induced cell shedding (Fig. 4A&C). Furthermore, we observed significant increases in IEC TLR2 351 

expression in B. breve UCC2003 colonised mice. Interestingly, previous work has indicated that TLR2 352 

may enhance ZO-1 associated intestinal epithelial barrier integrity [44], and other studies indicate 353 

that mice deficient in MyD88 signalling have increased susceptibility to intestinal inflammation [12]. 354 

In a UV model of apoptosis, MyD88 signalling appears to reduce caspase-3 and in turn increase cell 355 

survival and more recently B. bifidum has been shown to reduce apoptosis in vitro (necrotising 356 

enterocolitis IEC-6 cell model) also indicated by reduced CC3-positive cells [45]. Thus our data, in 357 

tandem with these studies, indicate that B. breve UCC2003 may regulate epithelial integrity in 358 

response to LPS-induced cell shedding (as marked by caspase-3) via these central MyD88 signalling 359 

mechanisms, potentially downstream of TLR2. 360 

 361 

Having determined the importance of host molecule MyD88, we next sought to determine if there 362 

was a specific bifidobacterial molecule central to the observed protective response. Since we have 363 

previously shown that the surface EPS of B. breve UCC2003 can regulate the host response [7], we 364 

investigated the ability of an EPS mutant, B. breve UCC2003-EPSdel (complete deletion of eps 365 

biosynthetic cluster) to modulate LPS-induced cell shedding. Notably, mice receiving B. breve 366 

UCC2003-EPSdel showed no significant protection against cell shedding when compared to EPS-367 

positive (i.e. B. breve UCC2003) colonised mice (Fig. 5A&C), suggesting an important role for this EPS 368 
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in microbe-host crosstalk. Importantly, EPS structures can be recognised via TLR2 (and signal via 369 

MyD88) and previous work with the Polysaccharide A (PSA) capsule of Bacteroides fragilis highlights 370 

that PSA can modulate dendritic cell and T regulatory cell function via TLR2 signalling [46, 47]. 371 

Additionally, previous work has highlighted that a strain of B. breve (Yakult strain) can also induce IL-372 

10 producing T regulatory cells via TLR2, however they did not determine if this was via an EPS-373 

specific mechanisms [48]. Furthermore, recent studies using Bacillus subtilis have demonstrated that 374 

the EPS capsule of this bacterium is able to protect against intestinal inflammation in a murine 375 

model of colitis (in this instance via TLR4), providing further support for the likely role of 376 

bifidobacterial EPS in the effects observed in these studies [49]. Notably, the probiotic genus 377 

Lactobacillus also produces distinct EPSs, which are structurally similar to those observed in 378 

bifidobacteria [50]. Recently, within an in vitro system (HT29-19A epithelial cell line), the EPS from 379 

Lactobacillus acidophilus 5e2 was shown to increase IL-8 expression and also TLR2 expression (we 380 

also observe that B. breve UCC2003 induces IEC TLR2 expression), and additionally up-regulation of 381 

TLR2 was found to potentially ‘sensitise’ epithelial cells to subsequent stimulation with 382 

peptidoglycan (a TLR2 agonist) [51]. Furthermore, the authors also observed a modest increase in 383 

TLR4 expression after addition of EPS, but did not detect any significant modulation of IL-8 responses 384 

after priming with EPS and subsequent addition of LPS, which may indicate less of a role for EPS-385 

TLR4 interactions [51]. From a more systemic perspective, in the instance that Lactobacillus or 386 

indeed B. breve UCC2003 potentially translocate across the epithelial barrier, it maybe be expected 387 

they could directly influence macrophage function and previous studies have shown that L. casei 388 

Shirota can dampen down inflammatory macrophages responses and L. rhamnosus EPS has also 389 

been shown to modulate macrophage function in vitro, but on this occasion induce pro-390 

inflammatory responses [52, 53]. Ideally we would test our B. breve strains in TLR2 and/or TLR4 KO 391 

animals; unfortunately, previous work has shown that these mice do not respond to LPS and thus 392 

would not have a cell shedding response making these further studies not possible. However, in 393 

studies using RNAscope, we found significant numbers of B. breve UCC2003 associated with the villi 394 
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in colonised mice (Fig. S2), suggesting that direct signalling interactions between the bacteria 395 

(possibly via EPS and TLRs, and B. breve UCC2003 colonisation increases TLR2 expression) and IECs 396 

may play an important role in modulating this response. These data alongside our findings suggest 397 

that B. breve EPS may regulate cell shedding by acting as TLR ligands via MyD88, leading to 398 

protective epithelial responses.  399 

 400 

To probe these EPS-epithelial interactions further we took advantage of the bi-directional eps gene 401 

cluster in B. breve UCC2003 which can express two genetically and importantly chemically distinct 402 

surfaces EPSs [7]. All previous studies utilised EPS1 (i.e. with B. breve UCC2003), but we also 403 

determined responses following EPS2 (i.e. B. breve UCC2003-EPSInv) colonisation. Strikingly and 404 

contrary to our expectations we found that this isogenic strain was unable to confer protection 405 

against LPS-induced cell shedding (Fig. 5B&D). Importantly, EPSs are comprised of repeating mono- 406 

or oligosaccharides linked by various glycosidic linkages, and the three dimensional structures and 407 

other physiochemical features of EPSs can vary widely [54]. The variability in chemical composition 408 

of these two B. breve EPSs (previous work suggests the EPSs may include glucose, galactose and/or 409 

the N-acetylated versions of these two sugars in different ratios or composition [7]) could in part 410 

explain the different modulatory properties of this beneficial microbe in relation to receptor-ligand 411 

binding and further highlights the issues with significant strain (or in this case isogenic), variation in 412 

effects on host responses. Importantly, these different EPS-epithelium protective responses do not 413 

appear to be linked to colonisation ability as all strains colonised mice at similar levels (Fig. S1). 414 

Previous limited studies have indicated that specific chemical structures of EPSs such as PSA of B. 415 

fragilis (comprised of an unusual repeating tetrasaccharide moiety, free carboxyl, phosphate, and 416 

amino groups, that contribute to its zwitterionic nature) is important for function [46]. Additionally, 417 

in vitro studies on L. reuteri  strains (DSM 17938  and L26 Biocenol™) indicates both EPSs are high 418 

molecular weight d-glucan polysaccharides with differing spatial conformations, which may relate to 419 
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induction of different cytokine responses, however the direct chemical structures involves in this 420 

modulation have yet to be defined [55]. Future challenges will include studies to fully chemically 421 

characterise the different strains of ‘probiotic’ bacteria, as evidently, significant differences in 422 

response to small strain variations (including variations in EPS expression and structure and also 423 

other MAMPS) may impact beneficial host responses [56, 57]. 424 

 425 

We have previously shown that EPS-positive B. breve UCC2003 does not induce inflammatory host 426 

responses after colonisation, which we hypothesise is to the advantage of the bacterium and host 427 

for maintaining efficient symbiosis and homeostasis [7]. Interestingly, when we probed the 428 

downstream signalling transcriptional events after colonisation and LPS challenge we determined 429 

that presence of EPS1 (i.e. B. breve UCC2003) appeared to attenuate apoptosis-induced signalling 430 

activation, which was in stark contrast to mice colonised with the B. breve UCC2003-EPSdel strain 431 

which had significantly elevated apoptotic gene expression (Fig. 6). Importantly, previous work has 432 

demonstrated that activation of MyD88 can downregulate several of these genes including Fas 433 

(CD95) [58]. Fas is a cell surface receptor and member of the TNF superfamily and when bound by its 434 

ligand it induces apoptosis through the assembly of a multiprotein complex called the DISC which in 435 

turn activates caspase 8 (i.e. extrinsic apoptosis pathway) [59]. Further evidence of an EPS-specific 436 

mechanism attenuating epithelial apoptosis comes from observation that Bad, Cycs, casp4, Traf5 437 

and Tnfr9 are upregulated in the intestinal mucosa of mice colonised by B. breve UCC2003-del 438 

compared to B. breve UCC2003 colonised mice. Bad is a pro-apoptotic (BH3-only) member of the bcl-439 

2 family that antagonises the anti-apoptosis proteins bcl-2, bcl-xl and bcl-2 allowing the activation of 440 

bax/bak oligomers and the release of cytochrome c from the mitochondria. Within the same 441 

pathway, Cycs encodes the heme protein cytochrome c, which forms a multiprotein complex called 442 

the apoptosome which activates a cascade of proteases called caspases which cause apoptotic cell 443 

death [60]. Traf5 is a scaffold protein that forms a multiprotein complex with TRAF2, RIP1 and the 444 
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TNF receptor and potentially can mediate the activation of apoptosis and NF-B [61]. We have 445 

previously shown that NF-B1 inhibits LPS-induced apoptotic cell shedding whereas NF-B2 446 

stimulates apoptotic cell shedding [22]. TNFRF9 (CD137) is expressed on T cells and has been 447 

reported to enhance their cytolytic activity [62]. These data strongly suggest that mechanistically B. 448 

breve UCC2003, via EPS, may block intrinsic and extrinsic apoptosis signalling (via activation of 449 

MyD88) during inflammation to protect epithelial cells under highly apoptotic conditions.  450 

 451 

In summary, we have demonstrated that certain bifidobacteria, i.e. B. breve UCC2003 are able to 452 

protect against pathologic cell shedding induced by IP injection of LPS and that this protection 453 

appears to be independent of TNF-α production by resident tissue macrophages. Using wild type and 454 

mutant B. breve, we have demonstrated that a specific EPS is able to confer this protection, and 455 

using knockout mice, have shown that this protection appears contingent on functional signalling 456 

downstream of the epithelial TLR family members and modulation of pro-apoptotic gene pathways. 457 

Understanding how health promoting species of bacteria such as the Bifidobacterium genus interact 458 

with the intestinal epithelium and how these species confer their protective effects may drive 459 

progress toward understanding how pathologic cell shedding in IBD patients is linked to changes in 460 

the intestinal microbiota. Future human studies could be considered to address issues of microbial 461 

dysbiosis and relation to the cell shedding response and to what extent microbial dysbiosis is linked 462 

to periods of remission and relapse in such patients.   463 
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Figures and Figure legends 681 

 682 

Figure 1: LPS challenge induces cell shedding from the small intestinal villi 683 

C57BL/6 mice were administered either (A) PBS (control) or (B) LPS by IP injection and proximal 684 

small intestines removed after 1.5 h for immunohistochemistry and stained with anti-CC3 (i.e. brown 685 

cells indicate shedding event), also highlighted by arrows. A representative picture for each group is 686 

shown (12 mice per group, two independent experiments). 687 

 688 

 689 

 690 

 691 

 692 
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 693 

Figure 2: B. breve UCC2003 protect against LPS-induced cell shedding 694 

C57 BL/6 mice received three daily oral gavage doses of (A) PBS or (B) ~1 x 109 B. breve UCC2003 695 

followed by IP challenge with LPS 24 h later, representative picture shown. Formalin fixed, paraffin-696 

embedded intestinal sections were stained with anti-CC3 and (C) quantified using the WinCrypts and 697 

Score programs, 20 well orientated hemi-villi were counted/mouse. Data are mean ± SD, n = 12 (2 698 

independent experiments) analysed with Mann–Whitney U test. 699 
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 700 

Figure 3: The cytoprotective effect of B. breve is not mediated by the TNF-α signalling pathway 701 

C57BL/6 mice were gavaged with PBS or B. breve and challenged with PBS or LPS for 1.5 h. Columns 702 

show TNF-α levels (via ELISA) in (A) whole small intestine intestinal homogenates or (B) plasma ± SD. 703 

(C) Representative immuno-histochemical staining for F4/80+ macrophages (brown cells) in control 704 
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or B. breve colonised mice. (D) Western blot analysis (F4/80 or house-keeping β-actin) of whole 705 

small intestinal homogenates, with (E) columns showing relative density of F4/80 from (from D) 706 

whole intestinal homogenates. (F) Columns show F4/80 expression via RT-PCR  ± SD. (G) 707 

Representative histology image of epithelial cell stripping protocol (modified Weiser method) leaving 708 

LP intact (as indicated by arrows) and (H) FACS analysis for purity (anti-CD45). (I) Columns shown 709 

TNF-R1 expression via RT-PCR ± SD and (J) Western blotting for protein expression in isolated 710 

intestinal epithelial cells, with (K) columns showing relative density of TNF-R1 (from J). . n = 9 mice 711 

per group are representative of three experiments analysed with ANOVA Kruskal–Wallis test with 712 

Dunn’s multiple comparison test (Fig. 3A), and with Mann–Whitney U test (Fig. 3B, E, F, I and K). 713 

 714 

 715 

 716 

 717 



35 
 

 718 

Figure 4: The cytoprotective effect of B. breve is MyD88 dependent 719 

(A, B) IEC MyD88+/+ mice and (C, D), IEC MYD88-/- mice were gavaged with PBS (control) or B. breve 720 

and challenged with LPS. Paraffin-embedded intestinal sections were stained with anti-CC3 and 721 

quantified using the WinCrypts and Score programs. (E) Columns shown TLR2 expression via RT-PCR. 722 

Data are mean ± SD, n = 12 (two independent experiments) analysed with Mann–Whitney U test. 723 
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 724 

Figure 5: B. breve EPS plays a role in modulating the cytoprotective effect 725 

C57BL/6 mice were gavaged with either B. breve UCC2003 or (A, B) B. breve UCC2003del (i.e. EPS-726 

negative) or (C, D) B. breve UCC2003inv (i.e. EPS2). Formalin fixed, paraffin-embedded intestinal 727 

sections were stained with anti-CC3 and quantified using the WinCrypts and Score programs. Data 728 

are mean ± SD, n = 12 (two independent experiments) analysed with Mann–Whitney U test. 729 
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 730 

Figure 6: B. breve EPS attenuates inflammatory and apoptosis signalling  731 

Whole small intestinal homogenates from LPS challenged (A) B. breve UCC2003-EPSdel and (B) B. 732 

breve colonised mice compared to control (i.e. PBS) were analysed using a custom RT-PCR array. 733 

Data are mean ± SD, n = 6 (two independent experiments), *P < 0.05 and **P < 0.01 and analysed 734 

with Mann–Whitney U test.  735 

 736 
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Supplementary Information 737 

 738 

Supplementary Figure 1: B. breve strains stably colonise murine GI tract. 739 

Faecal samples were collected from control (i.e. PBS), B. breve UCC2003, B. breve UCC2003-del and 740 

B. breve UCC2003-inv colonised mice on day 4 (after 3 x 24 h doses at ~1 x 109) and plated on RCA (+ 741 

mupirocin) and CFU enumerated at 24 hours.  742 
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 743 

Supplementary Figure 2: B. breve UCC2003 does not notably impact faecal microbiota profiles. 744 

Faecal samples from control (i.e. PBS) and B. breve UCC203 (after 3 x 24 h doses at  ~1 x 109) were 745 

collected and processed for 16s Illumina sequencing. (A) Pie chart depicting comparison of average 746 

taxonomic content for two groups at class level taxonomic profile. (B) Individual boxplot of each taxa 747 
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at class level taxonomic profile for two groups (i.e. control and B. breve UCC2003), where read 748 

abundance data was normalised for both the groups.  749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 
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 764 

Supplementary Figure 3: B. breve UCC2003 resides in close contact with the small intestinal 765 

epithelium. Representative RNAscope staining for B. breve (B. breve specific probe) brown cells and 766 

arrows) in the small intestine of B. breve colonised mice (after 3 x 24 h doses at ~1 x 109).  767 

 768 

 769 
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 770 

 771 

Supplementary Figure 4:  Bifidobacterial EPS modulates cell shedding. 772 

Combination of counts from Figures 2, 4 and 5 to provide representative overview of LPS-induced 773 

cell shedding responses between B. breve strains.  C57BL/6 mice were gavaged (3 x 24 h doses at ~1 774 

x 109) with either B. breve UCC2003 or B. breve UCC2003del (i.e. EPS-negative) or B. breve 775 

UCC2003inv (i.e. EPS2) and challenged with LPS. (A) Formalin fixed, paraffin-embedded intestinal 776 

sections were stained with anti-CC3 and quantified using the WinCrypts and Score programs along 777 

villus length, (B) average percentage of total caspase-3 positive events. Data are mean ± SD, n = 778 

12/group (two independent experiments) analysed with Mann–Whitney U test. 779 

 780 
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 781 

Supplementary Figure 5: Whole small intestinal homogenates from LPS challenged (A, B) B. breve 782 

UCC2003-EPSdel and (C, D) B. breve colonised mice compared to control (i.e. PBS) were subjected to 783 
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custom array RT-PCR. Data are mean ± SD, n = 6 (two independent experiments), *P < 0.05 and **P < 784 

0.01, non-detectable (ND), and analysed with Mann–Whitney U test  785 
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RNAscope 786 

RNAscope was performed using a commercial kit from Advanced Cell Diagnostics (California, USA) as 787 

per the manufacturer’s instructions. Briefly, 5 μm formalin fixed paraffin embedded small intestinal 788 

tissue was mounted on Superfrost plus slides (ThermoFisher) before baking in a dry oven at 60oC for 789 

1 h. Slides were then deparaffinised with Xylene and 100% ethanol before applying Pre-treat 790 

solution 1 for 10 minutes at room temperature. Slides were then washed in distilled water before 791 

incubating in boiling Pre-treat 2 solution for 15 minutes. Following further washes, Pre-treat solution 792 

3 was applied in a humidified chamber at 40oC for 30 minutes. After further washes, B. breve 793 

UCC2003 specific probe or Cyclophylin B control probe was hybridised to the slides for 2 h at 40oC. 794 

Following washing in wash buffer, a series of amplification probes (AMP1 to AMP6) were 795 

sequentially bound and washed to/from the slides before signal detection using DAB substrate as 796 

per the manufacturer’s recommendations. Slides were then counterstained with haematoxylin, 797 

dehydrated and mounted for visualisation. 798 

Faecal DNA extractions, quantification and sequencing 799 

DNA was extracted from murine faecal samples using the FastDNATM SPIN Kit for Soil (MP 800 

Biomedicals) following the manufacturer’s instructions but incorporating an extension of the initial 801 

bead-beading time to three minutes. 802 

The concentration of bacterial DNA was quantified using Qubit and normalised to 5 ng ml-1 for all 803 

samples. Extracted DNA was used as a template for PCR amplification of the V4 region of the 16S 804 

rRNA gene, 5’ AAT GAT ACG GCG ACC ACC GAG ATC TAC A and, 5’ CAA GCA GAA GAC GGC ATA CGA 805 

GAT AAC T. Amplification conditions of the PCR were: 1 cycle of 94°C 3 min and 25 cycles of 94°C for 806 

45 s, 55°C for 15 s and 72°C for 30 s using a 96 well Thermal Cycler PCR machine. 16S RNA gene 807 

libraries were sequenced on the Illumina MiSeq platform with 250 bp paired end reads. 808 

 809 
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Sequence processing 810 

All raw sequence reads were processed through quality control using FASTX-Toolkit [63] keeping a 811 

minimum quality threshold of 33 for at least 50% of the bases. Reads that passed the threshold were 812 

aligned against SILVA database (version: SILVA_119_SSURef_tax_silva) [64] using BLASTN (ncbi-blast-813 

2.2.25+; Max e-value 10e-3) [65] separately for both pairs. After performing the BLASTN alignment, 814 

all output files were imported and annotated using the paired-end protocol of MEGAN [66]. 815 

Taxonomic annotation 816 

For processing the BLAST files by MEGAN6, we used parameter settings of “Min Score = 50”, “Top 817 

Percent = 10”. Some reads which did not have any match to the respective database were placed 818 

under a “No hit” node, and some reads that were originally assigned to a taxon that did not meet 819 

our selected threshold criterion were pushed back using the lowest common ancestor (LCA) 820 

algorithm to higher nodes where the threshold was met. After importing datasets in MEGAN, we 821 

obtained MEGAN-own “rma files” for each data mapped onto NCBI taxonomy based on our selected 822 

threshold. Further, all the files were compared and analysed within MEGAN. 823 

 824 

Statistical analysis  825 

For microbiota analysis R software was used [67].  Average community profile comparison of two 826 

groups are displayed using pie charts in MEGAN. Abundance matrices were depicted using boxplots 827 

in R for each taxa showing comparison of two groups.  828 

 829 


