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Background: Mitochondrial carriers were thought to be dimeric based on their migration in blue native gels.
Results: The high molecular mass species observed in blue native gels are composed of protein monomers, detergent, lipid, and

Coomassie stain.

Conclusion: The mitochondrial carriers are monomeric not dimeric.
Significance: The apparent mass of small membrane proteins in blue native gels requires significant correction.

Blue native gel electrophoresis is a popular method for the
determination of the oligomeric state of membrane proteins.
Studies using this technique have reported that mitochondrial
carriers are dimeric (composed of two ~32-kDa monomers)
and, in some cases, can form physiologically relevant associa-
tions with other proteins. Here, we have scrutinized the behav-
ior of the yeast mitochondrial ADP/ATP carrier AAC3 in blue
native gels. We find that the apparent mass of AAC3 varies in a
detergent- and lipid-dependent manner (from ~60 to ~130
kDa) that is not related to changes in the oligomeric state of the
protein, but reflects differences in the associated detergent-lipid
micelle and Coomassie Blue G-250 used in this technique.
Higher oligomeric state species are only observed under less
favorable solubilization conditions, consistent with aggregation
of the protein. Calibration with an artificial covalent AAC3
dimer indicates that the mass observed for solubilized AAC3
and other mitochondrial carriers corresponds to a monomer.
Size exclusion chromatography of purified AAC3 in dodecyl
maltoside under blue native gel-like conditions shows that the
mass of the monomer is ~120 kDa, but appears smaller on gels
(~60 kDa) due to the unusually high amount of bound nega-
tively charged dye, which increases the electrophoretic mobility
of the protein-detergent-dye micelle complex. Our results show
that bound lipid, detergent, and Coomassie stain alter the
behavior of mitochondrial carriers on gels, which is likely to be
true for other small membrane proteins where the associated
lipid-detergent micelle is large when compared with the mass of
the protein.

Mitochondrial transport proteins or carriers facilitate the
exchange of various metabolites across the mitochondrial inner
membrane, including nucleotides, vitamins, keto and amino acids,
and inorganic ions. These transport steps are essential for many
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biochemical processes, such as oxidative phosphorylation, the
synthesis of iron sulfur clusters and heme, and the synthesis of
DNA and RNA as well as the synthesis, degradation, and intercon-
version of amino acids (1). Several carriers are associated with
genetic disorders (2), whereas uncoupling proteins (e.g UCP1),
which also belong to the transporter family, may be important in
our understanding and treatment of obesity (3).

Mitochondrial carriers share the same basic structure (4) and
are likely to operate by a common mechanism (5). The structural
fold consists of three ~100-amino acid repeat domains that each
form two trans-membrane a-helices separated by a matrix loop
and small matrix a-helix (4, 6, 7). The first helix of each domain
contains a signature motif PX[DE]XX[RK], which is well con-
served across all the members of this protein family (6).

For over 30 years, mitochondrial carriers were believed to be
homodimers, composed of two ~32-kDa proteins. Early exper-
iments indicated that inhibitors bound to carriers in a 1:2 stoi-
chiometry (8 -10). Since then, observations made using many
techniques and experimental approaches, predominantly with
the ADP/ATP carrier and UCP1, were consistent with a struc-
tural dimer. Gel filtration (11, 12), equilibrium sedimentation
(11, 12), small-angle neutron scattering (13), differential affinity
purification (14), and native gel electrophoresis (15-21) studies
all indicated that carriers were dimeric in detergent, whereas
freeze-fracture electron microscopy (22) and chemical cross-
linking (23, 24) experiments indicated that carriers were
dimeric in lipid membranes. Furthermore, the kinetics of trans-
port (see Ref. 25 for overview), reconstitution into liposomes,
and negative dominance (14) could be explained with a dimer
model of carrier function.

A dimer arrangement of carriers was challenged when the
first structural information was obtained for the ADP/ATP car-
rier in complex with the inhibitor carboxyatractyloside
(CATR).? Both the projection map of the yeast protein (26) and
the atomic structure of the bovine protein (4) revealed a mono-

2The abbreviations used are: CATR, carboxyatractyloside; Coomassie dye,
Coomassie Blue G-250; 10M, decyl-B-p-maltoside; 11M, undecyl-B-p-
maltoside; 12M, dodecyl-B-p-maltoside; 13M, tridecyl-B-p-maltoside; AAC,
ADP/ATP carrier; diAAC3, covalently linked AAC dimer; Tricine, N-[2-hy-
droxy-1,1-bis(hydroxymethyl)ethyllglycine; UCP1, uncoupling protein-1.
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meric fold. The six trans-membrane a-helices from the three
repeat domains form a barrel arrangement with three-fold
pseudo-symmetry, where the PX[DE]XX[RK] motif from each
domain is able to form a salt bridge network that closes a central
cavity on the matrix side (4). Further investigations with the
yeast ADP/ATP carriers in gel filtration (27), analytical ultra-
centrifugation (27), differential affinity purification (28), and
negative dominance studies (29) indicated the presence of only
monomers. Similarly, the bovine isoform was reinvestigated in
analytical ultracentrifugation and small angle neutron scatter-
ing experiments and found to be predominantly monomeric
(30), in contrast to past conclusions. A re-evaluation of much of
the earlier work has shown that with the benefit of hindsight,
most of the observations are consistent with the carriers being
monomeric (see Ref. 31 for review). Confirming the oligomeric
status of mitochondrial carriers is crucial for understanding the
transport mechanism.

Blue native-PAGE is a relatively inexpensive and convenient
sizing technique to study proteins in nondenaturing condi-
tions. As such, it has been used in many studies to assess the
oligomeric state of mitochondrial carriers. In a similar manner
to SDS-PAGE, proteins are separated by size, but the milder
Coomassie dye is used instead of SDS to provide the necessary
negative charge for the electrophoretic separation of proteins
under native conditions. Mitochondrial carriers are reported to
migrate on gels with molecular masses between 65 and 120 kDa
(15-21), which have been interpreted to be homodimers.
Higher mass species have also been observed and were thought
to be associations with other proteins (32, 33). More recently,
the migration of the ADP/ATP carrier, along with other mem-
brane proteins, was used to validate migration-mass relation-
ships on blue native gels and was believed to represent a dimer
(~66kDa) (34). The observations from blue native-PAGE stud-
ies are inconsistent with recent data obtained using various
other techniques (27-30).

Here, we have investigated the behavior of the yeast ADP/
ATP carrier (AAC3) on blue native gels. We find that both
lipids and detergent vary the apparent mass of AAC3, which is
not related to changes in the oligomeric state of the protein.
When the effects are minimalized, AAC3 migrates with an
apparent molecular mass of ~60 kDa, yet is monomeric, as
confirmed by controls using genetically fused dimers. The pro-
tein binds an unusually high amount of Coomassie dye when
compared with other membrane proteins, which can explain
the migration pattern observed in blue native gels.

MATERIALS AND METHODS

Cloning of Yeast Expression Vectors and Transformation—
The yeast aac3 gene was cloned into the pYES-Paac2-aac2 vec-
tor replacing aac2, resulting in the expression vector pYES-
Paac2-aac3, and an N-terminal nine-histidine tag and a factor
Xa cleavage site were introduced at the Ncol site by kinase
treatment and annealing of synthesized primers, leading to the
vector pYES-Paac2-N9His-Xa-aac3 (26). For the construction
of the expression vector for the covalently linked AAC3 dimer,
the stop codon of the first aac3 gene was replaced by an Xhol
restriction site and the start codon of the second aac3 gene was
replaced by an Xhol site by PCR. The two DNA fragments were
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cloned in tandem behind the Paac2 promotor using the com-
mon Xhol site, yielding a tandem construct with a Leu-Glu
linker. All cloned vectors were isolated by miniprep (Qiagen)
and confirmed by PCR, restriction analysis, and sequencing
(Cambridge Bioscience). Saccharomyces cerevisiae strain
WB-12 (MAT« ade2-1 trpl-1 ura3-1 canl-100 aacl:LEU2
aac2::HIS3), lacking functional AAC1 and AAC2 carriers, was a
gift from Dr. H. Terada (35). The plasmids were transformed
into the WB-12 strain using standard techniques, and transfor-
mants were selected on SC medium —Trp plates (Invitrogen).

Preparation of Mitochondrial Membranes—Yeast (strain
WB12) expressing functional AAC3 or covalently linked AAC3
dimer were grown aerobically in 3% glycerol YPG medium (4 X
500 ml in 2-liter flasks) at 30 °C to an A, of ~5. Mitochondrial
membranes were isolated from 20 to 30 g of wet weight of cells
using a cell disruptor as described previously (28). Aliquots of
mitochondrial membranes (~10 mg/ml protein) were flash-
frozen and stored at —80 °C until further use. For His-tagged
AACS3 purification, yeast were grown in a 55-liter fermentor,
and mitochondrial membranes were isolated as described in
Ref. 27.

Brown adipose tissue was isolated from newborn lambs that
had died of natural causes (University of Cambridge Veterinary
School) and was stored in liquid nitrogen. Mitochondria were
isolated using established methods (36) and stored in liquid
nitrogen.

Protein Purification—His-tagged AAC3 was purified by
nickel affinity chromatography based on a procedure described
previously (27). Approximately 500 mg of yeast mitochondrial
membranes was thawed from storage and incubated with 2 ng
of CATR (Sigma-Aldrich) per mg of mitochondrial protein for
20 min with mixing at 4 °C. Membranes were solubilized in a 2%
undecyl-B-p-maltoside (11M) solution for 30 min at 4 °C con-
taining 150 mm NaCl, 20 mm imidazole, 10 mm Tris, pH 7.4, and
two tablets of Complete protease inhibitor minus EDTA per
100 ml (Roche Diagnostics). Insoluble material was removed by
centrifugation (140,000 X g for 20 min, 4 °C), and the superna-
tant was loaded onto a nickel-Sepharose column (high per-
formance; GE Healthcare) at 1 ml/min using an AKTAprime
FPLC system. The column was washed at 3 ml min™" with 100
ml of buffer A (containing 150 mm NaCl, 60 mMm imidazole, 10
mM Tris, pH 7.4, with 0.2% decyl-B-p-maltoside (10M), 0.2%
11M, 0.1% dodecyl-B-p-maltoside (12M), or 0.1% tridecyl-B-p-
maltoside (13M) included) followed by 30 ml of buffer B (con-
taining 50 mMm NaCl, 10 mm Tris, pH 7.4, and the same deter-
gent as in buffer A). To cleave the protein from the column, the
nickel-Sepharose was recovered as a slurry (~1.2 ml) and
treated with factor Xa protease overnight at 10 °C (60 units with
5 mm CaCl, added; New England Biolabs Ltd.). The slurry was
transferred to an empty micro bio-spin column (Bio-Rad Lab-
oratories) and centrifuged (500 X g, 5 min at 4 °C) to elute the
protein from the resin. Residual nickel-Sepharose contamina-
tion was pelleted by further centrifugation (12,000 X g, 10 min
at 4 °C) in a 2-ml tube, and the purified AAC3 protein (0.5-1.3
mg/ml) was recovered in the supernatant. The final sample was
quantified by BCA protein assay (Thermo Scientific) with
bovine serum albumin as a standard.
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Lipid Extraction—Mitochondrial lipids were extracted using
a methanol/chloroform procedure adapted from Ref. 37. Yeast
mitochondrial membranes (100 mg of protein) were diluted to
5 ml with distilled water and shaken vigorously with 18.8 ml of
methanol:chloroform (2:1) in a glass-stoppered tube for 10 min.
This was supplemented with 6.3 ml of chloroform and a few
grains of butylated hydroxytoluene, shaken for 1 min, and sup-
plemented further with 6.3 ml of distilled water and shaken
again. The mixture was centrifuged at 4000 X g using a swing-
out rotor, and the resulting protein disc between the aqueous
and organic phases was carefully removed and homogenized in
6.25 ml of chloroform. The homogenate was added back to the
biphasic system, and the mixture was recentrifuged. The lower
organic phase containing the lipids was recovered and dried
down under nitrogen, and the resulting lipid smear was redis-
solved in 2 ml of diethyl ether and redried. The lipid was mixed
with 5 ml of 2% 12M under a nitrogen stream and stirred at 4 °C
overnight. This sample was assumed to contain total mitochon-
drial lipid and was mixed with AAC3 and detergent accordingly
to achieve the desired fraction of lipids and detergent present in
the equivalent mitochondrial samples loaded on to gels.

Electrophoresis—Blue native PAGE was performed using
established protocols (38). 5-13% or 6-18% (w/v) polyacryl-
amide linear gradient gels with a 4% (w/v) stacking gel were
made using a gradient mixer apparatus and a conventional elec-
trophoresis unit (SE 260 Series Mighty Small II) set up in a cold
room. The light and heavy acrylamide solutions, containing 0.5
M aminohexanoic acid, 25 mm imidazole/HCl, pH 7.0, and 10%
(w/v) glycerol (heavy solution only), were mixed and cast as
described (38). The gel dimensions were 10 cm X 8 cm X 1.5
mm.

Mitochondrial membrane aliquots (~500 ug of protein)
were thawed from —80 °C storage, suspended in 50 ul of sample
buffer (50 mm imidazole/HCl, pH 7, 50 mm NaCl, 5 mm 6-ami-
no-hexanoic acid) and, in most cases, treated with 80 um CATR
for 10 min on ice. The suspension was solubilized by introduc-
tion of up to 4% detergent. Note that in some cases, a 10-fold
dilution of the starting membrane suspension was used instead
to decrease the sample:detergent ratio. The samples were incu-
bated on ice for 10 min with occasional mixing and centrifuged
for 20 min (100,000 X g), and the supernatants were recovered.
Purified AAC3 was diluted into sample buffer with an appro-
priate amount of detergent to give 50 ul at the desired final
detergent concentration.

For all samples, 5 ul of 50% (w/v) glycerol and enough Coo-
massie Brilliant Blue G-250 (Serva, Heidelberg, Germany) from
a5% (w/v) stock were added and mixed to give a final detergent/
Coomassie ratio of 8 (g/g). 20-ul volumes, equivalent to ~200
or 20 pug of starting membrane protein or 2—4 ug of purified
AAC3, were loaded onto pre-prepared gels. Native high molec-
ular weight markers (GE Healthcare, 17-0445-01) were pre-
pared according to the manufacturer’s instructions in the
absence of detergent and supplemented 1/10 (v/v) with a 5%
(w/v) Coomassie stock suspension. The presence of detergent
(1% 12M) did not affect the migration of the marker proteins in
control experiments (data not shown). 10 ul was loaded where
required.
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Electrophoresis was carried out in a cold room (<8 °C) using
5 mA current per gel, and the voltage was limited to 600 V. Gels
were run for 1 h using “deep” cathode buffer (50 mm Tricine, 7.5
mMm imidazole, 0.02% Coomassie Brilliant Blue G250) and then
changed to using “light” cathode buffer (50 mm Tricine, 7.5 mm
imidazole, 0.002% Coomassie Blue G250) for a further 2—-3.5 h
until the dye front started to leach into the anode buffer (25 mm
imidazole/HCI, pH 7). The gels were recovered, rinsed, and
documented (scanned with a trans-illumination setting) before
protein staining with InstantBlue (Novexin, Cambridge, UK) or
blotting for antigen detection. SDS-PAGE was carried out in an
SE 250 Series Mighty Small II electrophoresis unit using a 12%
(w/v) polyacrylamide resolving gel.

Western Blotting and Protein Detection—Proteins were
transferred to methanol-activated PVDF membranes using a
conventional semidry apparatus. Native gels and blotting paper
(2 X 3-ply stacks) were soaked in anode buffer for 5 min before
transfer for 2 h in a cold room with the current set to 1 mA
cm™? gel area and the voltage limited to 25 V. In some cases,
native gels were prewashed in cathode buffer with 2% SDS (3 X
200 ml for 1 h) to reduce the interference of Coomassie dye in
protein transfer. Membranes were destained with methanol
and rinsed in distilled water, and the molecular weight marker
bands were visualized and documented using Ponceau S pro-
tein stain (Sigma). Stain was removed using 0.1% (w/v) NaOH
following the manufacturer’s instructions and rinsed in dis-
tilled water. SDS gels were transferred using the same semidry
apparatus, but for 1.5 h at room temperature using a conven-
tional transfer buffer (25 mm Tris, 192 mMm glycine, 20%
methanol).

For immuno-detection of antigen, PVDF membranes were
incubated at 4 °C overnight in blocking buffer (0.1% Tween 20,
5% (w/v) skimmed milk powder (Marvel) in phosphate-buff-
ered saline) and probed with chicken anti-AAC polyclonal anti-
body (1:20,000 dilution; AgriSera) or rabbit anti-UCP1 poly-
clonal antibody (1:5000 dilution; U6382, Sigma) followed by the
relevant HRP-conjugated secondary antibody: anti-chicken
(1:20,000 dilution; A9046 Sigma) or anti-rabbit (1:10,000 dilu-
tion; AP132P Millipore). All antibody incubations were for 1 h
at room temperature in blocking buffer. Antigens were visual-
ized on Amersham Biosciences Hyperfilm using an ECL Plus
Western blotting detection system (Amersham Biosciences,
Little Chalfont, Bucks, UK). A phosphorescent marking pen
was used to label the membrane before film exposure so that the
film and membrane could be aligned later to accurately assess
antigen migration. The apparent molecular mass of each spe-
cies was estimated by linear interpolation using plots of migra-
tion distance versus log molecular weight of the protein
standards.

Size Exclusion Chromatography—Analytical gel filtration was
carried out as described previously (27, 39) using a Superdex 200
XK16/60 column (GE Healthcare) equilibrated in buffer (10 mm
Tris, pH 7.4, 150 mm NaCl) that included 0-0.4% 12M with or
without 0.02% (w/v) Coomassie Blue G-250. All buffers were
mixed overnight and filtered before use. In each case, 417 ug of
purified AAC3 was supplemented with detergent and Coomassie
dye, accordingly, before loading in 1 ml of buffer (flow rate 0.5
ml/min). The column was calibrated with carbonic anhydrase,
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FIGURE 1. The influence of detergent concentration and mitochondrial lipid on the apparent molecular mass of yeast AAC3 in blue native gels.
Yeast mitochondrial membranes (200 g of protein) or purified AAC3 protein (2 wg) were separated in 5-13% (w/v) polyacrylamide gels, and AAC3 was
detected by Western analysis. A, the apparent molecular mass of AAC3 in 12M-solubilized mitochondrial membranes without (lane a) or with pretreat-
ment with 80 um CATR (lane b), when purified (lane c) or when purified and combined with the CATR-treated mitochondrial membranes (lane d).
Accordingly, the antigen present in lane d is the sum of the antigen present in lanes b and c. All samples were prepared in 1% 12M. B, the apparent
molecular mass of AAC3 in CATR-treated mitochondrial membranes prepared in 1-4% 12M. C, the apparent molecular mass of purified AAC3in 1% 12M
with 0-100% of the equivalent amount of mitochondrial lipid present in solubilized membrane samples reintroduced (see “Materials and Methods”). D
and E, the average molecular masses (+ S.D.) calculated from repeats of the gels in Band C (n = 3), respectively. The molecular masses (kDa) of protein
standards are given to the left of each blot.

ovalbumin, conalbumin, aldolase, and ferritin (28-4038-41/28-
4038-42, gel filtration calibration kits, GE Healthcare). The protein
content of peak fractions was quantified by BCA assay (Thermo
Scientific) after treatment with acetone to remove Coomassie dye
(see manufacturer’s protocol). Coomassie dye was quantified
(Ag10) after 20-fold dilution into 3% SDS, 10 mm Tris, pH 7.4 (no
interference from protein was observed in control experiments).
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RESULTS

Blue Native Gel Electrophoresis of Yeast AAC3—In mito-
chondrial membranes solubilized with 12M and separated
using common blue native PAGE methods (38), CATR-inhib-
ited AAC3 migrated with an apparent molecular mass of ~120
kDa when calibrated with soluble marker proteins (Fig. 14, lane
b, Western blot). This value is within the range of estimates
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FIGURE 2. The influence of free detergent micelles on the migration of purified AAC3 in blue native gels. Yeast AAC3 was purified in alkyl maltoside
detergents of varying micelle size (10-13M; see Ref. 27) and separated in 5-13% (w/v) polyacrylamide gels (4 ug of protein per lane) as described under
“Materials and Methods.” A and B, the migration of purified AAC3 (prepared in detergent as indicated) and protein-free detergent micelles in blue native gels
(right panels) with the position of AAC3 indicated by Western analysis (left panels). The densitometry profile is of lane 7 (0.2% 10M) of the blue native gel image.
C, the migration of purified AAC3 and free detergent micelles in samples prepared with detergent at ~30-fold the critical micelle concentration (2.61% 10M,
0.87% 11M,0.26% 12M, and 0.05% 13M). D, the occurrence of minor higher mass AAC3 species observed occasionally with AAC3 prepared in 0.1-1% 12M (0.5%
12M shown). The molecular masses (kDa) of protein standards are given to the left of each gel or blot. Densitometry profiles (ImageJ software) of the relevant

lanes are given to clarify the presence of multimeric species (¥).

reported for AAC and other mitochondrial carrier proteins on
blue native gels (65-120 kDa (15-21, 34)), all of which were
interpreted to be protein dimers. In the absence of CATR,
AAC3 had a marginally lower molecular mass, but displayed a
much weaker signal on Western blots (lane a) consistent with a
loss in solubility of the protein due to instability. Unless other-
wise stated, AAC3 samples were treated with CATR as a stand-
ard to keep the protein in a folded state. In contrast to AAC3 in
membrane samples, purified AAC3 migrated with a lower
apparent molecular mass (~60 kDa, lane c). However, when
mixed with solubilized membranes, the purified protein
adopted the same high molecular mass observed in the solubi-
lized membrane samples (cf. lanes d and b). This behavior indi-
cates that a factor present in membrane samples increases the
apparent molecular mass of AAC3 and is removed during pro-
tein purification. In membrane samples, the apparent mass of
AAC3 was sensitive to the concentration of the detergent used
during solubilization. The apparent mass of AAC3 decreased
from ~120 to ~70 kDa over a 4-fold increase in the 12M con-
centration (Fig. 1, Band D). This result indicates that the factor
that influences the apparent mass of AAC3 can be diluted away
by detergent. Importantly, the incremental changes in mass
observed were too small to be explained by a change in the
oligomeric state of the protein.
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The Influence of Lipids on the Apparent Size of AAC3—Lipids
have been shown to increase the apparent size of the AAC3-
detergent micelle in size exclusion studies (31). Following
extraction with solvents, the addition of mitochondrial lipids to
purified AAC3 increased the mass of the protein in blue native
gels too (Fig. 1, C and E). The apparent mass increased in pro-
portion to the amount of lipid introduced and reached the same
mass as observed for AAC3 in solubilized membrane samples
(~120 kDa) at an equivalent lipid concentration. Lipid associ-
ated with AAC, therefore, can account for the high mass
observed in solubilized mitochondrial samples and may explain
some of the variation in values reported for mitochondrial car-
rier proteins across other studies (15-21, 34).

The Effect of Detergent on the Apparent Size of AAC3—Size
exclusion studies have demonstrated that purified AAC3 is
monomeric in detergent but changes in apparent mass due to
the associated detergent micelle (27, 39). In the alkyl maltoside
series of detergents, AAC3 is ~86 kDa in 10M, yet increases up
to 134 kDa in 13M as the length of the detergent alkyl chain
increases. Here, in the absence of excess lipid, purified AAC3
had an apparent mass of ~45 to ~60 kDa in the same detergent
series in blue native gels (Fig. 24, left panel). In this case, how-
ever, the small changes that occurred can be attributed to the
interference in migration of AAC3 by free detergent micelles,
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which also migrated in the gel as a consequence of associated
Coomassie dye (Fig. 24, right panel). At 30 times the critical
micelle concentration, in the absence or presence of AAC3, the
position of protein-free detergent micelles was observed for all
the detergents tested, as well as the interference that they
imparted on the migration of AAC3 (Fig. 2C). In each case, the
protein was retarded to varying degrees across each lane, giving
distorted band profiles. It is worth nothing that similar profiles
have been observed for other mitochondrial carrier proteins on
blue native gels (e.g. Ref. 18). Lowering the detergent concen-
tration did not remove the interference without risking aggre-
gation of the protein (Fig. 2B). In some cases, an extra species or
even a full array of higher oligomeric states could be seen,
depending on the severity of detergent starvation (e.g. in 0.2%
10M). On occasion, these species could also be observed with
higher detergent concentrations (e.g. in 0.5% 12M, Fig. 2D),
which may be related to the loss of bound detergent during
migration of the protein in the gel. However, aggregates were
consistently observed in digitonin-solubilized membranes (see
below, and Fig. 3, A-C).

The overriding effects of excess lipid and detergent could be
minimized by using detergent-solubilized membranes at a
10-fold lower protein load than would otherwise be recom-
mended. This approach maximized the dilution of lipids away
from the protein by detergent but also appeared to reduce the
interference of free detergent micelles in the migration of
AAC3 on 6-18% polyacrylamide gels (Fig. 34). Under these
conditions, Western detection indicated that AAC3 had an
apparent molecular mass of ~60 kDa in all of the alkyl malto-
side detergents tested. Coomassie dye, therefore, must have
replaced the majority of each alkyl maltoside detergent associ-
ated with the protein to give similar mass species. Consistent
with these findings, Coomassie dye has been shown to replace
virtually all of the 12M associated with the purified lactose
transporter LacS (40).

In contrast to the alkyl maltosides, AAC3 exhibited an appar-
ent molecular mass of ~130 kDa in digitonin (Fig. 3A4), a deter-
gent commonly used in blue native PAGE studies. Minor spe-
cies at even higher molecular masses were also detected (Fig. 3,
A and B), consistent with the aggregation of the protein due to
limited solubility in this detergent. The 2-fold higher molecular
mass of the main AAC3 species in digitonin, however, was not
related to a difference in the oligomeric state of the protein.
Titration of up to 0.5% 12M into digitonin-solubilized mem-
branes decreased the apparent mass of the species to ~60 kDa
in small increments (Fig. 3C). The higher apparent mass, there-
fore, must have been related to the amount of detergent, lipid,
and Coomassie dye associated with the protein, which changed
in proportion to the amount of 12M present. AAC3 would
appear to retain a relatively large micelle in digitonin that does
not exchange fully with Coomassie dye, in contrast to the alkyl
maltoside micelles, resulting in a slower migration on gels. This,
in addition to the effects of lipid, may explain some of the high
molecular masses reported for digitonin-solubilized AAC on
blue native gels, which were originally interpreted to be the
result of homomeric or heteromeric protein associations (15,
16, 19, 32, 33, 41).

22168 JOURNAL OF BIOLOGICAL CHEMISTRY

A. B.
kDa 10M11M 12M13M Dig kDa Dig
669 - 669 -
440 - 440 -
232 - 2324 [ |\,
. | * *
140 A 140 -
661 e - - 66
C. 12M introduced (1% digitonin)
kDa O 0.01 0.05 0.1 0.2 0.3 04 05 %
669 -
440 1
2324
140 | -
ol
66 . - .

FIGURE 3. The apparent molecular mass of AAC3 in alkyl maltoside deter-
gents and digitonin. Yeast mitochondrial membranes were prepared in
detergent with 10-fold less protein present (cf. legend for Fig. 1) to minimize
the influence of lipids in the protein-detergent micelle. Samples were sepa-
rated in 6-18% (w/v) polyacrylamide gels, and AAC3 was detected by West-
ern analysis. A and B, the apparent molecular mass of AAC3 in CATR-treated
mitochondrial membranes (20 pg of protein) solubilized with 1% alkyl malto-
side detergent (10-13M) or digitonin (Dig), as indicated. The occurrence of
multimeric AAC3 species (*), observed with mitochondrial membranes solu-
bilized in digitonin, is clarified in panel B with a densitometry profile (ImageJ
software). C, the change in the apparent molecular mass of AAC3 in CATR-
treated mitochondrial membranes solubilized in 1% digitonin with the intro-
duction of 0-0.5% 12M. The molecular masses (kDa) of protein standards are
given to the left of each blot.

The Apparent Size of Mitochondrial Carrier Proteins on Blue
Native Gels—Using our optimized conditions, mitochondrial
carrier proteins from native sources (AAC from liver and UCP1
from brown adipose tissue) migrated with an apparent molec-
ular mass of ~60 kDa in 12M (Fig. 4), consistent with our find-
ings with the recombinant AAC3 protein from yeast. This
would suggest that all of the mitochondrial carrier species
tested behave similarly and are in the same oligomeric state in
blue native gels. Whether these species represent monomers or
dimers, however, is not immediately clear as membrane pro-
teins have been shown to bind more Coomassie dye than the
soluble marker proteins (g/g protein) and so do not migrate at
their expected molecular mass (40). To act as a positive control
for dimers, we generated covalently linked tandem dimers of
AAC3 (diAACS3; see “Materials and Methods”), as has been
done for yeast AAC2 (35). Expression of the construct in an
AAC-deficient strain of yeast allowed growth on glycerol, a
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FIGURE 4. The apparent molecular mass of native AAC and uncoupling
protein-1in blue native gels. Mitochondrial membranes from rat liver (AAC)
and lamb brown adipose tissue (UCP1) were prepared in 1% 12M and sepa-
rated in 6-18% (w/v) polyacrylamide gels as described in the legend for Fig. 3.
For the detection of AAC3, mitochondrial membranes were pretreated with
CATR. 20 g of protein was loaded per lane. The migration of native AAC and
uncoupling protein-1 was immuno-detected by Western analysis (see “Mate-
rials and Methods”). The molecular masses (kDa) of protein standards are
given to the left of each blot.

nonfermentable carbon source, indicating that diAAC3 is func-
tional and can support oxidative phosphorylation. When sepa-
rated on denaturing SDS gels, diAAC3 was ~64 kDa in whole
cells, as expected, but was 64 and 32 kDa in mitochondrial
membrane samples, indicating that diAAC3 was in part proteo-
lytically cleaved during membrane isolation (Fig. 54). When
these membranes were solubilized in 12M and separated on
blue native gels, AAC species with apparent molecular masses
of ~130 and ~60 kDa were observed, corresponding to the
intact and cleaved proteins, respectively (Fig. 5B). Similarly,
when digitonin was used as the detergent, again two species
were observed but at higher mass values (~230 and ~140 kDa).
Importantly, in both cases, it was the lower, cleaved species
rather than the covalent dimer that matched the migration of
conventional AAC3, indicating that AAC3 and the other mito-
chondrial carrier proteins tested migrate as monomers in blue
native gels.

When separated according to charge/mass by blue native
PAGE, AAC3 appeared smaller than when separated by size
alone with size exclusion chromatography (~60 kDa when
compared with ~115kDa in 12M (27, 39)). Less Coomassie dye
may be required to replace the detergent bound to AAC3 (g/g
protein) or, alternatively, a relatively high amount of Coomassie
dye may bind to AACS3, giving the protein a higher net charge
and mobility on gels than expected. To distinguish between
these possibilities, we assessed AAC3 under blue native gel-like
conditions by using size exclusion chromatography. In blue
native PAGE, proteins are typically exposed to 0.02% Coomas-
sie dye in the cathode buffer, but are exposed to higher concen-
trations in the sample buffer and during electrophoresis as the
Coomassie dye forms a concentrated running front. Also, as
proteins migrate on gels, the local detergent concentration
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FIGURE 5. The calibration of mitochondrial carrier migration with artifi-
cial covalently linked AAC dimers. A, whole yeast cells (20 n.g of protein) or
isolated mitochondrial membranes (MM; 7 g of protein) containing AAC3 or
a covalently linked AAC dimer (diAAC3) were separated by SDS-PAGE. B,
CATR-treated mitochondrial membranes (20 g of protein) containing AAC3
or a covalently linked AAC dimer (diAAC3) were separated in 6-18% (w/v)
polyacrylamide gels as described in the legend for Fig. 3. AAC3 and diAAC3
were detected by Western analysis. The molecular masses (kDa) of protein
standards are given to the left of each blot. Dig, digitonin.

depletes progressively as there is no detergent cast in the gel,
and free detergent, in equilibrium with the Coomassie-deter-
gent micelles, will not migrate with the protein. Therefore, as
proteins migrate, they will be exposed to an increasing Coo-
massie dye:detergent ratio. To mimic these conditions in size
exclusion experiments, we introduced 0.02% Coomassie dye to
both purified AAC3 samples and the chromatography buffer
and systematically decreased the 12M concentration present.
In 0.1% 12M, purified AAC3 eluted with an apparent molec-
ular mass of 144 kDa (Fig. 6A). This value is higher than past
estimates (27), which relates to changes in the protein compo-
sition of the commercial calibration kit used (see “Materials and
Methods”). In the presence of 0.02% Coomassie dye, a high
background signal was observed due to the strong absorbance
of the dye at 280 nm. Even so, a clear peak corresponding to
AACS3 could be observed that eluted with an apparent molecu-
lar mass of 133 kDa (see protein profile of the eluted fractions,
Fig. 6B). When the 12M concentration in the chromatography
buffer was decreased to below the critical micelle concentra-
tion, most of the AAC3 present showed a small decrease in
apparent molecular mass (to between 111 and 125 kDa, Fig. 6C
and Table 1), whereas a minor fraction showed an increase (to
~180 kDa) consistent with oligomerization due to limited sol-
ubility, as observed in some conditions in blue native gels (e.g.
Fig. 2D). A third peak observed corresponded to the elution of
protein-free Coomassie-detergent micelles. Under these condi-
tions, quantification of the protein and Coomassie dye in the
major peak fractions indicated that up to 2.5 g of Coomassie dye
per g of protein associated with AAC3 despite relatively little
change in the apparent size of the species (Table 1). Estimation
of the composition revealed that most of the protein-bound
detergent must have exchanged for Coomassie dye (Table 1 and
Fig. 7), similar to the situation observed on blue native gels with
different alkyl maltoside detergents (Fig. 3A). These data are
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FIGURE 6. Size exclusion chromatography of purified AAC3 under blue
native gel-like conditions. A-C, elution profiles of purified AAC3 in 0.1%
12M (peak = 144 kDa) (A), 0.1% 12M with 0.02% Coomassie dye (peak = 133
kDa) (B), or 0.004% 12M with 0.02% Coomassie dye (peak 1 = 125 kDa and
peak 2 = 185 kDa) (C). AAC3 was loaded in 0.1% 12M sample buffer supple-
mented with (B and C) or without (A) 0.02% Coomassie dye. The protein pro-
file (dashed line) was quantified by densitometry of the eluted fractions on
Coomassie-stained SDS gels (inset figures). See Table 1 and Fig. 7 for species
composition. The column was calibrated with molecular mass standards (see
“Materials and Methods"). au, arbitrary units.

only compatible with a model that considers the predominant
AAC3 species to be monomeric, in line with our previous stud-
ies (27, 39). AAC3 would appear to bind over 2.5-fold more
Coomassie dye than other membrane proteins (e.g. 0.35—0.59
g/g of protein for respiratory complexes I, III, IV, and V (42) or
0.8 g/g of protein for LacS (40)). The smaller apparent mass of
AAC3 determined by blue native PAGE when compared with
size exclusion chromatography, therefore, most likely reflects a
faster than expected migration rate in gels due to a higher than
expected associated charge, rather than a real difference in
mass.

DISCUSSION

Blue native PAGE is a popular and convenient technique to
separate and study proteins under nondenaturing conditions
and has been used extensively to report the oligomeric state of
mitochondrial carrier proteins (15-21, 34). In all studies to
date, mitochondrial carriers have been reported to be dimeric,
migrating with an apparent molecular mass of between 65 and
120 kDa. Here, we have scrutinized the behavior of the mito-
chondrial carrier protein AAC3 on blue native gels. We find
that the apparent mass of the protein is strongly influenced by
the lipid and detergent present in a manner that is unrelated to
changes in oligomeric state. When these effects are minimal-
ized, AAC3 and other mitochondrial carrier proteins migrate as
~60-kDa species. Assessment by size exclusion chromatogra-
phy suggests that purified AAC3 is larger than this on blue
native gels but migrates erroneously due to an unexpectedly
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high amount of bound Coomassie dye. Importantly, calibration
of gels with an artificial dimer construct indicates that the
60-kDa species observed for AAC3 and other mitochondrial
carrier proteins is monomeric.

The migration of mitochondrial carrier proteins on blue
native gels is complicated by several factors. We found that the
presence of endogenous lipids, and the degree to which they are
diluted by detergent, had a major effect of the apparent molec-
ular mass of AAC3. Consistent with this, others have observed
that yeast Aac2p in digitonin-solubilized mitochondria is ~109
kDa from wild type yeast yet is only 94 kDa in mitochondria
from a cardiolipin-deficient strain (Acrdl), where the mito-
chonderial lipid content is lower (19). These trends are also in
agreement with our previous size exclusion experiments where
the introduction of lipids to AAC3 purified in 12M substantially
increased the Stokes radius of the protein-detergent micelle
(31). As well as increasing the effective size, lipids may also
compete with, and limit, the binding of Coomassie dye, which
could lead to further retardation of the protein on gels. This
may explain the particularly high increase in the apparent mass
of AAC3 observed in the presence of lipid (Fig. 1).

The concentration and type of detergent present also have a
major influence on the behavior of AAC3 in blue native gels.
Heuberger et al. (40) concluded that virtually all of the 12M
associated with the membrane protein Lac$ is replaced by Coo-
massie dye. Similarly, for the various alkyl maltosides, we find
that much of the detergent associated with AAC3 is likely to
have been replaced (Fig. 34), albeit not all of it. Size exclusion
experiments indicate that a small portion of 12M is retained
even at high Coomassie dye:detergent ratios (Fig. 7), whereas
the difference in the susceptibility of AAC3 to aggregate in each
of the alkyl maltoside detergents (Fig. 2B) would also suggest
that at least some detergent must remain bound to the protein.
We found that protein-free alkyl maltoside detergent micelles
are able to migrate in gels as distinct Coomassie-bound species.
Although the exact composition of the species is not known, the
behavior on gels is counterintuitive: detergents that form larger
micelles appear to migrate faster than detergents that form
smaller ones. It is possible that a smaller micelle size may limit
the amount of Coomassie dye that can be taken up and there-
fore the amount of charge that is needed for migration. As a
consequence of the free detergent micelle migration, the pro-
gress of AAC3 is hindered to varying degrees (Fig. 2), leading to
erroneous trends in the apparent mass of the protein and
“inverted smile”-shaped bands. This interference is reduced
with low amounts of solubilized membrane samples loaded
onto 6-18% polyacrylamide gels, revealing a similar mass of
AAC3in all the alkyl maltoside detergents tested. The improve-
ment may relate to the altered acrylamide concentrations used
or to the loss of defined detergent micelles, dispersed by the
extra lipids and protein present in membrane samples. Alter-
natively, it may relate to a tighter band associated with a lower
AACS3 load that overlaps less with the migration of the free
detergent micelles.

AACS3 appeared ~2-fold larger in blue native gels with mito-
chondrial membranes solubilized in digitonin when compared
with 12M, yet is monomeric in both conditions. The extra
apparent mass in digitonin, therefore, must relate to the larger
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TABLE 1

The size and composition of AAC3 species under blue native gel-like conditions

Apparent molecular masses were estimated by size exclusion chromatography in the presence of 0.02% Coomassie dye and the indicated amount of 12M detergent. See Fig.
6 for examples. Protein and Coomassie dye in the major peak fractions were quantified as described under “Materials and Methods.”

[Dodecyl-B-p-maltoside]

Species composition

Column Sample buffer Apparent
buffer (w/v) (w/v) molecular mass Coomassie:protein Protein” Coomassie” Detergent®
% % kDa Y %4 kDa
0.4 0.4 128 0.0 33 0 95
0.3 0.3 128 0.1 33 5 90
0.2 0.2 132 0.4 33 13 85
0.1 0.1 133 0.6 33 21 79
0.004 0.1 125 2.5 33 84 8
0.001 0.1 117 2.1 33 69 15
0.000 0.1 111 1.9 33 64 13
0.000 0.05 120 2.0 33 67 20
0.000 0.03 118 2.2 33 73 12

“ Calculated from the amino acid composition of yeast AAC3.
? Calculated from the protein mass multiplied by the Coomassie:protein ratio.

¢ Calculated by subtracting the apparent masses of the protein and Coomassie dye from the total apparent molecular mass of the species. This portion may represent some

lipid as well.
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FIGURE 7. The size and composition of AAC3 species under blue native
gel-like conditions. Apparent molecular masses were estimated by size
exclusion chromatography in the presence of 0.02% Coomassie dye and the
indicated amount of 12M detergent. See Table 1 for details.

micelle that forms around AAC with this detergent, as observed
in size exclusion studies where monomeric AAC3 was esti-
mated to be 115 kDa in 12M but larger than 180 kDa in digito-
nin (27). This suggests that relatively little of the digitonin
bound to AACS3 is lost in exchange for Coomassie dye, unlike
the situation with the alkyl maltoside detergents. Membrane
proteins, in general, are reported to be larger in blue native gels
when prepared in digitonin compared with 12M (34), consist-
ent with a digitonin forming a larger micelle, although the pres-
ence of more lipids associated with digitonin-solubilized pro-
teins could also explain the apparent increase in size (34).
Heuberger et al. (40) have demonstrated that the apparent
mass of several membrane proteins determined by blue native
PAGE requires a correction factor of 1.8 to account for the extra
Coomassie dye that binds relative to soluble marker proteins
(i.e. the transporters are ~1.8-fold smaller than they appear on
gels). In agreement with this, LacS purified in 12M and
exchanged into Coomassie dye was found to bind 0.8 g of Coo-
massie dye per g of protein. Other small membrane proteins
also appear to obey this relationship (e.g. rhodopsin (43), the
carnitine transporter CaiT (44), the urea transporter ApUT
(45), the glutamate transporter GItP. (46), and a truncated
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version of the copper transporter CopB (47)). Applied here, the
correction factor would predict that AAC3 is ~33 kDa (~60
kDa), consistent with our observations that AAC3 is mono-
meric in blue native gels. In size exclusion experiments, how-
ever, we found that purified AAC3 was able to bind much more
Coomassie dye (up to 2.5 g/g of protein) than this correction
factor would otherwise suggest, giving a final complex of ~120
kDa. This relatively high degree of binding most likely relates to
the small size and disproportionately large hydrophobic surface
of AAC3 when compared with the other membrane proteins
studied (40, 42). Importantly, the considerable charge associ-
ated with the bound Coomassie dye means that the complex is
also likely to migrate faster on gels and so appear smaller. This
may explain why the AAC3 species is only ~60 kDa on gels and
a correction factor larger than 1.8 is not required.
Mitochondrial carriers are inherently unstable. We found
that CATR was required to stabilize AAC3 on blue native gels.
Most mitochondrial carriers, however, cannot be stabilized in
this way, and so to what extent their migration on blue native
gels reflects a native conformation is not clear. Even in the pres-
ence of CATR, small amounts of AAC3 can aggregate into
higher molecular mass species under particular conditions.
Protein “laddering” has been observed with other membrane
proteins (44, 45,47, 48) and is consistent with the occurrence of
less favorable solubilization conditions. This typically occurs
when the detergent concentration is limiting but can occur at
higher concentrations also with particular detergents (e.g. in
digitonin or, on occasion, in 12M). In general, there is a good
correlation between membrane protein profiles observed on
blue native gels (taking into account correction factors) with
those observed using other sizing techniques, suggesting that
the real state of the protein in detergent is reported despite the
presence of Coomassie dye (47, 48). Of note, minor AAC mul-
timers were identified by analytical ultracentrifugation in prep-
arations of bovine AAC1 in Triton X-100, where the protein
was also found to be predominantly monomeric (30).
Mitochondrial carrier proteins were originally thought to be
dimeric in both form and function. However, there is now con-
siderable evidence from various techniques, as well as retro-
spective analysis of past data (reviewed in Ref. 31), to show that
mitochondrial carriers are in fact monomeric. Here, we have
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addressed the behavior of mitochondrial carrier proteins in
blue native PAGE, a technique that has provided support for the
presence of dimers in the past. Our observations are consistent
with previous work but show clearly that the carrier species in
question are monomeric not dimeric.
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