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SUMMARY

Importin-as are essential adapter proteins that recruit cytoplasmic proteins destined for active nuclear

import to the nuclear transport machinery. Cargo proteins interact with the importin-a armadillo repeat

domain via nuclear localization sequences (NLSs), short amino acids motifs enriched in Lys and Arg resi-

dues. Plant genomes typically encode several importin-a paralogs that can have both specific and partially

redundant functions. Although some cargos are preferentially imported by a distinct importin-a it remains

unknown how this specificity is generated and to what extent cargos compete for binding to nuclear trans-

port receptors. Here we report that the effector protein HaRxL106 from the oomycete pathogen Hyalopero-

nospora arabidopsidis co-opts the host cell’s nuclear import machinery. We use HaRxL106 as a probe to

determine redundant and specific functions of importin-a paralogs from Arabidopsis thaliana. A crystal

structure of the importin-a3/MOS6 armadillo repeat domain suggests that five of the six Arabidopsis impor-

tin-as expressed in rosette leaves have an almost identical NLS-binding site. Comparison of the importin-a
binding affinities of HaRxL106 and other cargos in vitro and in plant cells suggests that relatively small affin-

ity differences in vitro affect the rate of transport complex formation in vivo. Our results suggest that cargo

affinity for importin-a, sequence variation at the importin-a NLS-binding sites and tissue-specific expression

levels of importin-as determine formation of cargo/importin-a transport complexes in plant cells.

Keywords: importin-a, nucleo-cytoplasmic transport, nuclear localization sequence, oomycete effector,

plant innate immunity, Hyaloperonospora arabidopsidis, Arabidopsis thaliana.

INTRODUCTION

In eukaryotic cells the nuclear envelope acts as a selective

barrier separating nuclear from cytoplasmic processes.

Coordination of nuclear and cytoplasmic events is medi-

ated by nuclear pore complexes (NPCs) that span the

nuclear envelope. Low-molecular-weight compounds such

as solutes and proteins with a molecular weight of <40–
60 kDa can traverse NPCs by passive diffusion (Stewart,

2007; Wang and Brattain, 2007). Proteins of higher molecu-

lar weight rely on nuclear transport receptors (NTRs) for

passage through NPCs. Notably, many nuclear proteins of

molecular weight below 40–60 kDa, such as several tran-

scription factors, are also imported by NTRs, presumably

ensuring more efficient nuclear import compared with

passive diffusion (Ballesteros et al., 2001; Krebs et al.,

2010). NTRs of the importin-a/b class are conserved from

yeast to plant cells and transport many distinct cargo pro-

teins into the nucleus. Importin-as act as adapter proteins.

The importin-a armadillo repeat domain binds to nuclear

localization sequences (NLSs) of cargo proteins whilst an

N-terminal a-helix makes direct contact to importin-b and

is therefore called the importin-b-binding (IBB) domain

(Cook et al., 2007). The IBB domain contains a sequence

related to bipartite NLSs and, in the absence of importin-b,
the IBB domain competes with NLS-cargos for binding to

the armadillo repeat domain. On the cytoplasmic side of

the NPC, binding of the IBB domain to importin-b negates
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this auto-inhibitory effect of the IBB domain and therefore

facilitates cargo binding to importin-a (Kobe, 1999; Harr-

eman et al., 2003). Active transport of the ternary importin-

a/b/cargo complex through the NPC is mediated by direct

interactions between importin-b and Phe/Gly-repeat nucle-

oporin proteins that line the inner side of the NPC (Terry

and Wente, 2009). On the nucleoplasmic side of the NPC

the ternary complex is destabilized by binding of the GTP-

bound form of the small GTPase Ran to importin-b, result-
ing in dissociation of the IBB domain from importin-b. This
re-establishes the auto-inhibitory effect of the IBB domain

on cargo binding and leads to release of cargo proteins on

the nucleoplasmic side of the NPC (G€orlich et al., 1996;

Moroianu et al., 1996; Harreman et al., 2003).

Nuclear import rates in yeast correlate with formation of

the importin-a/b/cargo ternary complex in the cytoplasm

(Hodel et al., 2006; Timney et al., 2006). Thus, nuclear

import kinetics are influenced by the cytoplasmic concen-

trations of both cargo proteins and NTRs, as well as the

affinity of a particular cargo NLS for the NTR. The best

characterized NLSs are Lys/Arg-rich sequence motifs that

fall into two subgroups, monopartite NLSs with the con-

sensus sequence (K[K/R]X]K/R]) and bipartite NLSs with

two clusters of basic residues separated by a linker

sequence ([K/R][K/R]X10–12[K/R]3/5) (Chang et al., 2012;

Marfori et al., 2012). The importin-a armadillo repeats form

two NLS-binding sites on the concave side of the protein,

referred to as ‘major’ and ‘minor’ binding site. Whereas

bipartite NLSs make contact to both binding sites, mono-

partite NLSs bind to either the major or the minor site

(Marfori et al., 2011; Chang et al., 2013).

Adapted plant pathogens suppress host defences by

translocating effector proteins into plant cells (Dou and

Zhou, 2012; Petre and Kamoun, 2014). Several effectors

that manipulate nuclear processes have evolved NLSs and

co-opt the host’s importin-a/b system. In plant cells

infected with Agrobacterium tumefaciens the effector

VirD2 forms a covalently linked complex with the T-DNA in

the cytoplasm (D€urrenberger et al., 1989). A bipartite NLS

at the C-terminus of VirD2 interacts with several Arabidop-

sis importin-as and mediates transfer of the T-DNA

complex to the nucleus (Ballas and Citovsky, 1997;

Bhattacharjee et al., 2008). Silencing of importin-a1 or -a2
in Nicotiana benthamiana attenuates nuclear import of sev-

eral effectors from the oomycete pathogen Phytophthora

infestans and the Candidatus Phytoplasma asteris effector

SAP11 (Kanneganti et al., 2007; Bai et al., 2009). Importin-

a-mediated nuclear import is also essential for recognition

of the Xanthomonas campestris transcription activator-like

(TAL) effector AvrBs3 by the pepper Bs3 gene (Van den Ac-

kerveken et al., 1996; Szurek et al., 2001). AvrBs3 interacts

with plant importin-as via a C-terminal NLS that is

conserved in other TAL effectors (Szurek et al., 2001;

Schornack et al., 2013).

A subcellular localization screen of effector candidates

from the Arabidopsis downy mildew pathogen Hyalopero-

nospora arabidopsidis (Hpa) revealed that 33% show

entirely nuclear localization (Caillaud et al., 2012). Despite

the prevalence of putative NLSs in effector sequences, a

directed Y2H screen of 83 effectors from Hpa and Pseudo-

monas syringae detected only two interactions between

plant importin-as and effectors (Mukhtar et al., 2011). Hpa

effector HaRxLL445 interacts with importin-a3/MODIFIER

OF SNC1 6 (MOS6) whereas effector HaRxL106 interacts

with MOS6, importin-a1, -a2 and -a4. However, results

from directed protein–protein interaction assays might not

predict with certainty the formation of specific cargo/im-

portin-a complexes in plant cells.

Here we report that Hpa effector HaRxL106 binds to the

MOS6 armadillo repeat domain via a bipartite NLS with

low micro-molar affinity, which is in the range of binding

affinities that has been determined for other cargo/impor-

tin-a interactions (Marfori et al., 2012). We find that small

differences in NLS/importin-a binding affinities in vitro

result in significant changes in cargo/importin-a complex

formation in plant cells suggesting that there is significant

competition between cargo proteins for binding to impor-

tin-as. A crystal structure of the MOS6 armadillo repeat

domain suggests strong conservation of the NLS-binding

sites between MOS6 and four other Arabidopsis importin-

as. HaRxL106 binds equally well to these importin-a pro-

teins when they are expressed to comparable levels in

N. benthamiana. In Arabidopsis leaves, HaRxL106 prefer-

entially forms protein complexes with the most highly

expressed importin-a1, -a2 and -a4. This suggests that

besides sequence variation in NLS-binding sites, importin-

a protein levels can determine which cargo/importin-a
complexes form in plant cells.

RESULTS

HaRxL106 co-opts the host cell’s nuclear import system

An RFP-tagged version of HaRxL106, lacking its predicted

secretion leader peptide (HaRxL106 amino acids 25–285,

referred to as RFP–HaRxL106 from here on), showed

entirely nuclear localization when transiently expressed in

N. benthamiana and when constitutively expressed in Ara-

bidopsis (Figures 1a and S1). NLS prediction algorithms

identified a putative bipartite NLS at amino acids 239–264

(RGKKRGQTEAPDLEPGLTPKQKRLKR) of HaRxL106 (Kosugi

et al., 2009; Nguyen Ba et al., 2009). By testing a series of

N-terminal deletion constructs of HaRxL106 for interaction

with MOS6 in a co-immunoprecipitation (co-IP) assay, we

confirmed that HaRxL106 amino acids 228–285 (the C-ter-

minal 58 amino acids that encompass the predicted NLS)

were sufficient for binding to MOS6 (Figure S2). A con-

struct with a further N-terminal deletion, HaRxL106 amino

acids 244–285, did not accumulate to detectable levels
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preventing us from testing its interaction with MOS6 by

co-IP. This construct therefore served as a negative control

to exclude non-specific binding of MOS6–GFP to the a-HA
affinity resin (Figure S2). Fusion of the 58 C-terminal amino

acids of HaRxL106 to RFP (‘RFP–Cterm58’ in Figure 1a)

shifted the subcellular localization of RFP from nucleo-

cytoplasmic to entirely nuclear, demonstrating that this

region of HaRxL106 carries a functional NLS. In contrast,

deletion of these 58 amino acids (RFP–HaRxL106DC)
resulted in a nucleo-cytoplasmic distribution that was

indistinguishable from RFP alone (Figure 1a). Fusion of a

heterologous NLS (PKKKRKV) from the SV40 T-antigen

to either the N- or C-terminus of the HaRxL106DC
sequence restored entirely nuclear localization (Figure 1a).

Despite deletion of the NLS-containing C-terminus, the

RFP–HaRxL106DC construct still showed residual nuclear

localization. This could either be due to a second NLS in

the HaRxL106DC sequence, or due to elevated passive dif-

fusion of the RFP–HaRxL106DC construct (predicted molec-

ular weight 51.3 versus 57.8 kDa for RFP–HaRxL106). To

test for presence of an additional NLS we replaced the two

clusters of basic amino acids in the predicted bipartite NLS

of HaRxL106 by the amino acid sequence NAAIRS, which is

unlikely to interfere with protein secondary structure (Wil-

son et al., 1985; Marsilio et al., 1991). This RFP–HaRxL106

NAAIRS1+2 fusion protein was more efficiently excluded

from nuclei than the RFP–HaRxL106DC fusion (Figure 1a),

suggesting that the residual nuclear localization of the lat-

ter construct is due to passive diffusion into nuclei. We

confirmed by an a-RFP western blot (Figure 1b) that all

(a)

(b)

Figure 1. The C-terminal 58 amino acids of HaRxL106 are sufficient and required for active nuclear import.

(a) Confocal images of RFP and the indicated RFP–HaRxL106 fusion constructs in epidermal cells of N. benthamiana. The images were taken 48 h after infiltra-

tion with A. tumefaciens. Upper panels show RFP channel, lower panels show RFP channel overlaid on bright field images. Scale bars 50 lm.

(b) Western blot of soluble proteins extracts for the RFP fusions used in (a). Samples were harvested 48 h post infiltration with A. tumefaciens and probed with

a-RFP antibody. NS = non-specific signal of the a-RFP antibody. Coomassie stain shows RubisCO band as loading control.
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constructs were expressed and that RFP–HaRxL106 fusions

were stable in N. benthamiana. Taken together, these data

demonstrate that the C-terminal 58 amino acids of HaR-

xL106 mediate interaction with host importin-as and that

the bipartite NLS is required and sufficient for active

nuclear import of the effector.

HaRxL106 binds to MOS6 directly and with low micro-

molar affinity

To test for direct interaction between HaRxL106 and impor-

tin-a3/MOS6 in vitro, we generated E. coli expression con-

structs for the HaRxL106 effector domain (HaRxL106 amino

acids 46–285, excluding the N-terminal signal peptide and

the RxLR motif), an HaRxL106DC version of the same

domain (amino acids 46–227) and a truncated version of

MOS6 lacking its N-terminal IBB domain. We purified all

proteins from the soluble fraction of E. coli crude extracts

via an N-terminal His6 tag and tested for direct

protein–protein interactions by separating protein mixtures

on an analytical size exclusion chromatography column

(Figure 2a,b). When His6-DIBBMOS6 was mixed with

His6-HaRxL106DC, both proteins eluted in separate peaks

(Figure 2a,b). Instead, when we separated mixtures of

His6-DIBBMOS6 and His6-HaRxL106, both proteins

co-eluted from the column in a complex with a higher

molecular weight than the importin-a alone (Figure 2a,b).

Therefore, the effector domain of HaRxL106 directly binds

to the armadillo repeat domain of MOS6 and this interac-

tion requires the HaRxL106 C-terminus encompassing the

NLS.

Loss of importin-a3/MOS6 attenuates constitutive

immune signalling in the snc1 mutant background and

mos6mutants are more susceptible to compatible Hpa races

and weakly virulent strains of P. syringae (Palma et al., 2005

and Figure S3). Formally, MOS6 and other importin-as could

therefore also be virulence targets of HaRxL106. However,

(a) (b)

(c)

Figure 2. HaRxL106 and MOS6 form a stable complex in vitro with a Kd in the low micro-molar range.

(a) Elution volumes of His6-tagged HaRxL106, HaRxL106DC and DIBBMOS6 on a Superdex HR 200 30/10 size exclusion chromatography column determined by

absorption at 280 nm. The upper two panels show elution profiles of the three proteins alone. The lower two panels show elution profiles of mixtures of DIBB-
MOS6 with either HaRxL106 or HaRxL106DC at a molar ratio of 1DIBBMOS6:2HaRxL106(DC).

(b) SDS-PAGE of fractions of DIBBMOS6/HaRxL106 and the DIBBMOS6/HaRxL106DC control eluting from the column.

(c) ITC binding isotherms and associated fits for the interactions between His6–DIBBMOS6 and His6–HaRxL106, His6–HaRxL106DC or His6–SAP11. Kd values are

representative of two ITC experiments.
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our finding that HaRxL106 binds to the MOS6 armadillo

repeat domain via a typical NLS supports the idea that

HaRxL106 binds to importin-as to co-opt the host cell’s

nuclear import system. Artificial NLSs with extremely high

affinity for importin-a can interfere with cargo release in the

nucleus and affect nuclear import (Kosugi et al., 2008; Marf-

ori et al., 2012). We therefore determined the dissociation

constant between DIBBMOS6 and the HaRxL106 effector

domain by isothermal titration calorimetry (ITC). In vitro the

two proteins interacted in a 1:1 molar ratio and we deter-

mined a Kd for the DIBBMOS6 /HaRxL106 complex in the low

micro-molar range (0.54–0.85 lM, Figure 2c; for DH and DS
values see Table S1). To relate this finding to other cargo im-

portin-a interactions, we also determined the dissociation

constants of DIBBMOS6 complexes with the HaRxL106DC–
SV40NLS fusion as well as with the Phytoplasma effector

SAP11 (Bai et al., 2009; Sugio et al., 2011). We found that

both of these interactions had Kd values that were only

moderately higher than those for the DIBBMOS6/HaRxL106

complex (2.22–3.70 lM for HaRxL106DC–SV40NLS and

4.42–6.80 lM for SAP11, respectively; Figure 2c). Therefore,

the HaRxL106 effector domain does not bind to MOS6 with

unusually high affinity suggesting that the interaction is a

canonical cargo/importin-a interaction.

A crystal structure of the MOS6 armadillo repeat domain

suggests almost identical NLS-binding sites in five

Arabidopsis importin-as

We attempted to crystallize DIBBMOS6 in complex with

either HaRxL106 or an HaRxL106 peptide containing the

NLS, but we did not obtain protein crystals of sufficient

quality for structure determination. The DIBBMOS6 protein

on its own formed diffracting protein crystals and enabled

us to determine the crystal structure of the DIBBMOS6 pro-

tein at 2.9 �A resolution (Figure 3a and Table S2; Data S4;

PDB identifier 4TNM). Like other importin-a proteins from

yeast, mammals and rice, DIBBMOS6 forms 10 armadillo

repeats with strong conservation of residues that contrib-

ute to the major and minor NLS-binding sites (Marfori

et al., 2011). We superposed the DIBBMOS6 structure onto

the structure of rice importin-a1a in complex with a

SV40NLS (Chang et al., 2012). This revealed that essen-

tially all amino acids of rice importin-a1a, that make direct

contact to the SV40NLS at the major and minor NLS-bind-

ing sites, are conserved in MOS6 (Figure 3b,c). The Arabid-

opsis genome encodes nine importin-as (Merkle, 2011;

Wirthmueller et al., 2013). Despite a high level of sequence

conservation in the H3 helices that form the NLS-binding

(a) (b)

(c)

Figure 3. The armadillo repeat domain of MOS6 has the canonical importin-a fold.

(a) Crystal structure of the DIBBMOS6 protein in cartoon representation and superposition of the armadillo repeat domains of MOS6 (green) and rice importin-

a1a (light blue, PDB 4B8O) (Chang et al., 2012).

(b) Superposition of DIBBMOS6 (green) and the DIBB variant of rice importin-a1a (light blue, PDB 4B8O) in complex with an SV40NLS (orange) bound at the

major NLS-binding site. Residues of rice importin-a1a that contribute to the NLS-binding site and the corresponding MOS6 amino acids are shown in stick repre-

sentation.

(c) Superposition of DIBBMOS6 (green) and the DIBB variant of rice importin-a1a (light blue, PDB 2YNS) in complex with the B54NLS (orange) bound at the

minor NLS-binding site. Residues of rice importin-a1a that contribute to the NLS-binding site and the corresponding MOS6 amino acids are shown in stick

representation. Residue labels in (b) and (c) correspond to the MOS6 sequence.
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sites, knock-out of a single importin-a gene can lead to

mutant phenotypes (Palma et al., 2005; Bhattacharjee

et al., 2008). One possible determinant of specificity is vari-

ation in the importin-a NLS-binding sites that would lead

to specific interaction with distinct NLSs. We determined

the conservation of the NLS-binding sites of importin-as
expressed in rosette leaves by homology modelling based

on the DIBBMOS6 structure. In RNA-sequencing experi-

ments (Asai et al., 2014) we reliably detected sequencing

reads of six importin-a genes in rosette leaf tissue (impor-

tin-a1, -a2, -a3/MOS6, -a4, -a6 and -a9). Out of these,

importin-a1, -a2 and -a4 had the highest expression levels,

followed by importin-a9, -a6 and -a3/MOS6 (Figure 4a). We

found that residues contributing to the MOS6 NLS-binding

site are strongly conserved in importin-a1, -a2, -a4 and -a6
(Figure 4b) whilst these residues are less conserved in im-

portin-a9 (Figure 4c). Consistent with a conserved NLS-

binding site, StrepII-3xHA (HS)-tagged HaRxL106 bound

equally well to GFP-tagged importin-a1, -a2, -a4 and MOS6

in co-IPs (Figure 4d). In contrast, HaRxL106 did not co-IP

with importin-a9 (Figure 4d). We further tested which im-

portin-as co-purify with HaRxL106 in Arabidopsis. We IP-ed

an YFP–HaRxL106 fusion protein from a stable transgenic

line (see Data S4) and identified co-purifying importin-a

(a)

(d)

(b) (c)

Figure 4. Conservation of the NLS-binding sites of importin-a proteins expressed in Arabidopsis rosette leaves.

(a) Sequencing reads of the nine Arabidopsis importin-as detected by RNA-Seq in Col-0 rosette leaves (Asai et al., 2014). Error bars show standard deviation

(SD) of three biological replicates.

(b) Conservation of residues contributing to the MOS6 NLS-binding sites in Arabidopsis importin-a1, -a2, -a4 and -a6. The figure shows the MOS6 armadillo

repeat domain and amino acids contributing to the inner concave site of the protein are shown in surface representation. Residues coloured in yellow are con-

served in importin-a1, -a2, -a4 and -a6. Orange colour indicates amino acids that diverge from MOS6 in at least one of the other importin-as. For a sequence

alignment of all Arabidopsis importin-a protein sequences, see Wirthmueller et al. (2013).

(c) Conservation of residues contributing to the MOS6 NLS-binding sites in Arabidopsis importin-a9. Representation as in (b).

(d) GFP fusion proteins of importin-a1, -a2, -a4, -a9, MOS6 and free GFP were transiently co-expressed with StrepII-3xHA (HS)-tagged HaRxL106 in N. benthami-

ana. At 48 h post infiltration GFP-tagged importin-as were IP-ed and co-purifying HS–HaRxL106 was detected by an a-HA western blot. Coomassie stains show

RubisCO band in total protein extracts and IP-ed importin-as in the IP blot. Similar results were obtained in two independent experiments.
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proteins by liquid chromatography coupled with mass

spectrometry (LC-MS/MS). In three independent replicates

we consistently detected unique peptides from importin-

a1, -a2 and -a4 in IPs of YFP–HaRxL106, whilst we found

only a single importin-a peptide in one out of three con-

trol IPs from wild-type plants or a line expressing GFP

(Table 1 and Data S1 and S2). Thus, in Arabidopsis

rosette leaves, HaRxL106 appears to bind preferentially to

the three importin-as with the highest mRNA expression

levels.

Small differences in NLS-cargo/importin-a affinities in

vitro significantly affect formation of transport complexes

in plant cells

A previous study reported that although a double Lys to

Ala mutation in the NLS of the yeast ribosomal protein

Rpl25p resulted only in an approximately threefold

reduced binding affinity to its cognate import receptor

Kap123p/importin-b4, this mutation significantly reduced

nuclear import rates in yeast (Timney et al., 2006). The

authors explained this discrepancy by non-specific compe-

tition for importin-b binding by other cytoplasmic proteins

as it could be mimicked by an E. coli protein extract (Tim-

ney et al., 2006). As the HaRxL106/DIBBMOS6 complex has

an approximately 4–8-fold lower Kd when compared with

DIBBMOS6 complexes with HaRxL106DC–SV40NLS or

SAP11, we tested if this difference in Kd affects formation

of MOS6/cargo complexes in N. benthamiana cells. To this

end, we generated a MOS6–YFPC bimolecular fluorescence

complementation (BiFC) expression construct and

co-expressed this fusion protein with YFPN-tagged cargo

proteins in epidermal cells of N. benthamiana. Apart from

an YFP signal in the nucleoplasm, which we observed for

all BiFC pairs tested and therefore might result from spon-

taneous association of the YFP N- and C-terminal halves,

we found that co-expression of YFPN–HaRxL106 with

MOS6–YFPC resulted in speckles at the nuclear rim

(Figure 5a). Speckle formation was dependent on the

HaRxL106 C-terminus as we did not observe them with the

YFPN–HaRxL106DC construct. Although the SV40NLS is

sufficient to restore entirely nuclear localization of

HaRxL106DC (Figure 1a), fusion of the SV40NLS to either

the HaRxL106DC N- or C-terminus did not result in speckles

at the nuclear periphery in BiFC (Figure 5a). Similarly, we

did not observe speckles in BiFC experiments between

YFPN–SAP11 and MOS6–YFPC. Although the molecular

basis of speckle formation in this over-expression system

remains unknown, we suggest that they may represent

MOS6/HaRxL106 complexes that cannot be disassembled

as efficiently as other importin-a/cargo complexes on the

nucleoplasmic side of the NPC.

To exclude the possibility that the YFP speckles of the

YFPN–HaRxL106/MOS6–YFPC interaction are simply due to

differences in protein levels compared with other YFPN-

tagged cargos, we performed co-IPs between transiently

expressed MOS6–GFP and HS-tagged cargo proteins in

N. benthamiana cell extracts. IP of MOS6–GFP co-purified

HS-HaRxL106, but not the corresponding HaRxL106DC con-

struct (Figure 5b). Although the SV40NLS was sufficient to

restore nuclear import of the RFP–HaRxL106DC protein

(Figure 1a), we detected no or only very weak interactions

between MOS6–GFP and HaRxL106DC constructs that carry

the SV40NLS either at the N- or C-terminus (Figure 5b).

HS–SAP11 accumulated to lower levels than all other cargo

proteins in the total extract and we did not detect SAP11

binding to MOS6 in co-IPs (Figure 5b). The BiFC and co-IP

data demonstrate that in plant cells the NLS of HaRxL106

forms more stable complexes with MOS6 than those medi-

ated by the SAP11 or SV40NLS. We next addressed if this

property is unique to HaRxL106. A BLAST search with the

NLS of HaRxL106 against the TAIR Arabidopsis protein

database (v. 10) identified a Lys-rich sequence from the

transcription factor bZIP5 (AT3G49760) as close match (Fig-

ure S4). In co-IPs, we detected a strong interaction

between MOS6–GFP and HS–bZIP5 suggesting that forma-

tion of these stable complexes with MOS6 is not a unique

feature of the HaRxL106 NLS (Figure 5b). In addition to the

HS–bZIP5 monomer (approximately 25 kDa), we also

detected a approximately 50 kDa band in IPs that might

correspond to a bZIP5 dimer (Figure 5b). In BiFC experi-

ments the YFPN–bZIP5/MOS6–YFPC combination formed

speckles at the nuclear periphery although they were less

intense compared to those observed with YFPN–HaRxL106

(Figure 5a). Taken together, the BiFC and co-IP results

show that, despite the similar Kd values we determined for

select NLS-cargo/MOS6 complexes in vitro (Figure 2c),

there are strong differences in transport complex forma-

tion in plant cells (Figure 5).

Table 1 Number of unique importin-a tryptic peptides identified by LC-MS/MS following immunoprecipitation of YFP–HaRxL106 from Ara-
bidopsis

Experiment 1 Experiment 2 Experiment 3

GFP YFP–HaRxL106 GFP YFP–HaRxL106 Col-0 YFP–HaRxL106

Importin-a1 – 4 – 2 – 4
Importin-a2 – 24 1 10 – 13
Importin-a3 – 5 – 4 – 4
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NLS-cargos compete with other proteins for binding to

importin-as in plant cells

Our finding that small differences in Kd values determined

in vitro translate into substantial differences in NLS/im-

portin-a complex formation in plant cells could be due to

competition by other cytoplasmic proteins for importin-a
binding. As we used the non-auto-inhibited DIBB variant

of MOS6 to determine Kd values in vitro (Figure 2c), com-

petition for MOS6 binding in plant cells could be either

due to the auto-inhibiting function of the IBB domain or

due to the presence of other competing proteins in the

cytoplasm. As importin-as are over-expressed in the tran-

sient expression system, negation of IBB auto-inhibition

by endogenous importin-bs is likely to be negligible (Car-

darelli et al., 2009). To distinguish between competition

by the IBB domain and other cytoplasmic proteins we

used the N. benthamiana transient expression system to

test if HaRxL106, HaRxL106DC–SV40NLS and SAP11 differ

in their abilities to form complexes with importin-a2 and

DIBB importin-a2 (importin-a2 and MOS6 show compara-

ble binding to HaRxL106, Figure 4d). The DIBB variant of

importin-a2–YFP protein co-purified slightly more HS–

HaRxL106 than the full-length importin-a2. This could

either be due to the lack of auto-inhibition by the IBB

domain or due to the higher protein levels of the DIBB
importin-a2–YFP construct when compared with importin-

a2–YFP (see CBB stain in Figure 6). However, DIBB
importin-a2–YFP still co-purified HS–HaRxL106 more effi-

ciently than HaRxL106DC–SV40NLS or SAP11 (Figure 6).

Therefore, the differential complex formation in plant cells

is not only a result of enhanced auto-inhibition by the IBB

domain of over-expressed importin-as but is due to

additional competing factors in plant cell extracts. These

findings suggest that endogenous NLS-cargos in plant

cells compete with other proteins for binding to importin-

a receptors and that NLS-cargo concentration and affinity

for importin-as determine formation of ternary transport

complexes in the cytosol.

(a)

(b)

Figure 5. The HaRxL106 NLS mediates stronger complex formation with importin-as than the SV40NLS in plant cells.

(a) BiFC between MOS6–YFPC and the indicated YFPN-tagged NLS-cargo proteins in nuclei of N. benthamiana 48 h post infiltration. Images are representative of

at least 10 nuclei analysed. Scale bars 5 lm.

(b) MOS6–GFP was transiently co-expressed with the indicated StrepII-3xHA (HS)-tagged NLS-cargo proteins in N. benthamiana. At 48 h post infiltration MOS6–
GFP was IP-ed and co-purifying HS-tagged proteins were detected by an a-HA western blot. Coomassie stains show RubisCO band in total protein extracts and

IP-ed importin-as in the IP blot. Similar results were obtained in two independent experiments.
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DISCUSSION

Co-option of the importin-a/b nuclear transport pathway

by HaRxL106 and other pathogen effectors

The contribution of importin-a3/MOS6 to plant immunity

makes it a putative virulence target of pathogen effectors.

Here we provide several lines of evidence suggesting that

HaRxL106 binds to MOS6 and other importin-as as a cargo

protein but does not interfere with their function as NTRs:

(i) HaRxL106 binds MOS6 exclusively via a peptide that

fits to the consensus sequence of bipartite NLSs (Fig-

ure 1; Marfori et al., 2012)

(ii) In vitro, the Kd of the HaRxL106/MOS6 complex is only

slightly lower than that mediated by the canonical

SV40NLS (Figure 2c). In contrast synthetic NLSs, that

interfere with nuclear transport, bind importin-as with

an affinity that is approximately one order of magni-

tude higher than that of the SV40NLS (Kosugi et al.,

2008).

(iii) In vivo the Arabidopsis transcription factor bZIP5 and

HaRxL106 bind to MOS6 with similar efficiency (Fig-

ure 5).

(iv) We have not observed that over-expression of

HaRxL106 in N. benthamiana or A. thaliana leads to

cell death, as one might expect if HaRxL106 were a

strong inhibitor of nucleo-cytoplasmic transport.

Based on the NLS peptide-mediated mode of binding to

importin-as and the Kd of the HaRxL106/MOS6 interaction

we conclude that HaRxL106 is a cargo protein of Arabidop-

sis importin-as. Notably, the molecular weight of several

effectors that exploit the plant’s nuclear transport system

is below the molecular weight exclusion limit of NPCs

(Wang and Brattain, 2007). Like HaRxL106 (27 kDa),

P. infestans NUK7 (47 kDa) and SAP11 (11 kDa) co-opt the

importin-a/b pathway for efficient nuclear import (Howard

et al., 1992; Shurvinton et al., 1992; Kanneganti et al.,

2007; Bai et al., 2009). Therefore, even without an NLS,

these effector proteins would be expected to enter the

host cell nucleus by passive diffusion. Considering that

effector protein levels might be relatively low in an

infected cell, evolution of NLS sequences in these pro-

teins may represent a mechanism for enhanced transport

to ensure efficient delivery to the nucleus when compared

with passive diffusion.

Functional affinity limits of NLS/importin-a interactions

Dissociation constants for several NLS/importin-a com-

plexes from yeast, mammals and plants have been deter-

mined (H€ubner et al., 1999; Hodel et al., 2001, 2006;

Timney et al., 2006; Kosugi et al., 2008; Chang et al., 2012).

Based on these results it has been suggested that Kd val-

ues for canonical NLS-binding to importin-as are in the

range of approximately 10 nM to 1 lM (Marfori et al., 2012).

The Kd values we determined for HaRxL106, HaRxL106DC–
SV40NLS and SAP11 binding to the non-auto-inhibited

MOS6 protein are at or beyond the upper limit of this inter-

val and we would expect even higher Kd values for com-

plexes formed between full-length MOS6 and these cargo

proteins. One explanation for this discrepancy may be the

experimental method used to determine Kd values. The

Figure 6. Competition for importin-a binding in plant cells is not only mediated by the IBB domain.

Importin-a2–YFP or the corresponding DIBB constructs were transiently co-expressed with the indicated HS-tagged NLS-cargo proteins in N. benthamiana.

At 48 h post infiltration YFP-tagged importin-as were IP-ed and co-purifying StrepII-3xHA (HS)-tagged proteins were detected by an a-HA western blot.

Coomassie stains show RubisCO band in total protein extracts and IP-ed importin-as in the IP blot. Similar results were obtained in two independent

experiments.
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10 nM to 1 lM interval is mainly based on assays that

require binding of one protein to a surface, such as plate

binding assays (H€ubner et al., 1999; Timney et al., 2006;

Chang et al., 2012) or surface plasmon resonance (Kosugi

et al., 2008). In contrast, we determined the Kd values

reported here by ITC. Two other reports have used ITC to

determine dissociation constants for NLS/importin-a com-

plexes. Ge et al. (2011) measured a Kd of 3.03 � 0.95 lM
for binding of the NLS peptide from the rat transcription

factor ChREBP to importin-a. Lott et al. (2011) obtained a

Kd of 48.7 � 6.5 lM for binding of the NLS peptide from

human phospholipid scramblase 4 to the non-auto-inhib-

ited form of mouse importin-a2. Thus, it appears that Kd

values in the low micro-molar range are not unusual when

determined by ITC and that differences to previously

reported functional Kd values in the low nano-molar range

are probably due to different methods applied.

Cargo proteins compete for binding to importin-a
receptors in plant cells

Although the NLSs from HaRxL106, SAP11 and the

SV40NLS bind to the non-auto-inhibited form of MOS6

with comparable affinities in vitro, we observed substantial

differences in cargo/importin-a complex formation in plant

cells (BiFC, Figure 5a) and plant cell extracts (co-IP, Fig-

ure 5b). A 4–8-fold difference in Kd values is unlikely to

cause significant differences in complex formation unless

there is competition for binding to the receptor. As the

DIBB variant of importin-a2 co-purifies HaRxL106 much

more efficiently than HaRxL106DC–SV40NLS and SAP11,

this competitive effect is not mediated by the IBB domain

(Figure 6). Our results are consistent with nuclear import

experiments in yeast and in mammalian cells demonstrat-

ing that a 2–7-fold difference in Kd values alters nuclear

import kinetics (Efthymiadis et al., 1997; Xiao et al., 1998;

Hodel et al., 2006; Timney et al., 2006). Timney et al. (2006)

proposed that other cytoplasmic proteins non-specifically

compete with binding of ribosomal cargo proteins to im-

portin-b NTRs, thus explaining the discrepancy between in

vitro and in vivo experiments. The same macromolecular

crowding effect could also explain the difference between

cargo/importin-a complex formation in vitro and in plant

cells. However, we would expect that over-expression of

cargos and importin-as combined with several-fold dilution

of other potentially competing proteins in a plant cell

extract [typical protein concentration 6.5 mg ml�1 versus

estimated protein concentration in the cytosol 100–

200 mg ml�1 (Ellis, 2001; Zeskind et al., 2007)] diminishes

macromolecular crowding. It is therefore surprising that

we still observed differences in cargo/importin-a complex

formation in co-IPs. It is conceivable that in addition to

non-specific competition by bulk cellular proteins other

NLS-cargos compete with binding to importin-as and that

competition is stronger in the approximately 4–8-fold

higher Kd range of the SV40 and SAP11 NLSs when com-

pared to the NLS of HaRxL106.

Conservation of the NLS-binding site in plant importin-as

The nine Arabidopsis importin-a proteins show approxi-

mately 26% overall sequence identity. However, when only

the H3 helices of ARM repeats 1–8 that contribute the NLS-

binding sites are considered, the sequence identity is

approximately 45% (Wirthmueller et al., 2013). This conser-

vation of the H3 helices allowed us to build homology

models for the armadillo repeat domains of other Arabid-

opsis importin-as based on the DIBBMOS6 structure.

Superposition of individual models with the DIBBMOS6

structure revealed an almost complete conservation of the

major and minor NLS-binding sites in five out of six impor-

tin-as expressed in rosette leaves (importin-a1, -a2, -a3, -a4
and -a6) (Figure 4b,c). Our observation that HaRxL106

binds equally well to importin-a1, -a2, -a4 and MOS6 in

plant cell extracts (Figure 4d) is in agreement with a con-

served NLS-binding site on these importin-as. Given this

redundancy, it is interesting that genetic knock-out of a sin-

gle importin-a gene can lead to mutant phenotypes (Palma

et al., 2005; Bhattacharjee et al., 2008). We found that YFP–

HaRxL106, IP-ed from transgenic Arabidopsis lines, pre-

dominantly interacts with importin-a1, -a2 and -a4, which

have the highest expression levels in rosette leaves

(Table 1 and Figure 4a). Tissue-specific differences in

importin-a expression levels might therefore determine

each importin-as contribution to nuclear transport in the

particular cell type. Bhattacharjee et al. (2008) reported that

knock-out of importin-a4, but not -a1, -a2 or MOS6, leads

to lower A. tumefaciens transformation rates in Arabidop-

sis root tissue. Based on available mRNA expression data

(Hruz et al., 2008; Wirthmueller et al., 2013), importin-a4
has the highest expression level in root cells. Bhattacharjee

et al. (2008) also found that several importin-a paralogs

can complement the reduced transformation rates of the

importin-a4 mutant when expressed under control of the

tissue non-specific 35S promoter, supporting the hypothe-

sis that tissue-specific expression levels of single importin-

a genes might determine their contribution to nuclear

transport. The NLS of yeast ribosomal protein Rpl25 has

comparable affinities for the importin-bs Kap123p and

Kap121p. However, due to higher cellular levels of

Kap123p, this importin-b acts as the primary transport

receptor in yeast (Timney et al., 2006). Our results suggest

that: (i) protein levels of plant importin-as; and (ii) the

affinity of an NLS for a particular importin-a are two major

factors that determine which NLS-cargo/importin-a
complexes form in the plant cell cytoplasm. However,

other possible sources of specificity such as different pref-

erences for association of importin-as with importin-bs or

post-translational modification of importin-a/b and NLS

flanking sequences have not thoroughly been addressed in
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plants and might add a further layer of regulation to

nuclear import.

EXPERIMENTAL PROCEDURES

Plants and growth conditions

Growth conditions for N. benthamiana and Arabidopsis have
been described (Fabro et al., 2011; Segonzac et al., 2011). The
mos6-1 and mos6-2 mutants have been described (Palma et al.,
2005). The mos6-4 T-DNA insertion line (SALK 025919) was
obtained from NASC. Transgenic Arabidopsis plants expressing
YFP– and RFP–HaRxL106 were generated by transforming eco-
type Col-0 with A. tumefaciens strain GV3101 pMP90RK carrying
pENS-YFP–HaRxL106 and A. tumefaciens strain GV3101 pMP90
carrying pH7WGR2–HaRxL106, respectively (Logemann et al.,
2006).

Pathogen assays

For bacterial growth assays 4-week-old plants were vacuum-infil-
trated with bacterial suspensions of 1 9 105 cfu ml�1 in 5 mM

MgCl2 and 0.0015% Silwett L-77 of P. syringae DC3000 DAvrPto/
AvrPtoB (Lin and Martin, 2005) or DCEL (Alfano et al., 2000) and
bacterial titres were determined at the day of infiltration and
3 days post inoculation by plating dilution series of extracts from
infected leaves on selective media.

Transient expression

A. tumefaciens GV3101 and GV3103 bacteria were grown on
selective plates, resuspended in 10 mM MgCl2 10 mM MES pH
5.6 and incubated with 100 mM acetosyringone for 2 h at RT.
Each strain was mixed with A. tumefaciens strain GV3101
expressing the silencing suppressor 19 K at a ratio of 1:3[19K].
For co-expression the strains were mixed in a 1:1:3[19K] ratio.
Leaves of 3–4-week-old N. benthamiana plants were infiltrated
with a syringe and leaves were harvested or imaged 48–72 h
later.

Protein extraction from N. benthamiana, co-IP and

western blot

Protein extracts were prepared by grinding N. benthamiana or
Arabidopsis leaf material in liquid nitrogen to a fine powder fol-
lowed by resuspension in extraction buffer [50 mM Tris, 150 mM

NaCl, 10% glycerol, 1 mM EDTA, 5 mM DTT, 19 protease inhibitor
cocktail (Sigma, http://www.sigmaaldrich.com), pH 7.5] at a ratio
of 2 ml buffer per 1 g leaf material. The extracts were centrifuged
at 17 000 g 4°C 20 min and the supernatant was either boiled in
sodium dodecyl sulphate (SDS) sample buffer for western blots
or used for co-IPs. For western blots protein samples were sepa-
rated by SDS-PAGE and electro-blotted onto polyvinylidene
difluoride membrane. Antibodies used were a-HA 3F10 (Roche,
http://www.roche.com), a-GFP 210-PS-1GP (Amsbio, http://
www.amsbio.com), a-RFP-biotin ab34771 (Abcam, http://www.
abcam.com). For co-IPs a fraction of the supernatant was saved
as ‘input’ sample and 20 ll GFP-beads (GFP-Trap_A; Chromotek,
http://www.chromotek.com) or HA-beads (Sigma) were added to
1.4 ml of the remaining supernatant. The samples were incu-
bated on a rotating wheel at 4°C for 2 h followed by collecting
the beads by centrifugation at 1200 g and 4°C for 1.5 min. The
beads were washed 3–4 times with 1 ml extraction buffer and
then boiled in SDS sample buffer to elute protein from the
beads.

Isothermal titration calorimetry

ITC experiments were performed using a MicroCal 205 calorimeter
(Malvern, http://www.malvern.com) in high gain mode at 25°C
with all proteins diluted in buffer 20 mM HEPES, 150 mM NaCl, pH
7.5. His6–DIBB–MOS6 protein was pipetted into the sample cham-
ber at 43–54 lM concentration and was titrated with His6-tagged
HaRxL106, HaRxL106DC or SAP11 at concentrations between 320
and 940 lM. Two microlitre injections with 120 sec pause intervals
were performed up to a cumulative volume of 38 ll. Binding iso-
therms were fitted to the integrated calorimetric data using Origin
software (OriginLab, http://www.originlab.com). Control reactions
titrating buffer into DIBBMOS6 showed that the heat of dilution
was <0.1 Kcal mol�1 of injectant and therefore comparable with
the values obtained at the end point of each titration. At least one
technical replicate for each ITC experiment was performed and
gave similar results.

Confocal microscopy

N. benthamiana or Arabidopsis leaf discs were mounted onto
microscopy slides in 60% glycerol or water and analysed on a
Leica DM6000B/TCS SP5 confocal microscope (Leica Microsys-
tems, http://www.leica-microsystems.com) with the following exci-
tation wavelengths: YFP, 516 nm; RFP, 561 nm.

Analytical size exclusion chromatography

Analytical size exclusion chromatography was performed using a
Superdex 200 HR 10/30 column (GE Healthcare, http://www.
gelifesciences.com) in 50 mM HEPES, 150 mM NaCl, pH 7.0. His6–
DIBB–MOS6 protein was diluted to a concentration of 2 mg ml�1

and incubated with a 1 M excess of either His6–HaRxL106 or
His6–HaRxL106DC for 1 h at 4°C. The samples were centrifuged
at 17 000 g 4°C 20 min and 0.5 ml of the cleared supernatant
was loaded on the column. The column was eluted at a flow
rate of 0.5 ml min�1 with two column volumes of buffer and
0.5 ml fractions were analysed by SDS-PAGE.

Plasmids and oligo-nucleotides

For a list of oligo-nucleotides and plasmids used in this study see
Data S3 and S4.
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Figure S3. mos6 mutants are more susceptible to P. syringae
strains with reduced effector repertoires.

Figure S4. Sequence alignment between HaRxL106 amino acids
232–279 and Arabidopsis bZIP5 amino acids 61–120.

Table S1. Stoichiometry, DH and DS values for ITC experiments
shown in Figure 2(c).

Table S2. X-ray data collection, refinement, and validation statis-
tics.

Data S1. Proteins identified by LC-MS/MS in immuno-precipitates
of YFP-HaRxL106 transgenics and controls.

Data S2. Maxima of best Mascot ion scores and total spectrum
counts for peptides identified by LC-MS/MS.

Data S3. List of oligo-nucleotides and pENTR plasmids used in
this study.

Data S4. Experimental procedures.
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