
Abstract

We investigate the short-term effects of air temperature, rainfall,
and socioeconomic indicators on malaria incidence across Rwanda
and Uganda from 2002 to 2011. Delayed and nonlinear effects of tem-
perature and rainfall data are estimated using generalised additive
mixed models with a distributed lag nonlinear specification. A time
series cross-validation algorithm is implemented to select the best
subset of socioeconomic predictors and to define the degree of
smoothing of the weather variables. Our findings show that trends in
malaria incidence agree well with variations in both temperature and
rainfall in both countries, although factors other than climate seem to
play an important role too. The estimated short-term effects of air tem-

perature and precipitation are nonlinear, in agreement with previous
research and the ecology of the disease. These effects are robust to the
effects of temporal correlation. The effects of socioeconomic data are
difficult to ascertain and require further evaluation with longer time
series. Climate-informed models had lower error estimates compared
to models with no climatic information in 77 and 60% of the districts
in Rwanda and Uganda, respectively. Our results highlight the impor-
tance of using climatic information in the analysis of malaria surveil-
lance data, and show potential for the development of climate-
informed malaria early warning systems.

Introduction

Despite the global contraction in range over the past century
(Gething et al., 2010), malaria still imposes a significant health and
socioeconomic burden to many countries (WHO, 2013). The World
Health Organization estimates that about 3.4 billion people are at risk
of malaria (WHO, 2013). Approximately 207 million cases and 627,000
deaths occurred in 2012 worldwide (WHO, 2013). About 90% of the
total mortality occurs in sub-Saharan Africa, and 77% of that percent-
age happens in children under 5 years of age (WHO, 2013). Two coun-
tries significantly affected by malaria are Rwanda and Uganda.
Malaria has long been considered the main cause of morbidity and
mortality in both countries (NISR, MOH and ICF International, 2012;
UBOS and ICF International, 2012). Over the period 2002 to 2011,
more than five million malaria cases were reported in Rwanda to gov-
ernment health facilities. The number was significantly greater in
Uganda with about 100 million reports of suspected malaria cases
between 2002 and 2010.
Trends in malaria incidence could be attributed to the complex

interplay of a range of determinants including climatic, environmen-
tal, and socioeconomic factors (Kazembe et al., 2006; Lowe et al., 2013;
Rulisa et al., 2013). Statistical models are useful tools that allow us: i)
to understand how disease outcomes change as a function of varia-
tions in their key driver; and ii) to predict disease outcomes based on
the dynamics of such drivers (James et al., 2013). This paper aims to
investigate the ways in which malaria incidence varies as a function
of short-term changes in air temperature and rainfall over the period
2002-2011 in Rwanda and Uganda. Environmental factors including
climate, land-use/land cover, irrigation usage, topography and soil type
largely determine the type, distribution and density of mosquito vec-
tors and hence disease occurrence, by providing suitable conditions
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for their development (Christophers, 1960; Gage et al., 2008; Halstead,
2008; Kazembe et al., 2006; Lindsay et al., 1998). Of these, only climate
is likely to vary significantly from year to year, although introduction of
irrigation and land-use conversions, for example converting forest to
agricultural use, could bring about step changes in disease transmis-
sion (Baeza et al., 2011; Stryker and Bomblies, 2012). Human-related
factors including migration patterns, behaviour, immunity, population
density, access to health services and preventive measures, may also
impact disease occurrence (Baeza et al., 2011; Gage et al., 2008; Naish
et al., 2014; Pindolia et al., 2013; Reiter, 2001, 2008). Urban areas char-
acterised by high population densities, for example, show lower malar-
ia incidence rates than rural regions (Kelly-Hope and McKenzie, 2009).
Pathogen-related factors such as parasite species also influence the
spatiotemporal patterns of malaria (for example Chowell et al., 2009;
Lin et al., 2010). Differences in the tools, criteria, and skills for diagno-
sis; and errors in data management may contribute to the spatiotempo-
ral variability observed in malaria data as well (Kyabayinze et al., 2012;
Yeka et al., 2012).
Climate data are readily available at spatial and temporal resolutions

that allow their incorporation in statistical disease models (Bouzid et
al., 2014; Colón-González et al., 2013; Garske et al., 2013; Lowe et al.,
2013). Socioeconomic and behavioural data, on the other hand, are
often difficult to acquire at the same spatiotemporal resolution as the
epidemiological data. To give one example, although important for dis-
ease transmission, datasets of internal population movements are
rarely available, and where they exist, data span two to three years at
most (Bengtsson et al., 2011; Tompkins and McCreesh, 2016), or are
derived from isolated censuses (Pindolia et al., 2013). Therefore, these
data are rarely included in statistical models, and must be represented
by random-effects terms (Lowe et al., 2013).
In this study, we primarily investigate the short-term effects of air

temperature and rainfall on malaria incidence across the whole of
Rwanda and Uganda, over the period 2002-2011. We use, to our knowl-
edge, the largest panels of district-specific malaria data with a monthly
temporal resolution. Our study spans a larger time frame than any pre-
vious study conducted in these two countries (Loevinsohn, 1994;
Zinszer et al., 2015).

Materials and Methods

Study area
Rwanda is a small landlocked country located in the Great Lakes

region of eastern Africa, just below the equatorial line. It is bordered by
Uganda to the north, Tanzania to the east, the Democratic Republic of
the Congo to the west, and Burundi to the south. Rwanda is the most
densely populated country in continental Africa with an estimated pop-
ulation of 11.5 million people by 2012 (World Bank, 2014) living in an
area of 26,338 km2. The country is divided into 30 districts within four
administrative provinces (North, South, East, and West), and the City
of Kigali. Rwanda is divided into three distinct geographical regions.
The western and north-central region is made up mountains, the
Virunga volcano range, the highlands, and the foothills of the Congo-
Nile Divide (NISR, MOH and ICF International, 2012). This region has
an altitude generally higher than 2000 m (4507 m at its highest point).
The central region has a mountainous terrain with an elevation
between 1500 and 2000 m (NISR, MOH and ICF International, 2012).
The eastern plateaus region combines lowlands with some hills, and
has an altitude generally below 2000 m (NISR, MOH and ICF
International, 2012). These regions are intrinsically related to malaria

occurrence. Thus, malaria is mesoendemic in the lowlands, and epi-
demic-prone in the highlands and hills (Rulisa et al., 2013; USAID,
2013a). In the endemic regions malaria transmission happens all year,
and shows two peaks (in May-June, and December-January) following
two distinct rainy seasons (USAID, 2013a).
Uganda is also a landlocked country in the eastern Africa region. It

shares borders with South Sudan to the north, Tanzania to the south,
Kenya to the east, Rwanda to the south- west, and the Democratic
Republic of Congo to the west. The country has an area of approximate-
ly 241,000 km2 (UBOS and ICF International, 2012). Currently, Uganda
is divided into 112 districts, twice as many as the number of adminis-
trative districts it had in 2002 (56). The mean altitude of the northern
part of the country reaches about 600 m, and gradually increases
upward to the south reaching altitudes beyond 1200 m (MOH, 2005).
Most of the south-western part of the country is composed by highlands
with altitudes of approximately 1400 m (MOH, 2005). There are also
some mountainous regions with altitudes of about 2000 m located in
the bordering regions with Rwanda and the Democratic Republic of
Congo, the Rwenzori Mountains (west), and Mount Elgon (east)
(MOH, 2005). In most of the country, there are two distinct rainy sea-
sons with heavy rains from March to May, and light rains between
September and December. Malaria is reported as mesoendemic in
about 95% of the country, and prone to epidemics in the south-western
highlands (USAID, 2013b). Malaria transmission is largely stable
throughout the year, with seasonal variations that follow the rainy sea-
sons (UBOS and ICF International, 2009).

Malaria case data
Monthly counts of clinically diagnosed malaria cases were obtained

from the corresponding Ministries of Health for the periods January
2001 to December 2011 (132 months) in Rwanda, and January 2002 to
December 2010 (108 months) in Uganda. In Rwanda, malaria data was
obtained at the Health Facility level. Health facility data were then
aggregated at the district level based on the coordinates (latitude and
longitude) of each health facility. Uganda data were obtained at the dis-
trict level from the Ministry of Health, Health Management Information
System. Due to changes in the number of administrative districts over
time (2006 and 2010), we froze the geography of the country to its 2002
geographical distribution. Missing malaria counts were estimated
using a singular value decomposition-based method proposed by
Troyanskaya et al. (2001), and included in the bcv package (Perry,
2009) for R (R Development Core Team, 2010). Malaria data for the
Uganda district of Kalangala were excluded from the analysis because
it was not possible to retrieve air temperature estimates for this dis-
trict. Malaria data for both countries were obtained through the
HEALTHY FUTURES data sharing Consortium Agreement. HEALTHY
FUTURES is an international and inter-institutional project funded
under the European Commission’s Seventh Framework Research
Programme (grant agreement 266327).

Weather data
Daily global near-surface (∼2 m height) mean air temperature data

developed by Jones et al. (2010) from the NASA Advanced Microwave
Scanning Radiometer on the Earth Observing System (AMSR-E) were
retrieved from NASA (2013) at a 25 km×25 km resolution. We preferred
the AMSR-E dataset over other satellite-derived products because it
estimates global surface air temperature during day or night, even
under cloudy, non-precipitating and non-frozen conditions (Chuang et
al., 2012). AMSR-E data were only available for the period June 2002 to
September 2011. Mean daily precipitation data were obtained from the
Famine Early Warning Systems Network RFE version 2.0 (FEWS-RFE
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V2.0) for the whole of Africa (IRI, 2012), at a 0.1 degree resolution.
Rainfall data were obtained for the period January 2002 to December
2011. District-specific values for both meteorological parameters were
estimated using standard procedures included in the R raster package
(Hijmans, 2013). Due to the missing air temperature values for the
months before June 2002 and after September 2011, all datasets were
subset to the same time span of the AMSR-E air temperature data (i.e.
June 2002 to a maximum of September 2011).

Demographic data
Gridded population estimates at a 2.5 arc min resolution were

obtained for the whole world from the Gridded Population of the World
project (SEDAC, 2012) at five-year intervals. Monthly population esti-
mates for each grid box were derived using linear interpolation.
Population estimates for each district were then computed using stan-
dard methods included in the R raster package (Hijmans, 2013).

Socioeconomic data
In Rwanda, the average number of annual female outpatient visits to

health facilities, female literacy rate, percentage of women aged 15-49
who reported serious problems in accessing health care, percentage of
children aged 6-59 months with any kind of anaemia, and the percent-
age of households with at least one mosquito net (treated or untreated)
were retrieved from the National Institute of Statistics of Rwanda
(NISR, MOH and ICF International, 2012). These data comprised one
observation per district corresponding to the mean value for year 2010.
Socioeconomic data for Uganda included the percentage of the popula-
tion living in urban areas by 2002, poverty rate (%), and the average
rural population density per km2 (both of them for year 2005). Data
were retrieved from the World Resources Institute (WRI, 2012). Urban
areas in Uganda were defined using the 2002 National Population and
Housing Census (UBOS, 2002) divided into categories of gazetted
cities, municipalities, and town councils. Data were aggregated at the
district level using standard methods within the R raster package as
before (Hijmans, 2013).

Best subset selection of socioeconomic predictors
We aimed to investigate relationships between malaria, air temper-

ature and rainfall. Consequently, both air temperature and rainfall
were present in all our model specifications. The best subset of socioe-
conomic predictors, on the other hand, was determined fitting a series
of generalised additive mixed models (GAMM) (Wood, 2006). A time
series cross-validation (TSCV) algorithm was implemented following
James et al. (2013) and Hyndman and Athanasopoulos (2014) to select
the set of socioeconomic predictors raising the lowest test error. TSCV
was used rather than k-fold or leave-one-out cross-validation methods
because these last two methods assume that the data are independent
and identically distributed, an assumption violated by epidemiological
surveillance time series which are typically serially correlated
(Bergmeir and Benítez, 2012; Opsomer et al., 2001).
We fitted models using all socioeconomic predictors in isolation, as

well as all possible combinations. Thus, we progressively fitted all pos-
sible models containing only one socioeconomic predictor, then two of
these predictors, and so on, with all predictors included in the final
model. The mean absolute error (MAE) was selected as the measure for
test error. We preferred MAE over the root mean square error (RMSE),
because MAE is a natural and unambiguous measure of average error
magnitude (Willmott and Matsuura, 2005).
TSCV was implemented dividing the dataset into a training and a

test set. Models were fitted on a training dataset comprising a fixed

number of observations (m) equivalent to 60% of the total observa-
tions. Thus, at time t=1, the training set comprised observations for
times t=1,...,m ; at t=2 it comprised observations for t=2,..., m+1, and
so on. The test set comprised the first observations per district imme-
diately after that at the end of the training set. Thus, when the training
set comprised observations at times t=1,…, m, the test set contained
the observation t=m+1; when the training set included observations at
times t=2,..., m +1, then the test set contained the observation t=m+2,
and so on until the test set contained the observation at time t=n;
where n is the total number of observations in the dataset. TSCV was
implemented for all socioeconomic predictors. Error estimates were
computed for every time step t=1,...,T, and for each subset of predictors
h=1,...,H as in the following matrix:

�                                                                                                                   
The error estimate for each subset (henceforth MAEt,h) was comput-

ed averaging the subset-specific values (the columns in the matrix
above) for all time steps. We aimed to identify the subset of socioeco-
nomic predictors raising the lowest MAEt,h error.

A general description of the modelling approach:
The expected number of malaria cases E(Yit) for district i=1,...,I

(where I=30 in Rwanda, and I=55 in Uganda), at time t=1,...,T was
assumed to follow an overdispersed Poisson distribution. To account
for such overdispersion, we fitted quasi-maximum likelihood Poisson
models allowing the scale parameter to be different from the mean
(Cameron and Trivedi, 1990). The Poisson quasi-maximum likelihood
estimator is the standard consistent estimators for count variables
when we cannot assume that the Poisson distribution is true
(Wooldridge, 2002). This quasi-maximum likelihood estimator is
robust to distributional misspecification, and is efficient even when
data distribution is not Poisson (Wooldridge, 2002). Some elements
were constant to all models to account for specific aspects of the dis-
ease dynamics.
First, air temperature and precipitation were included as the main

predictors of changes in malaria incidence. Second, we included the
logarithm of the population/month at risk as an offset to adjust the
malaria data by population to estimate relations on the crude inci-
dence rate (CIR) rather than on the total number of cases as in
Colón-González et al. (2013). Third, whenever significant, we incor-
porated a smooth interaction function between the latitude and lon-
gitude coordinates of each district’s centroid to model any spatial
dependence in the data (Lowe et al., 2013; Wood, 2006). Fourth, we
used cubic spline functions for time to control for long-term trends
and seasonality in malaria incidence following Bhaskaran et al.
(2013). Long-term trends were controlled for because it is impossible
to ascertain whether these trends are due to real changes in malaria
incidence over time, or due to changes in reporting or coverage.
Similarly, seasonality was accounted for because seasonal patterns in
malaria incidence could be related to factors other than weather such
as irrigation practices (Baeza et al., 2011). Finally, we incorporated
district-specific random effects to account for the effects of unknown
or unobserved variables (Johnston and DiNardo, 1997) in the model
such as diagnostic performance variability, immunity, and interven-
tion measures following Lowe et al. (2013).
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Accounting for seasonality
Malaria shows distinct seasonal patterns that could vary between

regions as a response to climate forcing (Dery et al., 2010; Haque et al.,
2010). Meteorological factors are characterised by being spatially
coherent at large scales (Conrad, 1946), and so climate-related season-
al changes in malaria incidence are also expected to be coherent across
spatial scales larger than the typical administrative unit at which
health data are recorded. Non-climatic factors such as irrigation prac-
tices (see for example Baeza et al., 2011) could also modulate seasonal
changes in malaria incidence; however, these changes are likely to
occur at a finer spatial scale.
The potential differences in the seasonal patterns of malaria inci-

dence across space pose the question as to whether seasonality should
be modelled using one spline function of time for the whole country, or
it would be better to use a spline function for each of the regions where
malaria incidence shows a similar seasonal pattern. To test this
hypothesis, we fitted models with a single spline function of time for
the whole country, and then models with a spline function of time for
each distinct region, and compared their MAEt,h errors. The model with
the lowest MAEt,h error was selected. To define regions with similar sea-
sonal malaria dynamics, we used the output of the fully dynamical
Vector-borne disease community model of the International Centre for
Theoretical Physics, Trieste (VECTRI) malaria model, version 1.3
(Tompkins and Ermert, 2013). A full description of the VECTRI model
can be found elsewhere (Tompkins and Ermert, 2013). Briefly, VECTRI
is a high-resolution dynamical malaria model that explicitly accounts
for the effects of temperature on the key cycles of malaria transmis-
sion, and the effects of rainfall on seasonal temporary water bodies in
a pond model in addition to the effects of population density on the cal-
culation of daily biting rates. The VECTRI model neglects the effects of
non-climatic influential factors such as host immunity, migration and
interventions. We preferred using VECTRI-derived outputs over
observed malaria reports because, by being essentially climate-driven,
the VECTRI outputs are spatially homogeneous. Epidemiological sur-
veillance data, on the other hand, are rarely if ever spatially homoge-
neous due to the influence of local non-climatic factors.
Daily entomological inoculation rates or EIR (number of infectious

mosquito bites per person per unit time) were estimated at a 10 km×10
km for the period 1 January 2001 to 31 December 2012, and then aver-
aged at the monthly scale. The logarithm of the EIR (log-EIR) was then
computed and used as our malaria metric because previous research
indicates that its behaviour is correlated to that of malaria incidence
(Beier et al., 1999; Smith et al., 1998). Monthly log-EIR estimates were
retrieved for both countries using the R raster package (Hijmans, 2013)
and aggregated at the district level.
Districts were allocated to a climate-influenced region using Ward’s

Minimum Variance Clustering (WMVC) on the mean annual cycle of
the log-EIR. The mean annual cycle consisted of district-specific mean
log-EIR estimates for each month of the year. WMVC has been exten-
sively described elsewhere (Borcard et al., 2011). Briefly, WMVC is a
clustering method based on the linear model sum of squares criterion
to produce groups that minimise the within-group sum of squares
(Borcard et al., 2011).
District-specific log-EIR annual cycles were normalised (with zero

mean and unit variance) to adjust for different scales between dis-
tricts as in Shannon et al. (2003). Membership to a climatic region
was binary such that a district could only belong to one region after the
partition process (Legendre and Rogers, 1972). We selected WMVC
because it is less susceptible to noise and outliers than other methods
such as k-means (Tan et al., 2005). WMVC was performed using the R
statistics package.

Model specification
We specified the expected number of malaria cases in province i and

time t as follows:

   

where g(mit) is a log link function of the expectation E(Yit≡mit), 
α denotes the intercept; Log(ξit) is the logarithm of the population at
risk for district i and time t included as an offset to adjust the malaria
data by population; h(Lati, Loni) is a smooth function of the interaction
between the district-specific latitude and longitude centroid coordi-
nates; t’ is a cubic regression spline function of time t to control for
long-term trends and seasonality over the whole data period. The spline
function of time had k=1,...,K degrees of freedom (number of calendar
years×S seasons) to control for seasonality in the data. The number of
seasons per year S was selected fitting the model with two or four
degrees of freedom per year. Whenever it helped to reduce the MAEt,h
error compared to a single spline for the whole country, a spline func-
tion of time was fitted for each climate-influenced region j=1,...,J to
account for region-specific long-term trends and seasonality. The term
di denotes district-specific random effects; uit are socioeconomic vari-
ables with linear effects specified by the related coefficients β; f(.)
denotes smoothed relationships between the meteorological parame-
ters xit and malaria incidence at lags l=1,...,L.
The relationship between g(mit) and f(xit) is defined with a series of

cross-basis functions describing simultaneously the nonlinear form of
the relationship along xit and its distributed lag effects (Gasparrini et
al., 2010; Gasparrini, 2011). Cross-basis functions were implemented
using a so-called distributed-lag nonlinear model method (Gasparrini
et al., 2010; Gasparrini, 2011), which effectively avoids the collinearity
issues resulting from the inclusion of a parameter for each lag of the
exposure variable. Detailed algebraic definitions of the cross-basis
functions can be found elsewhere (Gasparrini et al., 2010; Gasparrini,
2011). The exposure dimension of the cross-basis functions (exposure-
response relationships) for both temperature and precipitation was
defined with natural cubic splines with two degrees of freedom. The lag
dimension (lag-response relationship) was defined with linear func-
tions. We considered lags from zero to two months to account for bio-
logically and physically plausible lagged effects. Cross-basis functions
were defined using the R dlnm package (Gasparrini, 2011).

Selection of the degree of smoothing for the expo-
sure-response dimension
After we defined the best subset of socioeconomic predictors, we

defined the most adequate specification for the degree of smoothing of
the exposure dimension of the f (xit) cross-basis functions (see equa-
tion 1). Specifically, we modified the number of degrees of freedom
(ranging from two to six) of the natural cubic splines to model the non-
linear and delayed effects of the weather predictors (Brit et al., 2008;
Haque et al., 2010; Lowe et al., 2013). The lag-response dimension was
defined with linear terms. Models were specified as in equation 1. All
possible model specifications were tested using the TSCV algorithm
described. We aimed to identify the model specification raising the low-
est MAEt,h error estimate.

Contribution of the weather predictors

We evaluated the contribution of air temperature and rainfall to our
preferred models’ predictive power by comparing their ability to reduce
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the model’s MAEt,h error. We fitted these models incorporating all weath-
er and socioeconomic predictors in isolation, as well as all possible com-
binations. Thus, as in the best subset selection step, we fitted all possible
models containing one predictor, then two predictors, and so on until all
predictors were included back into model. The TSCV algorithm was used
to compute the error estimates for each model specification. Error esti-
mates for all model specifications were then compared against a null
model with no weather or socioeconomic predictor.

Results and Discussion 

Descriptive statistics at the national level are reported in Table 1. After
the imputation of missing values, a total of 5,104,341 malaria reports
were estimated in Rwanda over the period January 2001 to December
2011. In Uganda a total of 101,636,920 malaria reports were estimated to
have occurred over the period January 2002 to December 2010. None of
the months reported zero malaria cases at the district level. It is recalled
that in this study, malaria cases refer to clinically diagnosed (suspected)
malaria occurrences.
The average monthly CIR in Rwanda was relatively low with only about

five cases occurring for every 1000 people partly due to the high mean
altitude of the country (∼1800 m above mean sea level). The CIR in
Uganda was considerably greater with about 39 cases per 1000 people
occurring each month. Near-surface air temperature was suitable for
malaria transmission in all districts and months in both countries
(range=18-33°C in Rwanda, and 20-41°C in Uganda), meanwhile precip-
itation seems to be an important limiting factor with some months expe-
riencing low or zero rainfall (range=0-13 mm day−1 in Rwanda, and 0-12

mm day−1 in Uganda). Table 1 also indicates that there are moderate to
large disparities in the socioeconomic conditions of the districts in both
countries but does not provide information about their spatial distribu-
tion. In Rwanda, the largest disparities were related to the problems
experienced by female patients for accessing health care, and to the pos-
session of mosquito nets for preventing malaria transmission. In
Uganda, greatest variability was observed in urbanisation where per-
centages ranged between one and 100%. However, it must be pointed out
that most of the districts show urbanisation levels between one and
twelve percent, four districts show levels between 15 and 25%, and only
Kampala was reported with an urbanisation level of 100%.
Figure 1 shows the spatial patterns observed in malaria incidence.

Greater incidence rates were observed in low-lying districts in Rwanda
compared to high-elevation areas. Previous reports indicate a greater
rate of change in the number of malaria cases in the highlands compared
against mid or low altitudes in Rwanda (Loevinsohn, 1994). However, the
absolute number of malaria cases is highest in the eastern, southern,
and south-western parts of the country, characterised for mid to low alti-
tudes as reported by Henninger (2013); USAID (2013a) and Rulisa et al.
(2013). It is noted that these patterns are highly similar to those of air
temperature and rainfall, with greater mean temperature and lower rain-
fall in those districts where malaria incidence is greater. Both tempera-
ture and rainfall largely determine the disease niche through several bio-
logical mechanisms. Warming temperatures, for example, shorten the
sporogonic cycle of the parasite within the vector (Craig et al., 1999)
increasing the likelihood of transmission. Also, the duration of the mos-
quito development from egg to adult, the length of the gonotrophic cycle
length and larvae mortality in the immature stages are steered by tem-
perature to complicate this picture (Paaijmans et al., 2008a, 2008b).
Rainfall, on the other hand, may increase the number of breeding sites
for the vector (Gage et al., 2008). It is recalled that malaria transmission

                   Article

Table 1. Descriptive statistics for the weather, demographic, and socioeconomic variables considered in the study. The number of dis-
trict-specific observations retrieved for each variable is indicated by n. The number of observations for all socioeconomic variables
equals the number of districts in each country because data could only be retrieved aggregated annually, and for one particular year.

                                                                                   n                                  Mean                     Median             SD                    Range
                                                                                                                                                      Rwanda                                           

Cases                                                                                              3960                                           1289                                  1000                   1435.4                       4–24479
Crude  incidence rate                                                                3960                                             4.9                                     3.7                       5.6                           0–108.6
Air  temperature (°C)                                                               3360                                            26.0                                   26.7                      3.5                         18.4–33.0
Precipitation  (mm.day−1)                                                         3960                                             2.4                                     2.3                       1.8                            0–12.7
Female outpatients (visits.year−1)                                           30                                               1.8                                     1.6                       0.7                           0.9–3.9
Child anaemia (%)                                                                        30                                              37.6                                   35.6                      8.1                           23–52.7
Female literacy (%)                                                                      30                                              76.9                                   77.4                      7.8                         61.7–92.0
Mosquito net possession (%)                                                   30                                              82.4                                   87.4                     10.9                        59.9–94.8
Problems to access health care (%)                                        30                                              61.6                                   61.0                     12.9                        33.8–87.9

                                                                                                                                                      Uganda                                           

Cases                                                                                              5940                                          17079                                14448                  10819                     24–148162
Crude  incidence rate                                                                5940                                            38.8                                   34.1                     22.7                        0.1–357.8
Air  temperature (°C)                                                               5940                                            29.2                                   29.5                      3.2                         19.8–41.3
Precipitation (mm.day−1)                                                          5940                                             3.0                                     2.8                       1.6                            0–11.9
Poverty rate (%)                                                                            55                                              32.4                                   28.3                     18.5                           0–77.9
Population density (people/km2 )                                             55                                              18.2                                   14.7                     14.6                           0–61.1
Urbanisation (%)                                                                          55                                               8.9                                     6.2                      13.3                          1.1–100
SD, standard deviation.
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shows a highly non-linear relationship with these two drivers (Craig et
al., 1999; Lunde et al., 2013; Tompkins and Ermert, 2013), and so both
high temperatures and heavy rainfall may increase vector mortality
resulting in reduced transmission (Thomson et al., 2005).
The observed spatial heterogeneity in malaria incidence agrees well

with previous research in the country (Karema et al., 2012; Rulisa et al.,
2013), and is likely due to the interplay of several factors including the
local environment, bed net use, and host genetic polymorphism (Clark et
al., 2008). It is noted that child anaemia shows a somewhat similar geo-
graphical distribution to that of malaria incidence with a greater propor-
tion of anaemic children in the eastern and south-western parts of the
country. However, the patterns on the rest of the country are not that sim-
ilar at a visual inspection, and this is evidenced in a low correlation coef-
ficient between these two variables (Spearman ρ=0.3). Some correlation
between these two variables is to be expected, however, because malaria
is frequently associated with anaemia (Douglas et al., 2012; Menendez et
al., 2000). The other socioeconomic indicators showed patterns that dif-
fer from that of malaria incidence. It is difficult to ascertain whether
these patterns reflect the situation for the overall study period because
whilst we have malaria data for over a decade, socioeconomic data could
only be obtained for a single year.
Previous studies conducted in Uganda suggest a homogeneous spatial

pattern with most of the country showing high to very high transmission
levels, and a few, well defined epidemic prone areas located in the high-
lands (UBOS and ICF International, 2009; USAID, 2013b). On the con-
trary, our data show large spatial heterogeneity in the distribution of
malaria cases per 1000 people (Figure 2) with no clear spatial patterns.
Factors such as human behaviour (e.g. irrigation activities), immunity
levels, and access to preventive measures such as sanitation and window
screening (Baeza et al., 2011; Pindolia et al., 2013; Reiter, 2001, 2008),
may all contribute to such heterogeneity in addition to differences in the
criteria, and skills to use diagnostic tools (Kyabayinze et al., 2012; Yeka
et al., 2012). It is noted, however, that malaria incidence tends to be
greater in the northern and eastern half of the country where the mean
temperature, poverty rate, and rural population densities are greater, and
the mean altitude is lower in agreement with previous reports (UBOS
and ICF International, 2009; USAID, 2013b). The levels of urbanisation
do not show a clear spatial pattern. However, some of the districts with
the greater levels of urbanisation in central Uganda show some of the
lowest levels of malaria incidence as observed in other African countries
such as Ghana (Klinkenberg et al., 2008).

Climate-influenced regions
Figure 3 illustrates the location of the climate-influenced regions

obtained through WMVC. The WMVC method applied to the VECTRI-
estimated log-EIR produced a series of compact clusters of districts of
variable size that were coherent with the spatial patterns observed in
malaria incidence. We emphasise that the clustering algorithm identi-
fies differences in malaria seasonality, not in the absolute number of
malaria cases. In Rwanda, districts are assigned to four regions, one of
which covers the east and south of the country where incidence is
greatest. In Uganda, districts were allocated to six regions. It is noted
that the south-western highlands, where malaria incidence has been
continuously reported as being lower (UBOS and ICF International,
2009; USAID, 2013b), is assigned to an independent region. In all
regions of both countries the annual season cycle is bimodal in
response to the two rainy seasons at these latitudes, with maximum
transmission occurring in January and then May-June. Malaria trans-
mission is at its lowest in August in Rwanda, and September in Uganda
(Figure 4). It is notable that the highest variability tends to occur in the
months directly preceding the peak transmission. For example, in

                                                                                                                                Article
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Figure 1. Mean monthly crude incidence rate per 1000 people
(quantiles), mean altitude in km above mean sea level, mean air
surface temperature (°C), mean daily precipitation (mm day−1),
percentage of children aged 6-59 months with any kind of
anaemia, female literacy rate (%), average number of female out-
patient visits to health facilities per annum (quantiles), percent-
age of households with at least one mosquito net (treated or
untreated), and percentage of women aged 15-49 reporting
healthcare access problems across Rwanda.
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regions 3 and 4 in both Rwanda and Uganda, the greatest year-to-year
variability occurs in December (represented as a very large range
between the upper and lower whiskers of the December the box-plot)
just before the transmission peak in January during which variability
is lower (Figures 4 and 5). This behaviour is likely to be produced by
the variability in the onset of rainfall. In other words, transmission is
always underway by January in this zone, while transmission in
December only occurs in years in which the rains begin unusually early

in October and early November. Thus, even in areas where malaria is
mesoendemic or hyperendemic, malaria transmission can still be high-
ly variable in certain months of the year, implying potential usefulness
of malaria early warning systems (Tompkins and Di Giuseppe, 2015).
A conspicuous downward trend in malaria incidence is observed over

the period 2006-2010 in some areas of Rwanda. Figure 6 reveals that
this decrease was not homogeneous across the country (notice that the
figure uses a 12-month rolling mean). In regions 2 and 4 (Figure 6)
characterised by high altitudes, malaria incidence decreased in 2006
and showed a light increase with a peak in late 2010. In regions 1 and 3
(Figure 6) on the other hand, the significant decrease in incidence
observed in 2006 was followed by a significant rise in incidence with a
peak in late 2010, and a further decrease thereafter. Previous research
suggested that these decreases in malaria incidence were related to a
scale-up of intervention measures implemented by the government over
the same period (Karema et al., 2012; Rulisa et al., 2013). Also, the con-
spicuous increase observed in malaria incidence has been attributed to
a temporary decrease in the distribution of insecticide-treated mosquito
nets (Karema et al., 2012). Whilst these hypotheses may be correct, we
found that malaria incidence over the 2006-2010 period, particularly in
Region 3, starts rising at the same time as air temperature (Figure 6).

                   Article

Figure 2. Mean monthly crude incidence rate per 1000 people
(quantiles), mean altitude in km above mean sea level, mean air
surface temperature (°C), mean daily precipitation (mm day−1),
poverty rate (%), rural population density (people/km2), and per-
centage of the population living in urbanised areas (quantiles)
across Uganda.

Figure 3. Spatial location of climate-influenced regions defined
using the spatiotemporal dynamics of the Vector-borne disease
community model of the International Centre for Theoretical
Physics, Trieste-estimated logarithm of the entomological inocu-
lation rate in Rwanda and Uganda. Clusters were computed using
Ward’s minimum variance clustering.
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This observation poses doubts as to whether changes in the interven-
tion measures are the only cause of the observed variations in malaria
incidence, and highlights the need for further investigation. In Uganda,
most regions (i.e. regions 1, 2, 3, and 5) show a significant rising trend
in malaria over the study period (Figure 7). These rising trends agree
well with a recent study conducted in Uganda indicating that malaria in
Uganda has risen and continues to rise in some regions (Kamya et al.,
2015). As in Rwanda, variations in malaria transmission in Uganda are
in agreement with changes in air temperature and rainfall. This agree-
ment is more evident in Regions 1, 4 and 5 where the long-term trends
in malaria transmission closely follow the trends in air temperature. It
is noted that in Region 6 there is a disagreement between the malaria,
temperature and rainfall trends towards the end of the period (2010).
This disagreement could be due to intervention measures to control the
disease in the area. This hypothesis could not be assessed due to the
lack of data on interventions.

Best subset
After having tested 62 model specifications based on the maximum

number of predictor combinations, the TSCV algorithm applied to the

malaria data in Rwanda favoured a GAMM including air temperature,
rainfall, average number of annual female outpatient visits to health
facilities, the percentage of children 6-59 months with any kind of
anaemia, and the percentage of households with at least one mosquito
net in addition to the fixed elements of the model (i.e. spatial and tem-
poral trends, random effects and a population offset). The MAEt,h was
3.24 cases per 1000 people.
For simplicity, we selected a more parsimonious model including

only air temperature, rainfall, and the annual female outpatient visits
that produced the same MAEt,h than the previous model (3.24 cases per
1000 people). The lowest MAEt,h was achieved using a spline function
of time with two degrees of freedom per year for each climatic region
to account for potential long-term trends and seasonality in the data.
Table 2 reports the variables included in the selected model. It is noted
that while the reporting and interpretation of the non-climatic linear
effects is straightforward, the results of the smoothed non-linear
dependencies cannot be summarised using a set of regression param-
eters (Beck and Jackman, 1998; Gasparrini et al., 2010). Graphical
methods are used here to interpret the estimated nonlinearities (see
sub-section Resulting relationships).
In Uganda, a total of 14 model specifications were tested. TSCV

                                                                                                                                Article

Figure 4. Box-plots of the mean seasonal cycle of malaria incidence in four regions across Rwanda. The dispersion between the different
parts of the box-plot helps to show the interannual variability. The thick black horizontal lines inside the boxes indicate the median
value for each month. The top ends of the boxes indicate the upper (75%) quartiles. The lower ends of the boxes mark the lower (25%)
quartiles. The upper and lower whiskers represent the maximum and minimum values for each month (excluding outliers which are
indicated with black dots). Outliers are values beyond ±1.5 times the interquartile range.
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favoured a GAMM including air temperature, rainfall, and urbanisation
(Table 2). The lowest MAEt,h (12.5 cases per 1000 people) was obtained
when using a single spline function of time with four degrees of free-
dom per year for the whole country to control for long-term trends and
seasonality.

Degree of smoothing of the exposure-response rela-
tionships
We tested nine different model specifications with different degrees

of smoothing in the relationship between malaria and each of the
weather predictors. In Rwanda, TSCV favoured a natural cubic spline
with six degrees of freedom (MAEt,h=3.17 cases per 1000 people) to rep-
resent the relations between malaria incidence and air temperature

lagged zero to two months (temp0:2). The results for rainfall lagged zero
to two months (rain0:2) were represented with a natural cubic spline
with two degrees of freedom. Considering the plausibility of the esti-
mated exposure-response relationships, and the compromise between
complexity, generalisability and ease of interpretation (Gasparrini,
2011), we selected a model where both temp0:2 and rain0:2 were repre-
sented by natural cubic splines with two degrees of freedom. The sim-
pler model was easier to interpret because did not require to clarify the
whole complexity of nonlinearities estimated when using a more com-
plex spline function. Similar approaches have been proposed elsewhere
(see for example Armstrong, 2006).
The selected model explained approximately 65% of the deviance in

the malaria data. The MAEt,h of the simpler model (3.24 cases per 1000
people) did not differ greatly from that of the more complex model. In

                   Article

Figure 5. Box-plots of the mean seasonal cycle of malaria incidence in six regions across Uganda. The dispersion between the different
parts of the box-plot helps to show the interannual variability. The thick black horizontal lines inside the boxes indicate the median
value for each month. The top ends of the boxes indicate the upper (75%) quartiles. The lower ends of the boxes mark the lower (25%)
quartiles. The upper and lower whiskers represent the maximum and minimum values for each month (excluding outliers which are
indicated with black dots). Outliers are values beyond ±1.5 times the interquartile range.
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Uganda, TSCV favoured a cubic spline with two degrees of freedom to
represent the relationships between malaria incidence, temp0:2 and
rain0:2.
The MAEt,h raised by this model was 12.5 cases per 1000 people. The

model fit on the Uganda dataset explained 67% of the deviance in the
malaria dataset. We emphasise that these spline functions were
applied only to the exposure-response dimension whilst the lag-
response dimension was defined as a linear function.

Resulting relationships
Figure 8 depicts the cumulative response functions for temp0:2,

rain0:2, the average annual female outpatient visits and urbanisation
levels computed based on the selected models. The relationships
between malaria incidence and the meteorological predictors are inter-
preted as their accumulated effect on malaria incidence over the cur-
rent month, and up to a lag of two months, inclusive, under the hypo-
thetical assumption that the predictor remains constant over that peri-
od. The relative change in malaria incidence per 1000 people or relative
risk, for both variables, is compared against the mean values of both

                                                                                                                                Article
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Figure 6. Time series (12 month-rolling mean) of malaria incidence (solid lines), air temperature (dotted lines), and precipitation
(dashed lines) in four regions in Rwanda. The y axis indicates changes in all three variables measured in standard deviations.

Table 2. Variables included in the selected Poisson generalised addi-
tive mixed models used to assess the effects of weather and non-cli-
matic predictors on malaria incidence in Rwanda and Uganda. 

Country   Predictor                     Type

Rwanda         Temp0:2                                        Distributed lag smooth term
                       Rain0:2                                         Distributed lag smooth term
                       Female outpatient visits        Linear term
                       Latitude and longitude           Smooth term
                       Time                                           Smooth term per climate-influenced region
                       Log-population                         Offset
                       Unobserved variables            Random effects
Uganda          Predictor                                   Type
                       Temp0:2                                        Distributed lag smooth term
                       Rain0:2                                         Distributed lag smooth term
                       Urbanisation                             Linear term
                       Latitude and longitude           Smooth term
                       Time                                           Smooth term 
                       Log-population                         Offset
                       Unobserved variables            Random effects
temp0:2, air temperature lagged zero to two months; rain0:2, results for rainfall lagged zero to two months.
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temp0:2 and rain0:2. Changes in the relative risk of malaria incidence as
a function of the number of female outpatient visits per year and
urbanisation levels, on the other hand, are compared exclusively
against their value in year 2010 and 2002 respectively.
In Rwanda, our preferred model estimates an almost linear positive

relationship between malaria incidence and temp0:2 with temperatures
below the mean producing a lower relative risk than temperatures
above the mean. This relationship indicates that as temp0:2 rises, so
does malaria incidence. The estimated relation may be the result of ris-
ing temperatures increasing the development rate of the vector, and
shortening the length of the sporogonic and gonotrophic cycles result-
ing in increased transmission (Craig et al., 1999). Our mean estimated
relation between malaria incidence and temp0:2 does not agree with the
estimated inverted U shaped relations proposed by Craig et al. (1999)
and Lunde et al. (2013) showing a peak in transmission at about 25-
30°C. However, the lower bound of the 95% confidence interval does

suggest a decrease in the relative risk of malaria at high temperatures
with a peak at approximately 27°C, in agreement with these studies. In
Uganda, on the other hand, the estimated effects of temperature on
malaria incidence show the inverted U shape suggested by Craig et al.
(1999) and Lunde et al. (2013) with a peak at about 27°C. This effect
suggests that malaria transmission in Uganda is constrained by rela-
tively low or high temperatures and agrees with the known ecology of
the disease. Our estimated relationships between malaria and temper-
ature in Rwanda, however, are in strong agreement with those recently
estimated by Lowe et al. (2013) in Malawi, by Haque et al. (2010) in
Bangladesh, and by Blanford et al. (2013) in some districts of Kenya,
and suggest that variations in temp0:2 may not exceed the threshold at
which parasite development is negatively affected to restrict malaria
transmission. It is recalled that although variations in the AMSR-E tem-
perature data correlate well with temperature records from meteorolog-
ical stations (Chuang et al., 2012), the actual temperature may be cold-

                   Article

Figure 7. Time series (12 month-rolling mean) of malaria incidence (solid lines), air temperature (dotted lines), and precipitation
(dashed lines) in six regions in Uganda. The y axis indicates changes in all three variables measured in standard deviations.
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er or warmer than the satellite-derived data. Some anopheline species
(e.g. Anopheles gambiae and A. funestus) spend considerable time
indoors where they shelter from the high temperatures experienced
outdoors (Faye et al., 1997; Githeko et al., 1996; Mnzava et al., 1995).
Other species may seek refuge under a variety of structures such as
leaves, tree holes, and bridges, which may have their own micro-cli-
mate (Githeko et al., 1996; Paaijmans and Thomas, 2011). Whether
temperature measurements recorded by remote sensing devices are
representative of the conditions experienced by mosquitoes in these
micro-climates is uncertain (Paaijmans and Thomas, 2011).
Consequently, even though our data suggest a temperature range
between 18-33°C across the country for the study period, the tempera-
tures experienced by the vector might be significantly colder, and
malaria transmission is thus not restricted by warm temperatures.
The relative risk of malaria in both countries increases with rising

rain0:2 until a maximum is attained at a mean rainfall rate of 5-7

mm•day−1, decreasing thereafter. This non-linear relationship
between transmission and rainfall agrees with previous work in
Botswana (Thomson et al., 2005) and Malawi (Lowe et al., 2013) and is
likely to be partly a result of increasing rainfall contributing to the cre-
ation of rain-filled breeding sites, whereas the observed decay observed
may be related to the flushing of larvae occurring in the presence of
extreme rain events (Paaijmans et al., 2007). Topography, soil type and
land cover will also impact breeding site flushing.
The average number of female outpatient visits to health facilities

per annum (2010) showed a positive log-linear relationship with malar-
ia incidence, and so malaria incidence increases with rising average
annual visits. It has been previously observed that about 50% of all out-
patient visits in endemic countries are related to malaria (Guinovart et
al., 2008; WHO, 2011). Thus, this relationship is expected since
increasing malaria case numbers are likely to result in an increasing
number of outpatient visits. Likewise, a rising number of visits per year
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Figure 8. Generalised additive mixed model-estimated relationships between average monthly malaria incidence, monthly average near-
surface air temperature and precipitation lagged 0 to 2 months from a distributed lag nonlinear model, average number of female out-
patient visits per year, and urbanisation in Rwanda (A) and Uganda (B). The y axis [relative risk (RR)] represents the excess in malaria
incidence with respect to the mean values of each covariate. The thick smooth lines indicate the maximum likelihood estimates, and
the grey shaded areas represent the 95% confidence intervals. The rug at the bottom of each figure indicates observed values for each
covariate.

A

B
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increases the probability of observing malaria or suspected malaria in
outpatients. Such positive relationship may also be a proxy for increas-
ing access to health facilities which is likely to result in increased
reporting as pointed out by Lowe et al. (2013).
We estimated a negative effect of urbanisation on malaria transmis-

sion with more urbanised districts showing a lower relative risk of
malaria than rural districts. This effect agrees well with previous
research indicating that urban areas show lower malaria rates than
rural regions (for example Kelly-Hope and McKenzie, 2009), a situation
possibly due to a dilution effect with large population densities reduc-
ing the likelihood of transmission. Appropriate treatment-seeking
behaviour in health facilities is also more likely to occur urban than in
rural areas due to geographically more accessible facilities in urban
dwellings (Okeke and Okeibunor, 2010). Moreover, some anopheline
species do not breed well in polluted water bodies associated with
urban environments (Sinka et al., 2010), which may lead to lower
transmission levels due to a lower number of circulating adults in these

areas. Also, malaria transmission is largely influenced by housing type,
housing materials, and access to preventive measures (e.g. screens,
insecticide and bed nets), which are likely to be better in urban areas
resulting in a lower risk (Robert et al., 2003).

Model validation
The outputs of the models presented in Table 2 fitted on the whole

time series effectively capture the spatiotemporal distribution of the
observed crude malaria incidence rate in both countries. Figure 9
shows that the time series of GAMM-estimated malaria incidence cap-
tures quite closely the temporal variations observed in the surveillance
data with some overestimations, and several underestimations over
several periods in Rwanda (e.g. 2009-2011). The model estimates for
Uganda, on the other hand, followed variations in the malaria data
more closely with some minor underestimations over the period 2009-
2010. It is noted that the estimated data effectively reflects the tempo-
ral behaviour in malaria incidence observed by Karema et al. (2012) in

                   Article

Figure 9. A, B) Time series of observed and generalised additive mixed model (GAMM)-estimated malaria crude incidence rate (CIR;
cases per 1000 people) aggregated at the national level in Rwanda (A) and Uganda (B). The solid line represents the observed malaria
incidence, and the dashed line corresponds to the GAMM-estimated mean malaria incidence. The shaded area represents the error esti-
mates of the model. C, D) Scatter plot of observed vs GAMM-estimated malaria crude incidence rate aggregated at the national level
in Rwanda (C) and Uganda (D). The dashed line shows the intercept/slope from a linear regression model fitted to both variables. 
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Rwanda with lower incidence over the period 2006-2008, a conspicuous
increase in 2009, and a further decrease from 2010 onwards.
The Spearman rank correlation between observed and predicted

malaria incidence was 0.9 in both countries supporting the notion that
the outputs from our models closely represent the observed variations
in malaria incidence. As observed in Figure 9, observed and estimated
incidence rates for Rwanda are almost linear, with some outliers, the
greatest being related to a peak in observed malaria incidence in 2010
that is largely underestimated by our model. In Uganda, the relation-
ship is stronger than in Rwanda, and this is reflected in a small scatter
of points around the regression line. As expected, due to the presence
of district-specific random effects in the models, the estimated spatial

patterns of malaria incidence largely followed those of the observed
incidence (Figures 1, 2, and Appendix Figure 1). In Rwanda, greater
CIR were estimated in the low-lying districts located in the eastern and
southern parts of the country, and lower values estimated in high-ele-
vation districts, mainly located in western and central Rwanda, in
agreement with Henninger (2013); Rulisa et al. (2013) and USAID
(2013a). In Uganda, the greatest incidence rates were estimated in the
northern part of the country characterised by lowlands as suggested by
UBOS and ICF International (2009) and USAID (2013b). However, the
lowest rates were estimated in the central region as observed in our
malaria dataset, and not in the highland regions as previously reported
(UBOS and ICF International, 2009; USAID, 2013b; Yeka et al., 2012).

                                                                                                                                Article
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Figure 10. A, C) Time series of observed and generalised additive mixed model (GAMM)-estimated malaria crude incidence rate (CIR;
cases per 1000 people) aggregated at the national level in Rwanda (A) and Uganda (C). The solid line represents the observed malaria
incidence, the dashed line corresponds to the GAMM-estimated mean malaria incidence based on a model with socioeconomic without
climatic information in it, and the dotted line indicates the GAMM-estimated malaria incidence based on a model with both weather
and socioeconomic data. The shaded area represents the error estimates of the climate-informed model. B, D) Geographical location of
the districts [Rwanda (B) and Uganda (D)] where the incorporation of weather data into a Poisson GAMM improved the predictive
ability of the model compared against a further model without climatic information in it.
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Contribution of the predictors
Table 3 shows the results of the analysis conducted to assess the con-

tribution of weather to the predictive ability of the model. As can be
observed, compared against a model with no climatic or socioeconomic
information (MAEt,h=3.40 cases per 1000 people), the incorporation of
both temp0:2 and rain0:2 (MAEt,h=3.25 cases per 1000 people) into a single
model fitted to the Rwanda data does contribute to reducing the test error
whilst the incorporation of annual female outpatient visits has a negligi-
ble effect on reducing such error (MAEt,h=3.40 cases per 1000 people).
The climate-informed model raised a similar error estimate as the full
model (MAEt,h=3.24 cases per 1000 people). The small contribution of
outpatient data to the predictive ability of the model is not surprising due
to the lack of long time series of data and the presence of random effects
in the model. Similarly, the weather-informed model fitted on the Uganda
data showed a lower MAEt,h (12.5 cases per 1000 people) than the models
without temp0:2 or rain0:2 information in them (MAEt,h=12.7 cases per
1000 people). As in Rwanda, the contribution of the socioeconomic pre-
dictor (urbanisation) to the predictive ability of the model was negligible
likely due to the lack of long-term time series and the inclusion of ran-
dom effects in the model.
As shown on Figure 10, the climate-informed models were able to cap-

ture most of the inter- and intra-annual variability in malaria incidence.
The non-climate-informed model fitted on the Rwanda data was only able
to capture some of this variation due to the incorporation of long-term
and seasonal trend terms in the model. The non-climate-informed model
fitted on the Uganda data, on the other hand, closely followed the behav-
iour of the climate-informed model suggesting that the overall contribu-
tion of temp0:2 and rain0:2 to the model’s fit is low after having accounted
by long-term trends and seasonality.
The incorporation of weather predictors into the model improved the

model’s predictive ability in 77% of the districts in Rwanda (comprising
about 77% of the total population), and 60% of the districts in Uganda
(containing about 62% of the total population). The districts where
weather improved the predictive ability of the model are highlighted in
Figure 10. It can be observed from the figure that four out the seven
Rwanda districts where weather was unable to improve the model’s pre-
dictive ability correspond to endemic districts where transmission is

highest. This finding is expected because, as suggested by Lowe et al.
(2013) and Tompkins and Di Giuseppe (2015), climate variability may be
less likely to impact malaria transmission in endemic districts where cli-
mate is conducive most of the year and variations in incidence may be
mainly due to control interventions or data errors.
In epidemic-prone districts where transmission is usually low, on the

other hand, high temperatures and precipitation may intermittently pro-
vide suitable conditions for mosquito development that may result in
unusually high malaria transmission, and so, these drivers may be more
likely to contribute to the estimation of malaria risk. In the Uganda
model, on the other hand, weather improved the model’s predictive abil-

                   Article

Figure 11. Error estimates of the generalised additive mixed
model (GAMM)-estimated mean monthly malaria incidence on
the current month, as well as one, two, three, four and five
months ahead using a time series cross-validation algorithm in
Rwanda and Uganda. MAE, mean absolute error.
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Table 3. Error estimates for Poisson generalised additive mixed models fitted to assess the contribution of weather and non-climatic
predictors to the predictive power of the generalised additive mixed model in Rwanda and Uganda.

Country                                    Model                                             Weather and socioeconomic predictors                                        MAEt,h

Rwanda                                                       1                                                                None                                                                                                                                  3.40
                                                                     2                                                                Rain0:2                                                                                                                                 3.29
                                                                     3                                                                Temp0:2                                                                                                                                3.59
                                                                     4                                                                Female outpatient visits                                                                                                3.40
                                                                     5                                                                Rain0:2 and Temp0:2                                                                                                           3.25
                                                                     6                                                                Rain0:2 and female outpatient visits                                                                            3.28
                                                                     7                                                                Temp0:2 and female outpatients visits                                                                        3.58
                                                                     8                                                                Rain0:2, Temp0:2 and female outpatient visits                                                             3.24
Uganda                                                        1                                                                None                                                                                                                                 12.70
                                                                     2                                                                Rain0:2                                                                                                                                12.05
                                                                     3                                                                Temp0:2                                                                                                                              12.94
                                                                     4                                                                Urbanisation                                                                                                                   12.70
                                                                     5                                                                Rain0:2 and Temp0:2                                                                                                          12.52
                                                                     6                                                                Rain0:2 and urbanisation                                                                                               12.06
                                                                     7                                                                Temp0:2 and urbanisation                                                                                              12.95
                                                                     8                                                                Rain0:2, Temp0:2 and urbanisation                                                                                12.52
MAEt,h, mean absolute error for each subset; rain0:2, results for rainfall lagged zero to two months; temp0:2, air temperature lagged zero to two months.
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ity mainly in areas of high endemicity located in Regions 1, 2 and 4
(Figure 10). Compared to the results for Rwanda, this finding seems
counter-intuitive. However, it is recalled that based on our data, malaria
is endemic across the whole of Uganda, and so no epidemic-prone
regions were detected. It is noted that the lack of epidemic-prone areas
in Uganda greatly differs from the malaria endemicity maps proposed by
MOH (2005) where highland areas, mainly located in the south-western
part of the country, are prone to epidemics. Moreover, Regions 1, 2 and 4
in Uganda show a large year-to-year variability in malaria data in certain
months of the year (see for example the box-plots for July, August and
September from Figure 5), which agree well with the variations observed

in rainfall in these regions (Appendix Figure 2). Therefore, it is likely
that temp0:2 and rain0:2 improve the predictive ability of the model in
areas of great climate-driven variability. From Table 3 we noted that mod-
els including temp0:2 resulted in lower MAEt,h estimates than those from
models with no climatic information (models 1 and 4) only if such mod-
els also included rain0:2 (models 5 and 8). When temp0:2 was used in iso-
lation or in combination with socioeconomic variables (models 3 and 7),
the MAEt,h estimates were consistently greater than those from the mod-
els with no weather information. This finding suggests that once season-
ality and long-term trends are controlled for, AMSR-E derived temp0:2 may
not be the best predictor for explaining the remaining residual variation

                                                                                                                                Article

Figure 12. Generalised additive mixed model-estimated relationships among average monthly malaria incidence, monthly average
near-surface air temperature, and precipitation lagged 0 to 2 months from a distributed lag nonlinear model, average number of
female outpatient visits per year and urbanisation levels in Rwanda (A) and Uganda (B) after having controlled for temporal correla-
tion in the residuals. The smooth lines indicate the restricted maximum likelihood estimates, and the shaded areas represent the 95%
confidence intervals. 
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in malaria incidence, and poses the question as to whether other remote-
sensing products would explain a larger amount of such residual varia-
tion. However, given that the reduction in the predictive ability of the
model was not largely compromised by keeping temp0:2 in, we decided to
retain this variable in the model specification.

Temporal correlation
We detected significant temporal correlation (autocorrelation) in

the deviance residuals at a lag of 1 month (autocorrelation function
was 0.8 in Rwanda and 0.4 in Uganda), which represents a technical
violation of the Poisson model. Such first order autocorrelation was evi-
dent when we computed the MAEt,h for the current month, as well as for
test sets containing observations for one, two, three, four and five
months ahead of the last observation contained in the training set. As
can be observed from Figure 11, the error estimates substantially
increase as we move ahead in time with a lead of zero and one months
raising the smaller error estimates. This finding supports the autocor-
relation function results indicating that there is a temporal autocorre-
lation in the malaria data of the order of about one month.
We explicitly modelled the temporal correlation by including the one

month lagged deviance residuals in the model as suggested by
Brumback et al. (2000) and Bhaskaran et al. (2013), and re-estimated
the relationships between malaria incidence and our selected predic-
tors. This approach significantly reduced the autocorrelation (autocor-
relation function=0.3 in Rwanda, and 0.1 in Uganda). The estimated
exposure-outcome relations changed moderately in Rwanda and
remained the same in Uganda as can be observed in Figure 12. In
Rwanda, little variation is observed in the confidence intervals of both
temp0:2 and female outpatients, with no major changes in the mean
response. It is noted that whilst the confidence intervals for temp0:2
reduced their range, the opposite occurs with the number of female
outpatient visits indicating that this covariate marginally explains
some of the variation in malaria incidence. We emphasise that this
result is likely to be due to the very short dataset available for the
female outpatients predictor and the incorporation of random effects in
the model. More significant changes are observed for rain0:2.
Specifically, the relative risk of malaria incidence increased from about
1.2 to 1.3 for rainfall values between 5-7 mm day−1. Additionally, the
decrease in risk became slightly more gradual after having controlled
by temporal correlation.

Conclusions

Here, we presented an analysis of the overall relations between
malaria incidence, air temperature, and rainfall across Rwanda and
Uganda. For this study we brought together, to our knowledge, the
longest and more spatially diverse malaria datasets yet assembled for
both countries, only closely matched in Rwanda by that of Karema et al.
(2012). Our statistical approach based on a Poisson generalised addi-
tive mixed model with a distributed lag nonlinear specification is
specifically designed to analyse the potential delayed and non- linear
effects of some predictors on the outcome variable whilst accounting
for the effects of unobserved variables in the model. Our TSCV algo-
rithm has the advantage, relative to more conventional methods such
as AIC, BIC, and R2, that it can provide direct estimates of the test error
whilst the other methods need to make adjustments in the training
error to account for potential biases due to over-fitting (James et al.,
2013). One limitation of this study is that our malaria data is likely sub-
ject to both under-reporting (due to passive epidemiological surveil-

lance that is unable to identify asymptomatic cases, and those who do
not seek medical attention), and over-reporting (due to misdiagnosis
caused by lack of expertise or equipment). Thus, the estimated inci-
dence rates may differ from those occurring in the population. This sit-
uation has been previously detected and acknowledged in a range of
settings (Choge et al., 2014; Kyabayinze et al., 2012; Nankabirwa et al.,
2009; WHO, 2013; Yeka et al., 2012). However, according to WHO
(2013), epidemiological surveillance systems do not need to detect all
cases to allow the assessment of malaria incidence. Epidemiological
surveillance data constitute, to date, the only source of systematic and
continuous empirical data across large spatial and temporal scales for
many countries. Clinically diagnosed (suspected) malaria cases are the
most common and, in many cases, the only available indicator of malar-
ia occurrence in several African countries (Wimberly et al., 2012).
Laboratory confirmed cases would have been preferred for conducting
this study; however, only time series of clinically diagnosed data were
available to cover the entirety of both countries with a time span of
about a decade. Laboratory confirmation is still limited in the region in
terms of tools, skills and infrastructure although efforts are being taken
to improve coverage (Kyabayinze et al., 2012; Yeka et al., 2012). For
example, laboratory confirmation is routinely conducted in six sentinel
sites across Uganda (Okello et al., 2006; Zinszer et al., 2015); however,
the geographical and temporal coverage of the related dataset is con-
siderably low with data freely available only for the period October 2006
to March 2013 for the longest time series. Our dataset covers a greater
geographical area and spans for a larger period, allowing more robust
estimations of malaria relations than the sentinel site set.A further
limitation is related to the use of remote sensing products as a source
for climate data. Although remote sensing indices may not necessarily
correlate with the measurements obtained at weather stations
(Vancutsem et al., 2010), it has been demonstrated that both AMSR-E
derived air temperatures and FEWS rainfall data closely correlate with
observations recorded at meteorological stations in some regions
(Chuang et al., 2012; Cohen-Liechti et al., 2012).
In conclusion, our results provide evidence that both air temperature

and rainfall modulate the risk of malaria occurrence in Rwanda and
Uganda. While the effects of air temperature on malaria were positive
and almost linear in Rwanda, the effects of the same predictor in the
Uganda model were highly nonlinear as reported by previous studies.
The effects of precipitation were also significantly nonlinear as expect-
ed; and these results are in strong agreement with previous research
in the field. The effects of socioeconomic development on malaria inci-
dence are, however, difficult to ascertain due to the scarce amount of
data available. This paper contributes to the field in that although the
effects of both temperature and rainfall had had been previously inves-
tigated for other countries in the region (Blanford et al., 2013; Garske
et al., 2013; Lowe et al., 2013), nation-wide studies of these effects
across the whole of Rwanda or Uganda have not been previously under-
taken. A novel contribution of this study is that we implement a TSCV
algorithm to evaluate the predictive performance of our model, and to
prevent over-fitting caused by including too many degrees of freedom.
TSCV provides a relatively unbiased measure of the true error of the
model based on new data.
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