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Abstract

We study the partial Brauer monoid and its planar submonoid, the Motzkin monoid. We conduct a
thorough investigation of the structure of both monoids, providing information on normal forms, Green’s
relations, regularity, ideals, idempotent generation, minimal (idempotent) generating sets, and so on.
We obtain necessary and sufficient conditions under which the ideals of these monoids are idempotent-
generated. We find formulae for the rank (smallest size of a generating set) of each ideal, and for the
idempotent rank (smallest size of an idempotent generating set) of the idempotent-generated subsemigroup
of each ideal; in particular, when an ideal is idempotent-generated, the rank and idempotent rank are
equal. Along the way, we obtain a number of results of independent interest, and we demonstrate the
utility of the semigroup theoretic approach by applying our results to obtain new proofs of some important
representation theoretic results concerning the corresponding diagram algebras, the partial (or rook)
Brauer algebra and Motzkin algebra.
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1 Introduction

There are many reasons to study the monoids of the title. On the one hand, diagram algebras (including
Brauer algebras [12], partial Brauer algebras [43, 60], Temperley-Lieb algebras [72], Motzkin algebras [9],
rook monoid algebras [44], partition algebras [54, 59], etc.) are ubiquitous in representation theory and
statistical mechanics, and several recent approaches to diagram algebras via diagram monoids and twisted
semigroup algebras have proved extremely successful [11,16,17,21,22,45,57,74]. On the other hand, diagram
monoids are of direct interest to semigroup theorists for a range of reasons. For one thing, diagram monoids
are closely related to several important transformation semigroups; indeed, the partition monoids contain
isomorphic copies of the full transformation semigroup and the symmetric inverse monoid [21, 24, 28]. For
another, diagram monoids provide natural examples of regular ∗-semigroups [69], a variety of semigroups
contained strictly between the varieties of regular and inverse semigroups (see Section 2 for definitions);
thanks to the ∗-regular structure of the partition monoids, it is now known that any semigroup embeds in
an idempotent-generated regular ∗-semigroup [24], and that any finite semigroup embeds in a 2-generator
regular ∗-semigroup [23]. Diagram monoids have also played a large role in the development of the theory
of pseudovarieties of finite semigroups [4–7]. Finally, and of particular significance to the current work,
algebraic studies of diagram monoids have led to incredibly rich combinatorial structures [16,17,25].

The current article continues in the combinatorial theme of a previous paper of the second and third named
authors [25], which, in turn, took its inspiration from a number of foundational papers of John Howie on
combinatorial aspects of finite full transformation semigroups. In [48], Howie showed that the singular ideal
of a finite full transformation semigroup is generated by its idempotents. In subsequent work, Howie and
various collaborators calculated the rank (minimal size of a generating set) and idempotent rank (minimal
size of an idempotent generating set) of this singular ideal, classified the minimal (in size) idempotent
generating sets, and extended these results to arbitrary ideals [35,49,51,52]; a prominent role was played by
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certain well-known number sequences, such as binomial coefficients and Stirling numbers. Analogous results
have been obtained for many other important families of semigroups, such as full linear monoids [26,29,38],
endomorphism monoids of various algebraic structures [15, 18, 30, 31, 37], sandwich semigroups [13, 14] and,
more recently, certain families of diagram monoids [22,24,25,58].

The current article mainly concerns the partial Brauer monoid PBn and the Motzkin monoid Mn (see
Section 2 for definitions). There is a growing body of literature on partial Brauer monoids and algebras;1

see for example [7, 16, 43, 46, 55, 60, 64–66]. Motzkin monoids and algebras are a more recent phenomenon
[7, 9, 17, 46, 66, 70], and are planar versions of the partial Brauer monoids and algebras (see Section 2);
the relationship between PBn and Mn is therefore analogous to that between the Brauer monoid Bn and
the Jones monoid Jn.2 The planarity built into the definition of the Motzkin and Jones monoids leads
to an aperiodic structure (all subgroups are trivial), and can have interesting effects when comparing the
complexity of certain problems; for example, the enumeration of idempotents is far more difficult inMn and
Jn than in PBn and Bn [16,17], while it is quite the opposite for the enumeration of minimal-size idempotent
generating sets of the singular ideals of Jn and Bn [25]. The situation in the current article is more akin to
the former; although the difficulty is fairly comparable, the combinatorial analysis is more subtle for Mn

than for PBn, and relies on less-familiar number sequences such as the Motzkin and Riordan numbers. In the
spirit of the articles mentioned in the previous paragraph, we mostly focus on questions concerning ideals,
idempotent-generation, and minimal (idempotent) generating sets. But we also demonstrate the utility of
the semigroup theoretic approach by applying our results to the corresponding diagram algebras in order to
recover important (known) results on representation theory and cellularity.

Before summarising the results of the article, we first note that some quite general methods exist for
studying generating sets and (idempotent) ranks, of so-called (finite) completely 0-simple semigroups. By
the much-celebrated Rees theorem [50, Theorem 3.2.3], each completely 0-simple semigroup is isomorphic to
a Rees 0-matrix semigroup over a group. Given such a Rees 0-matrix semigroup, S = M0[G; I,Λ;P ], one can
associate a finite bipartite graph, with vertex set I∪Λ and with edges (labelled by elements from the group G)
corresponding to the non-zero entries in the structure matrix P . This is called the Graham–Houghton graph
of S and is a useful tool for studying questions concerning subsemigroups and generators of S. In particular,
this approach was used in [39] to give a formula for the rank of an arbitrary finite completely 0-simple
semigroup. These techniques were later developed and extended to investigate idempotent ranks in [37,38].
These results are relevant for the general problem of determining the rank of a (not necessarily completely
0-simple) finite semigroup S. Indeed, if S is a finite semigroup, then the rank of S is bounded below by the
sum of the ranks of the principal factors of the maximal J -classes of S. (Green’s relations, which include
the J -relation, are defined in Section 2.) There are in fact many natural examples where this bound is
attained, and so the question of the rank of the semigroup reduces to computing the rank of certain finite
completely 0-simple semigroups. This is the case, for example, for the proper two-sided ideals of the full
transformation monoid and the full linear monoid, as well as various diagram monoids such as the partition,
Brauer and Jones monoids; see [25, 40, 52] for more details and for additional examples and references. In
particular, in all of the diagram monoids considered in [25], the proper ideals all have a unique maximal
J -class whose elements (indeed, idempotents) generate the whole ideal. For this reason, the questions of
rank and idempotent rank in that work reduced to questions about completely 0-simple semigroups (and
certain combinatorial data, including the above-mentioned Graham–Houghton graphs). The current paper
represents a significant departure from this pattern: most of the ideals we consider are not generated by the
elements of a single J -class; even though each proper ideal still does have a unique maximal J -class, any
generating set must contain elements from a non-maximal J -class. As a result, the question of computing
(idempotent) ranks cannot be resolved simply by applying general results about ranks of completely 0-simple
semigroups, hence the necessity of new methods, such as those we employ here.

The article is organised as follows. In Section 2, we gather the preliminary results we will need concerning
basic semigroup theory, regular ∗-semigroups and the various diagram monoids that will play a role in our

1Partial Brauer monoids and algebras are also known in the literature as rook Brauer monoids and algebras.
2Jones monoids are occasionally referred to as Temperley-Lieb monoids; see [57] for a discussion of naming conventions.

Motzkin monoids and algebras have also been called partial Jones (or partial Temperley-Lieb) monoids and algebras; we prefer
the Motzkin nomenclature, since the processes of partialising diagrams and of selecting planar elements do not commute: as
noted in [17], the “planar partial Brauer monoid” strictly contains the “partial planar Brauer monoid”.
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investigations. The main result of Section 2 (Proposition 2.6) is that PBn and Mn both have n+ 1 ideals:

I0(PBn) ⊆ I1(PBn) ⊆ · · · ⊆ In(PBn) = PBn and I0(Mn) ⊆ I1(Mn) ⊆ · · · ⊆ In(Mn) =Mn.

We also prove some enumerative results concerning Green’s relations in both monoids (Propositions 2.7, 2.8
and 2.9). Section 3 is devoted to the partial Brauer monoid PBn. A proper ideal Ir(PBn) ( PBn is
generated by its top D-class if r = 0 or r ≡ n (mod 2); otherwise, Ir(PBn) is generated by its top two D-
classes (Corollaries 3.10 and 3.12 and Proposition 3.15). We calculate the rank of each ideal Ir(PBn), and the
idempotent rank in the case that the ideal is idempotent-generated; this occurs when 0 ≤ r ≤ n−2, and the
rank and idempotent rank are equal for such values of r (Theorem 3.14 and Propositions 3.15 and 3.16). We
also describe the idempotent-generated subsemigroup of PBn, and calculate its rank and idempotent rank,
which are again equal (Theorem 3.18). Some of the general structural results we prove in this section are of
independent interest; for example, the normal forms we provide in Lemma 3.1 (see also Remark 3.2) are used
in later sections to obtain information about the corresponding diagram algebras. The situation is somewhat
different for the Motzkin monoid Mn, which is the subject of Section 4. Each proper ideal Ir(Mn) (Mn

is still generated by its top two D-classes, but only by a single D-class if r = 0 (Propositions 4.2 and 4.5).
While an ideal Ir(Mn) is only idempotent generated if r < bn2 c, we are still able to calculate the rank of
each ideal, as well as the idempotent rank when applicable; again, the rank and idempotent rank are equal
(Proposition 4.10 and Theorems 4.12 and 4.13). We also describe the idempotent-generated subsemigroup
of each ideal, and calculate its rank and idempotent rank (Theorems 4.16 and 4.17); when r ≤ n− 2, these
values are again equal and, curiously, also equal to the rank of the corresponding ideal, even in the case
that the ideal is not idempotent-generated (i.e., when bn2 c ≤ r ≤ n − 2). In Section 5, we apply results of
previous sections to deduce (known) information about the associated diagram algebras, the so-called partial
Brauer algebras and Motzkin algebras; specifically, we show that both algebras are cellular, and calculate the
dimensions of the cell modules in the case that the ground ring is a field (these coincide with the irreducible
modules in the semisimple case). Finally, Section 6 contains a number of tables displaying calculated values
of various ranks and idempotent ranks.

For non-negative integers a, b, we write [a, b] = {a, a+ 1, . . . , b}, which we assume to be empty if b < a. We
also write [n] = [1, n] = {1, . . . , n}, noting that [0] = ∅. If A ⊆ [n], we write Ac = [n]\A. For a non-negative
integer k, we write k!! = 0 if k is even or k!! = k · (k − 2) · · · 3 · 1 if k is odd. By convention, we define
(−1)!! = 1. We also interpret a binomial coefficient

(
n
k

)
to be 0 if k < 0 or n < k. We will sometimes write

X = {i1 < · · · < ik} to indicate that X = {i1, . . . , ik} and i1 < · · · < ik.

2 Preliminaries

In this section, we record some preliminary results concerning regular ∗-semigroups and the various diagram
monoids that will play a role in our investigations. But first we recall some basic notions from semigroup
theory. For more information, the reader is refered to a text such as [47,50,71].

Let S be a semigroup. If X ⊆ S, we write 〈X〉 for the subsemigroup of S generated by X. The rank of S,
denoted rank(S), is the minimal cardinality of a subset X ⊆ S such that S = 〈X〉. Recall from [53] that
the relative rank of S with respect to a subset A ⊆ S, denoted rank(S : A), is the minimum cardinality of
a subset X ⊆ S such that S = 〈X ∪A〉.

For any subset X ⊆ S, write E(X) = {x ∈ X : x = x2} for the set of all idempotents contained in X. If
S is idempotent-generated, the idempotent rank of S, denoted idrank(S), is the minimal cardinality of a
subset X ⊆ E(S) such that S = 〈X〉; note that rank(S) ≤ idrank(S). We write E(S) = 〈E(S)〉 for the
idempotent-generated subsemigroup of S.

Recall that Green’s relations R,L ,J ,H ,D are defined, for x, y ∈ S, by

xRy ⇔ xS1 = yS1, xL y ⇔ S1x = S1y, xJ y ⇔ S1xS1 = S1yS1,

H = R ∩L , D = R ◦L = L ◦R.

Here, S1 denotes the monoid obtained by adjoining an identity 1 to S (if necessary). If x ∈ S, and if K
is one of Green’s relations, we denote by Kx the K -class of x in S. An H -class contains an idempotent if
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and only if it is a group, in which case it is a maximal subgroup of S. If e and f are D-related idempotents
of S, then the subgroups He and Hf are isomorphic. If S is a monoid, then the H -class of the identity
element of S is the group of units of S. The J -classes of S are partially ordered; we say that Jx ≤ Jy if
x ∈ S1yS1. If S is finite, then J = D .

An element x ∈ S is regular if x = xyx and y = yxy for some y ∈ S or, equivalently, if Dx contains an
idempotent, in which case Rx and Lx do, too. We say S is regular if every element of S is regular. Recall
that a semigroup S is stable if for any x, y ∈ S:

xyDx ⇔ xyRx and xyDy ⇔ xyL y.

In particular, all finite semigroups are stable. If T is a subsemigroup of S, then we write K T for Green’s
K -relation on T . So, for example, if x, y ∈ T , then xRT y ⇔ xT 1 = yT 1. If T is a regular subsemigroup
of S (which may or may not be regular itself), and if K is one of R,L ,H , then K T is simply the restriction
of K to T , but this is not necessarily true if K is one of D or J . We will occasionally write K S for
Green’s K -relation on S if it is necessary to distinguish it from the K -relation on a subsemigroup.

2.1 Regular ∗-semigroups

Recall that a semigroup S is a regular ∗-semigroup [69] if there is a unary operation ∗ : S → S : x 7→ x∗

satisfying
x∗∗ = x, (xy)∗ = y∗x∗, xx∗x = x for all x, y ∈ S.

(The additional identity x∗xx∗ = x∗ follows as a simple consequence.) Recall that an element x of a regular
∗-semigroup S is a projection if x∗ = x = x2. We denote the set of all projections of S by P (S), and we
note that P (S) ⊆ E(S). More generally, if X is any subset of S, we write P (X) = P (S) ∩ X. The next
result is well known; see for example [77].

Proposition 2.1. Let S be a regular ∗-semigroup.

(i) We have P (S) = {aa∗ : a ∈ S} = {a∗a : a ∈ S}.

(ii) We have E(S) = P (S)2. In particular, 〈E(S)〉 = 〈P (S)〉, and S is idempotent-generated if and only
if it is projection-generated.

(iii) Every R-class of S contains precisely one projection, as does every L -class. In particular, the number
of R-classes (equivalently, L -classes) contained in a D-class D is equal to |P (D)|. 2

To further elaborate on part (iii) of the above result, if x is an element of a regular ∗-semigroup S, then
xx∗RxL x∗x, with xx∗, x∗x ∈ P (Dx). Note also that xDx∗ for all x ∈ S.

Lemma 2.2. Let D be a D-class of a finite regular ∗-semigroup S, and let T = 〈D〉 and P = P (D).

(i) We have rank(T ) ≥ |P |.

(ii) If the H -classes contained in D have size 1, then rank(T ) = |P |.

(iii) If T is idempotent-generated, then T = 〈P 〉 and idrank(T ) = rank(T ) = |P |.

Proof. Since T \D is an ideal of T , it is clear that rank(T ) is equal to the minimal cardinality of a subset
A ⊆ D for which D ⊆ 〈A〉.

For (i), suppose A ⊆ D is such that D ⊆ 〈A〉. To show that rank(T ) ≥ |P |, it suffices to show that |A| ≥ |P |.
Let p ∈ P , and consider an expression p = a1 · · · ak where a1, . . . , ak ∈ A. In particular, since p ∈ D, we
have a1Dp = a1(a2 · · · ak). By stability, since S is finite, it follows that a1Ra1(a2 · · · ak) = p. In particular,
A contains at least one element from the R-class of p. Since projections belong to distinct R-classes, it
follows that |A| ≥ |P |, as required.
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Next, suppose the H -classes contained in D all have size 1. To prove (ii), it suffices to find a generating
set for T of size |P |. Now, for any p, q ∈ P , the intersection Rp ∩ Lq is an H -class in D, so we may write
Rp ∩ Lq = {apq}. Since R- and L -classes contain unique projections, we have apqa

∗
pq = p and a∗pqapq = q.

We first claim that for any p, q, r, s ∈ P , apqars ∈ D if and only if qr ∈ D, in which case apqars = aps.
Indeed,

apqars ∈ D ⇒ apqarsDapq ⇒ apqarsRapq by stability

⇒ qars = a∗pqapqarsRa∗pqapq = q since R is a left congruence

⇒ qarsDqDars

⇒ qarsL ars by stability

⇒ qr = qarsa
∗
rsL arsa

∗
rs = r since L is a right congruence

⇒ qrDr ⇒ qr ∈ D.

The reverse implication is proved in similar fashion. But then, by stability again,

apqars ∈ D ⇒

{
apqarsDapq ⇒ apqarsRapqRp

apqarsDars ⇒ apqarsL arsL s,

so that apqars ∈ Rp ∩Ls = {aps}, establishing the claim. Now choose an arbitrary ordering p1, . . . , pk of the
elements of P , and put A = {ap1p2 , . . . , apk−1pk , apkp1}, noting that |A| = |P |. Then for any i, j ∈ [k], we
have

apipj = apipi+1api+1pi+2 · · · apj−1pj ,

where we may have to read the subscripts modulo k, showing that D ⊆ 〈A〉, and completing the proof of (ii).

Finally, if T is idempotent-generated, then T = 〈E(D)〉 = 〈P 〉, so that P is an idempotent generating set
of size rank(T ), giving idrank(T ) ≤ |P |. Since rank(T ) ≤ idrank(T ), (iii) is proved, after applying (i). 2

2.2 Diagram monoids

Let n be a non-negative integer, and write PBn for the set of all set partitions of [n] ∪ [n]′ = {1, . . . , n} ∪
{1′, . . . , n′} into blocks of size at most 2. For example, here are two elements of PB6:

α =
{
{1, 3}, {2, 3′}, {5, 6}, {4′, 5′}, {4}, {1′}, {2′}, {6′}

}
,

β =
{
{1, 3}, {4, 3′}, {5, 6}, {4′, 5′}, {2}, {1′}, {2′}, {6′}

}
.

There is a unique element of PB0, namely the empty partition.

If we write a(m) for the number of ways to partition an m-element set into blocks of size at most 2, then
one easily establishes the recurrence

a(0) = a(1) = 1, a(m) = a(m− 1) + (m− 1)a(m− 2) for m ≥ 2.

In particular, |PBn| = a(2n). An alternative formula, |PBn| =
∑n

k=0

(
2n
2k

)
(2k − 1)!!, was given in [43, 64].

The numbers a(m) and a(2m) appear as sequences A000085 and A066223, respectively, on the OEIS [1].

An element of PBn may be represented (uniquely) by a graph on vertex set [n]∪[n]′; a single edge is included
between vertices u, v ∈ [n]∪ [n]′ if and only if {u, v} is a block of α of size 2. We typically identify α ∈ PBn
with its corresponding graph. When drawing such a graph, the vertices 1, . . . , n are arranged in a horizontal
line (increasing from left to right) with vertex i′ directly below i for each i ∈ [n], and the edges are always
drawn within the interior of the rectangle defined by the vertices. A graph drawn in such a way is called
a Brauer n-diagram, or simply a Brauer diagram if n is understood from context. So, with α, β ∈ PB6 as
above, we have:

α = and β = .

Occasionally it will be convenient to order the top and/or bottom vertices differently, but this will always
be made clear; see Figure 7.
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The set PBn forms a monoid, known as the partial Brauer monoid, under an operation we now describe.
Let α, β ∈ PBn. Write [n]′′ = {1′′, . . . , n′′}. Let α∨ be the graph obtained from α by changing the label
of each lower vertex i′ to i′′. Similarly, let β∧ be the graph obtained from β by changing the label of each
upper vertex i to i′′. Consider now the graph Γ(α, β) on the vertex set [n] ∪ [n]′ ∪ [n]′′ obtained by joining
α∨ and β∧ together so that each lower vertex i′′ of α∨ is identified with the corresponding upper vertex i′′

of β∧. Note that Γ(α, β), which we call the product graph, may contain parallel edges. We define αβ ∈ PBn
to be the Brauer diagram that has an edge {x, y} if and only if x, y ∈ [n] ∪ [n]′ are connected by a path in
Γ(α, β). An example calculation (with n = 12) is given in Figure 1.

α =

β =

= αβ

Figure 1: Two Brauer diagrams α, β ∈ PB12 (left), their product αβ ∈ PB12 (right), and the product graph
Γ(α, β) (centre).

The partial Brauer monoid is a regular ∗-semigroup. Indeed, for α ∈ PBn, we write α∗ for the Brauer diagram
obtained from α by interchanging dashed and undashed vertices (i.e., by reflecting α in a horizontal axis).
For example, with α ∈ PB6 as above, we have

α = 7→ α∗ = .

We note that PBn is a ∗-submonoid of the larger partition monoid Pn; we will not need to discuss Pn
any further, but the reader is referred, for example, to [25, 45]. We now describe a number of important
∗-submonoids of PBn.

• We writeMn for the Motzkin monoid, which is the submonoid of PBn consisting of all Brauer diagrams
that may be drawn in planar fashion (with vertices arranged as above, and with all edges within the
rectangle defined by the vertices); such a planar Brauer diagram is called a Motzkin diagram.

• We write Bn for the Brauer monoid, which is the submonoid of PBn consisting of all Brauer diagrams
in which each block is of size 2.

• We call a block of α ∈ PBn an upper hook if it has size 2 and is contained in [n]; lower hooks are
defined analogously. We write In for the submonoid of PBn consisting of all Brauer diagrams with
no hooks. So In is (isomorphic to) the symmetric inverse monoid (also known as the rook monoid),
which consists of all injective partial maps [n]→ [n].

For example, with α, β ∈ PB6 as above, we have β ∈ M6 but α 6∈ M6. We also have γ ∈ B6 and δ ∈ I6,
where:

γ = and δ = .

Various intersections of the above submonoids are also of importance:

• We write Sn = In ∩ Bn for the symmetric group.

• We write Jn = Bn ∩Mn for the Jones monoid (also known as the Temperley-Lieb monoid).

• We write On =Mn∩In for the monoid of all order-preserving injective partial maps [n]→ [n]. (Recall
that α ∈ In is order-preserving if iα < jα whenever i, j belong to the domain of α and i < j. Also,
note that On is often denoted POIn in the literature.)

The intersection of all the above monoids is the trivial submonoid, {1}. Here,

1 =
{
{1, 1′}, {2, 2′}, . . . , {n, n′}

}
= ∈ PBn
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PBn

Bn Mn In

Jn Sn On

{1}

Figure 2: Important submonoids of PBn (left) and representative elements from each submonoid (right).
See text for further explanation.

denotes the identity Brauer diagram. The relevant part of the submonoid lattice of PBn is displayed in
Figure 2.

Green’s relations on PBn (and all the submonoids mentioned above) may be conveniently described in terms
of a number of parameters we now describe. With this in mind, let α ∈ PBn. A block of α is called a
transversal block if it has nonempty intersection with both [n] and [n]′, and a nontransversal block otherwise.
The rank of α, denoted rank(α), is equal to the number of transversal blocks of α. For x ∈ [n] ∪ [n]′, let
[x]α denote the block of α containing x. We define the domain and codomain of α to be the sets

dom(α) =
{
x ∈ [n] : [x]α ∩ [n]′ 6= ∅

}
and codom(α) =

{
x ∈ [n] : [x′]α ∩ [n] 6= ∅

}
.

We also define the kernel and cokernel of α to be the equivalences

ker(α) =
{

(x, y) ∈ [n]× [n] : [x]α = [y]α
}

and coker(α) =
{

(x, y) ∈ [n]× [n] : [x′]α = [y′]α
}
.

To illustrate these ideas, let

ε = ∈ PB8.

Then rank(ε) = 3, dom(ε) = {4, 7, 8}, codom(ε) = {5, 6, 8}, and ε has non-trivial cokernel classes {1, 2} and
{3, 4}, but no non-trivial kernel classes.

It is immediate from the definitions that

dom(αβ) ⊆ dom(α), ker(αβ) ⊇ ker(α),

codom(αβ) ⊆ codom(β), coker(αβ) ⊇ coker(β),

for all α, β ∈ PBn. Also, any upper non-transversal block of α is an upper non-transversal block of αβ for
any α, β ∈ PBn, with a similar statement holding for lower non-transversal blocks of β.

We now recall another way to specify an element of PBn. With this in mind, let α ∈ PBn. We write

α =

(
i1 · · · ir A1 · · · As

j1 · · · jr B1 · · · Bt

)
=

(
ik Al

jk Bm

)
k∈[r], l∈[s], m∈[t]

to indicate that α has transversal blocks {i1, j′1}, . . . , {ir, j′r}, upper hooks A1, . . . , As, and lower hooks
B′1, . . . , B

′
t. (If B ⊆ [n], we write B′ = {b′ : b ∈ B}.) Note that it is possible for any of r, s, t to be 0. In

fact, since we do not list the singleton blocks of α, it is possible to have r = s = t = 0. For the same reason,
it is not possible to determine n from such a tabular representation of α ∈ PBn, so the context will always
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be made clear. We will also use variations of this notation. So, for example, we may write

=

(
3 5 1, 2 4, 7

5 7 1, 2 3, 4 6, 8

)
.

To gain familiarity with this notation, the reader may like to check that(
1 8 20 2, 7 3, 4 5, 6 9, 12 13, 18 14, 17 15, 16

7 8 17 1, 4 2, 3 9, 16 10, 11 12, 15 13, 14 18, 20

)
∈ E(M20).

The next result follows quickly from Proposition 2.1(i) or from [24, Lemma 4].

Lemma 2.3. Projections of PBn are of the form(
i1 · · · ir A1 · · · As

i1 · · · ir A1 · · · As

)
. 2

Green’s relations have been characterized for many of the above semigroups; see for example [25,27,28,32,74].

Theorem 2.4. Let α, β ∈ Kn, where Kn is one of PBn,Bn,Mn, In,Jn,On. Then

(i) αRβ ⇔ dom(α) = dom(β) and ker(α) = ker(β),

(ii) αL β ⇔ codom(α) = codom(β) and coker(α) = coker(β),

(iii) αJ β ⇔ αDβ ⇔ rank(α) = rank(β).

Proof. Since each Kn is a regular (∗-)subsemigroup of the partition monoid Pn, parts (i) and (ii) follow
from [74, Theorem 17]. For (iii), we note that also [74, Theorem 17] gives

αDKnβ ⇒ αDPnβ ⇒ rank(α) = rank(β).

Conversely, if rank(α) = rank(β), then we may write

α =

(
iu Av

ju Bw

)
u∈U, v∈V, w∈W

and β =

(
ku Cx

lu Dy

)
u∈U, x∈X, y∈Y

.

But then it is easy to see that αRγL β, where

γ =

(
iu Av

lu Dy

)
u∈U, v∈V, y∈Y

∈ Kn. 2

Remark 2.5. For some of the above monoids Kn, the descriptions of the R- and L -relations on Kn may
be simplified. For example, if Kn = Bn or Jn, then αRβ ⇔ ker(α) = ker(β); or if Kn = In or On, then
αRβ ⇔ dom(α) = dom(β).

The next result follows quickly from Theorem 2.4. Again, the statement is well known for some of the
semigroups [25,27,33]. Recall that a finite semigroup is aperiodic if the H -relation is trivial.

Proposition 2.6. Let Kn be one of PBn,Bn,Mn, In,Jn,On. Then the D-classes of Kn are precisely the
sets

Dr(Kn) = {α ∈ Kn : rank(α) = r} for 0 ≤ r ≤ n,

where we must have r ≡ n (mod 2) if Kn = Bn or Jn. These D-classes form a chain: Dr(Kn) < Ds(Kn) if
and only if r < s. The ideals of Kn are precisely the sets

Ir(Kn) = {α ∈ Kn : rank(α) ≤ r} for 0 ≤ r ≤ n.

If Kn is any of PBn, In or Bn, then the H -class of an idempotent α ∈ E(Kn) is isomorphic to Sr, where
r = rank(α). If Kn is any of Mn, On or Jn, then Kn is aperiodic. 2
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We also need to know the number of R-classes contained in each D-class of the semigroups we consider.
For convenience, we state the values for the Motzkin monoidMn separately. Recall that for a non-negative
integer k, we write k!! = 0 if k is even or k!! = k · (k−2) · · · 3 ·1 if k is odd, and that we interpret (−1)!! = 1.

Proposition 2.7. Let Kn be one of PBn,Bn, In,Jn,On. The number of R-classes (equivalently, L -classes)
contained in Dr(Kn) is equal to

(i)
(
n
r

)
if Kn = In or On,

(ii)
(
n
r

)
· (n− r − 1)!! if Kn = Bn,

(iii) r+1
n+1

(
n+1
k

)
if Kn = Jn and r = n− 2k,

(iv)
(
n
r

)
· a(n− r) if Kn = PBn, where the numbers a(m) satisfy

a(0) = a(1) = 1, a(m) = a(m− 1) + (m− 1)a(m− 2) for m ≥ 2.

Proof. Part (i) is well known; see for example [32, Proposition 4.6.3] and [27, Proposition 2.3]. Parts (ii)
and (iii) were proved in [25, Theorems 8.4 and 9.5]; part (ii) was also proved in [56, Corollary 3.6(i)]. A
projection α from Dr(PBn) is determined by dom(α) and ker(α). There are

(
n
r

)
ways to choose dom(α),

and then ker(α) is determined by a set partition of dom(α)c into blocks of size at most 2 (since all elements
of dom(α) belong to singleton ker(α)-classes), so there are a(n− r) choices for ker(α). 2

Proposition 2.8. Let m(n, r) be the number of R-classes (equivalently, L -classes) contained in Dr(Mn).
Then

m(0, 0) = 1, m(n, r) = 0 if n < r or r < 0,

m(n, r) = m(n− 1, r − 1) +m(n− 1, r) +m(n− 1, r + 1) if 0 ≤ r ≤ n and n ≥ 1.

Proof. It is clear that m(0, 0) = 1, and that m(n, r) = 0 if n < r or r < 0. So suppose 0 ≤ r ≤ n, where
n ≥ 1. We define a mapping

¯: P (Dr(Mn))→ P (Dr−1(Mn−1)) ∪ P (Dr(Mn−1)) ∪ P (Dr+1(Mn−1)) : α 7→ ᾱ

as follows. Let α ∈ P (Dr(Mn)). We write α[ for the induced subgraph on vertices [n− 1] ∪ [n− 1]′. If
{n, n′} or {n} is a block of α, then we write ᾱ = α[, noting that ᾱ then belongs to P (Dr−1(Mn−1)) or
P (Dr(Mn−1)), respectively. If {i, n} is a block of α for some i ∈ [n− 1], then we write ᾱ for the Motzkin
diagram obtained by adding the edge {i, i′} to α[, noting that ᾱ belongs to P (Dr+1(Mn−1)) in this case,
and that i = max(dom(ᾱ)). Since the ¯ map is clearly invertible, the result follows. 2

We will also need to count certain special kinds of projections from Mn. With this in mind, let α ∈ Mn,
and suppose A is an upper non-transversal block of α (of size 1 or 2). We say that A is nested if there exists
an upper hook {x, y} of α such that x < min(A) ≤ max(A) < y. (We similarly define nested lower blocks.)
For example, the blocks {4, 5} and {6} are nested, while {2} and {3, 7} are unnested, in

∈M7.

Proposition 2.9. Let m′(n, r) denote the number of projections from Dr(Mn) with no unnested singleton
blocks. Then

m′(0, 0) = 1, m′(n, r) = 0 if n < r or r < 0,

m′(n, r) = m′(n− 1, r − 1) +
n−1∑
j=r+1

m′(n− 1, j) if 0 ≤ r ≤ n and n ≥ 1.
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Proof. Let P ′(Dr(Mn)) denote the set of projections from Dr(Mn) with no unnested singleton blocks, so
that m′(n, r) = |P ′(Dr(Mn))|. Again, the initial values are clear, so suppose 0 ≤ r ≤ n, where n ≥ 1. This
time, we define a mapping

¯: P ′(Dr(Mn))→ P ′(Dr−1(Mn−1)) ∪
n−1⋃
j=r+1

P ′(Dj(Mn−1)) : α 7→ ᾱ

as follows. Let α ∈ P ′(Dr(Mn)). If {n, n′} is a block of α, then we put ᾱ = α[ (as defined in the previous
proof). If {i, n} is a block of α for some i ∈ [n− 1], then we let ᾱ be the Motzkin diagram obtained from α[

by adding edges {k, k′} for each unnested singleton block {k} of α[ with i ≤ k ≤ n− 1. (In particular, note
that {i, i′} is added.) Again, the ¯ map is invertible, so the result follows. 2

Remark 2.10. The first few values of m(n, r) and m′(n, r) are given in Table 1. These are sequences
A064189 and A097609 on the OEIS [1]; see also [2,8,10]. The numbers m(n) = m(n, 0) and m′(0) = m′(n, 0)
are sequences A001006 and A005043 on the OEIS, and are called the Motzkin and Riordan numbers,
respectively. The numbers m(n, r) and m′(n, r) also count various kinds of lattice paths; bijections between
such paths and Motzkin projections lead to different proofs of Propositions 2.8 and 2.9.

n \ r 0 1 2 3 4 5 6 7

0 1

1 1 1

2 2 2 1

3 4 5 3 1

4 9 12 9 4 1

5 21 30 25 14 5 1

6 51 76 69 44 20 6 1

7 127 196 189 133 70 27 7 1

n \ r 0 1 2 3 4 5 6 7

0 1

1 0 1

2 1 0 1

3 1 2 0 1

4 3 2 3 0 1

5 6 7 3 4 0 1

6 15 14 12 4 5 0 1

7 36 37 24 18 5 6 0 1

Table 1: Values of m(n, r) and m′(n, r) — left and right, respectively.

Remark 2.11. From Propositions 2.6, 2.7 and 2.8, we may easily deduce formulae for the sizes of the
D-classes and ideals of the monoids we consider. For example,

|Ir(PBn)| =
r∑
s=0

(
n

s

)2

a(n− s)2s! and |Ir(Mn)| =
r∑
s=0

m(n, s)2.

Calculated values of |Ir(PBn)| and |Ir(Mn)| are given in Table 2.

Remark 2.12. There is a bijection between Mn and P (D0(M2n)) that may be described as follows. For
α ∈Mn, first “unfold” the graph so that all vertices appear on a straight line in the order 1, . . . , n, n′, . . . , 1′,
with all edges “hanging” below the vertices. Then relabel the vertices 1, . . . , 2n and add a reflected copy
directly below, with vertices labelled 1′, . . . , (2n)′. An example is given in Figure 3. In particular, it follows
that |Mn| = |P (D0(M2n))| = m(2n, 0) = m(2n), as observed in [9]. Combined with the formula for
|Mn| = |In(Mn)| from Remark 2.11, we obtain the well-known identity m(2n) =

∑n
r=0m(n, r)2, as also

observed in [9]. Similar considerations show that |PBn| = |P (D0(PB2n))| = a(2n) =
∑n

r=0

(
n
r

)2
a(n− r)2r!.

We conclude this section by stating a result that will be used frequently in what follows; for a proof,
see [78, Lemmas 4.1 and 4.7]. Similar results were proved for the diagram semigroups Pn,Bn,Jn in [25].

Proposition 2.13. If 0 ≤ r ≤ n− 1, then Ir(In) = 〈Dr(In)〉 and Ir(On) = 〈Dr(On)〉. 2
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n \ r 0 1 2 3 4 5 6 7

0 1

1 1 2

2 4 8 10

3 16 52 70 76

4 100 356 644 740 764

5 676 3176 6376 8776 9376 9496

6 5776 30 112 75 112 113 512 135 112 139 432 140 152

7 53 824 336 848 933 080 1 668 080 2 138 480 2 350 160 2 385 440 2 390 480

n \ r 0 1 2 3 4 5 6 7

0 1

1 1 2

2 4 8 9

3 16 41 50 51

4 81 225 306 322 323

5 441 1341 1966 2162 2187 2188

6 2601 8 377 13 138 15 074 15 474 15 510 15 511

7 16 129 54 545 90 266 107 955 112 855 113 584 113 633 113 634

Table 2: Values of |Ir(PBn)| and |Ir(Mn)| — top and bottom, respectively.

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

−→

1 2 3 4 5 6 6′ 5′ 4′ 3′ 2′ 1′

−→

1 2 3 4 5 6 7 8 9 10 11 12

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′ 11′ 12′

Figure 3: An example illustrating the bijection Mn → P (D0(M2n)); see Remark 2.12.

3 The partial Brauer monoid PBn

In this section, we focus on the partial Brauer monoid PBn. We calculate the rank of each ideal Ir(PBn).
Additionally, we show that Ir(PBn) is idempotent-generated if r ≤ n−2 and we show that idrank(Ir(PBn)) =
rank(Ir(PBn)) for such an r; see Theorem 3.14. We also characterise the elements of the idempotent-
generated subsemigroup E(PBn) = 〈E(PBn)〉, and calculate its rank and idempotent rank (which, again,
are equal); see Theorem 3.18.

Throughout this section, we will use the abbreviations

Dr = Dr(PBn) = {α ∈ PBn : rank(α) = r} and Ir = Ir(PBn) = {α ∈ PBn : rank(α) ≤ r}

for each 0 ≤ r ≤ n. Note that Ir = D0 ∪ · · · ∪Dr, and that Dn = Sn, In = PBn and In−1 = PBn \ Sn.

For each 1 ≤ i < j ≤ n, and each 1 ≤ k ≤ n, let

σij =

1 i j n

, τij =

1 i j n

, εk =

1 k n

.

So σij ∈ Sn, τij ∈ E(Bn) and εk ∈ E(In).

For A = {a1 < · · · < ar} ⊆ [n], we define

λA =

(
a1 · · · ar

1 · · · r

)
and ρA =

(
1 · · · r

a1 · · · ar

)
.
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So λA is the unique element of On with domain A and codomain [r], and ρA = λ∗A. For example, with n = 7
and A = {1, 3, 4, 6}, we have

λA = and ρA = .

These mappings were introduced in [20], where they were used to derive a presentation for On and the
singular ideal In−1(In) = In \ Sn of the symmetric inverse monoid In. Specifically, it was shown that On is
generated (as a semigroup) by the set {1}∪{λ{i}c : i ∈ [n]}∪{ρ{i}c : i ∈ [n]}. Note that α = λdom(α)·ρcodom(α)

for any α ∈ On.

For A ⊆ [n], we write
SA = {α ∈ In : dom(α) = codom(α) = A}.

So clearly SA is isomorphic to the symmetric group Sr, where r = |A|. In fact, SA is the H -class (in PBn
or In) of the idempotent

idA =

(
a

a

)
a∈A

.

The next result gives a useful normal form for the elements of PBn.

Lemma 3.1. If α ∈ Dr, then α = β · λdom(α) · γ · ρcodom(α) · δ for some β, δ ∈ E(Dr) and γ ∈ S[r].

Proof. Suppose dom(α) = {i1 < · · · < ir} and codom(α) = {j1 < · · · < jr}. Then we may write

α =

(
i1 · · · ir A1 · · · As

j1π · · · jrπ B1 · · · Bt

)

for some π ∈ Sr. We then extend π ∈ Sr to γ ∈ S[r], and we see that the result holds with

β =

(
i1 · · · ir A1 · · · As

i1 · · · ir

)
and δ =

(
j1 · · · jr

j1 · · · jr B1 · · · Bt

)
,

both of which are clearly idempotents or rank r. (An example calculation is given in Figure 4.) 2

α

β

λdom(α)

γ

ρcodom(α)

δ

Figure 4: An example illustrating the factorization α = β · λdom(α) · γ · ρcodom(α) · δ from Lemma 3.1.

Remark 3.2. If α ∈Mn, then π ∈ Sr from the proof of Lemma 3.1 is the identity permutation, so in fact
we have α = β · λdom(α) · ρcodom(α) · δ, and it is clear that the idempotents β, δ from the proof are planar, so
that β, δ ∈ E(Dr(Mn)).
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Remark 3.3. Lemma 3.1 and Remark 3.2 are of broad general interest, beyond our current investigations
(which mostly concern ideals, idempotent generation, and minimal size (idempotent) generating sets). For
example, in Section 5, we show how they may be used to describe cellular structures on the corresponding
diagram algebras. We also note that similar normal form results have been extremely useful in derivations of
presentations (generators and relations) for a number of diagram semigroups and transformation semigroups;
see for example [20–22] and references therein. We therefore expect that Lemma 3.1 and Remark 3.2 will
provide useful approaches to presentations for PBn and Mn; see [55,70] for existing presentations.

Armed with Lemma 3.1, our first task is to show that the ideals Ir with r ≤ n− 2 are idempotent-generated
(see Corollary 3.10). To do this, we will need several intermediate results.

Lemma 3.4. If 0 ≤ r ≤ n− 2, then S[r] ⊆ 〈E(Dr)〉.

Proof. If r ≤ 1, then S[r] = {id[r]} ⊆ E(Dr), so suppose r ≥ 2. Since S[r] ∼= Sr, and since Sr is generated by
transpositions, it follows that S[r] is generated by the set {σij · id[r] : 1 ≤ i < j ≤ r}. So it suffices to show
that each element of this generating set belongs to 〈E(Dr)〉. With this in mind, let 1 ≤ i < j ≤ r. Then

σij · id[r] =

1 i j r n

=

1 i j r n

,

with each of the four diagrams in the product on the right hand side belonging to E(Dr). 2

Lemma 3.5. If A ⊆ [n] with |A| = n− 2, then λA, ρA ∈ 〈E(Dn−2)〉.

Proof. By symmetry, we need only prove the statement concerning λA. So suppose A = {k < l}c. We
prove that λA ∈ 〈E(Dn−2)〉 by descending induction on k + l. The maximum value of k + l occurs when
k = n− 1 and l = n, in which case λA = idA ∈ E(Dn−2), so suppose k+ l ≤ 2n− 2. We consider two cases.

Case 1. If l = n, then k ≤ n− 2, and λA = αβ · λ{k+1,n}c (see Figure 5), where

α =

(
x

x k, n

)
x∈{k,n}c

and β =

(
x k + 1, n

x

)
x∈{k+1,n}c

.

Clearly α, β ∈ E(Dn−2), while an inductive hypothesis gives λ{k+1,n}c ∈ 〈E(Dn−2)〉.

Case 2. If l < n, then λA = γδ · λ{k,l+1}c (see Figure 5), where

γ =

(
x

x k, l

)
x∈{k,l}c

and δ =

(
x k, l + 1

x

)
x∈{k,l+1}c

.

Again, γ, δ ∈ E(Dn−2) and λ{k,l+1}c ∈ 〈E(Dn−2)〉. 2

For the proof of the next result, and in other places, it will be convenient to define some mappings. With
this in mind, we define

] : PBn−1 → PBn : α 7→ α], \ : PBn−1 → PBn : α 7→ α\, [ : PBn → PBn−1 : α 7→ α[

as follows. For α ∈ PBn−1, α] ∈ PBn denotes the Brauer n-diagram obtained by adding the block {n, n′}
to α. We similarly define α\ ∈ PBn by the addition of the blocks {n} and {n′}. For α ∈ PBn, α[ ∈ PBn−1
denotes the induced subgraph on [n− 1] ∪ [n− 1]′. Note that, for example, if {i, n} is a block of α ∈ PBn,
then {i} will be a block of α[. Also, note that (α])[ = (α\)[ = α for any α ∈ PBn−1, but that (α[)] = α or
(α[)\ = α will only hold when certain (easily identified) conditions are true of α ∈ PBn. Also note that ] is
a monoid monomorphism, \ is a semigroup monomorphism, but [ is not a homomorphism (unless n = 1).
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1 k n

λ{k,n}c

1 k l n

λ{k,l}c

1 k n

α

1 k l n

γ

β δ

λ{k+1,n}c λ{k,l+1}c

Figure 5: Diagrammatic verification of the equations λ{k,n}c = αβ ·λ{k+1,n}c and λ{k,l}c = γδ ·λ{k,l+1}c from
the proof of Lemma 3.5 — left and right, respectively. See the text for a full explanation.

Lemma 3.6. If A ⊆ [n] with |A| = r ≤ n− 2, then λA, ρA ∈ 〈E(Dr)〉.

Proof. Again, it suffices to show that λA ∈ 〈E(Dr)〉, and we do this by induction on r + n. First note
that if r = 0, then λA = λ∅ = id∅ ∈ E(Dr); this includes the base case of the induction, in which r = 0
and n = 2. We now suppose that 1 ≤ r ≤ n − 3, noting that the case in which r = n − 2 is covered by
Lemma 3.5. We consider two cases, according to whether or not n belongs to A.

Case 1. Suppose first that n 6∈ A. By an induction hypothesis, we have λ[A = α1 · · ·αk for some α1, . . . , αk ∈
E(Dr(PBn−1)). Then λA = α\1 · · ·α

\
k ∈ 〈E(Dr(PBn))〉, completing the inductive step in this case.

Case 2. Now suppose n ∈ A. By an induction hypothesis, λ[A ∈ 〈E(Dr−1(PBn−1))〉, and it quickly follows
that (λ[A)] ∈ 〈E(Dr(PBn))〉. But then λA = (λ[A)] · βγ (see Figure 6)3, where

β =

(
1 · · · r − 1 n

1 · · · r − 1 n r, n− 1

)
and γ =

(
1 · · · r n− 1, n

1 · · · r

)
.

Since β, γ ∈ E(Dr(PBn)), the inductive step is complete in this case. 2

1 r n

λA

(λ[A)]

β

1 r n

γ

Figure 6: Diagrammatic verification of the equation λA = (λ[A)] · βγ from the proof of Lemma 3.6. See the
text for a full explanation.

The next result now follows from Lemmas 3.1, 3.4 and 3.6.

3In some figures, shading is used to convey the general “shape” of a Brauer diagram. These should be used as a guide,
but the explicit definitions given in the proof should always be consulted. For example, in Figure 6, the shaded part of λA is
understood to be identical to the shaded part of (λ[A)], but the diagram is not supposed to imply that 1 or n− 1 belongs to A.
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Corollary 3.7. If 0 ≤ r ≤ n− 2, then Dr ⊆ 〈E(Dr)〉. 2

Of course it follows quickly from Corollary 3.7 that for 0 ≤ r ≤ n − 2, Ir = D0 ∪ · · · ∪ Dr is generated
by its idempotents. But we will not state this formally yet, since we will soon prove a stronger result (see
Corollary 3.10).

Lemma 3.8. Let 0 ≤ s ≤ r ≤ n− 2 with r ≡ s (mod 2). Then Ds ⊆ 〈Dr〉.

Proof. By induction, it suffices to show that Dr−2 ⊆ 〈Dr〉 for all 2 ≤ r ≤ n− 2. So suppose 2 ≤ r ≤ n− 2,
and let α ∈ Dr−2 be arbitrary. Let dom(α) = {i1 < · · · < ir−2} and codom(α) = {j1 < · · · < jr−2}. So then
we may write

α =

(
i1 · · · ir−2 Ak

j1π · · · j(r−2)π Bl

)
k∈K, l∈L

,

for some π ∈ Sr−2. As in the proof of Lemma 3.1, we have α = βγδ for some γ ∈ S[r−2], where

β =

(
i1 · · · ir−2 Ak

1 · · · r − 2

)
k∈K

and δ =

(
1 · · · r − 2

j1 · · · jr−2 Bl

)
l∈L

.

Now, γ ∈ Dr−2(In) ⊆ 〈Dr(In)〉 ⊆ 〈Dr〉, by Proposition 2.13, so it remains to show that β, δ ∈ 〈Dr〉. By
symmetry, we may just do this for β. Now, if β has no upper hooks, then β ∈ Dr−2(On) ⊆ 〈Dr(On)〉 ⊆ 〈Dr〉,
by Proposition 2.13, so suppose β has an upper hook {u, v}, where u ∈ [n] is minimal with the property of
belonging to an upper hook. Let 0 ≤ s ≤ r − 2 be such that is < u < is+1, where we also define i0 = 0 and
ir−1 = n+ 1. Let h ∈ K be such that Ah = {u, v}. We see then that β = β1β2 (see Figure 7), where

β1 =

(
i1 · · · is u v is+1 · · · ir−2 Ak

1 · · · s s+ 1 s+ 2 s+ 3 · · · r

)
k∈K\{h}

,

β2 =

(
1 · · · s s+ 3 · · · r n− 1 n s+ 1, s+ 2

1 · · · s s+ 1 · · · r − 2 n− 1 n

)
.

Since β1, β2 ∈ Dr, the proof is complete. 2

Remark 3.9. The previous proof also shows that Ds(Mn) ⊆ 〈Dr(Mn)〉 for 0 ≤ s ≤ r ≤ n− 2 with r ≡ s
(mod 2). Indeed, if α ∈ Dr−2(Mn), then α = βδ, where β, δ are as constructed in the above proof, and
we see that the planarity of α entails that β, δ, β1, β2 are all planar. (In the case of β1, planarity of α gives
is < u < v < is+1.)

Corollary 3.10. If 1 ≤ r ≤ n− 2, then Ir = 〈Dr ∪Dr−1〉 = 〈E(Dr ∪Dr−1)〉.

Proof. Lemma 3.8 gives 〈Dr〉 ⊇ Dr ∪Dr−2 ∪ · · · and 〈Dr−1〉 ⊇ Dr−1 ∪Dr−3 ∪ · · · , from which it follows
that 〈Dr ∪Dr−1〉 ⊇ Ir. The reverse containment is obvious. The rest follows from Corollary 3.7. 2

We have shown that for 0 ≤ r ≤ n− 2, the ideal Ir is generated by the idempotents in its top two D-classes.
We will soon calculate the rank and idempotent rank for these ideals (see Theorem 3.14); in particular, we
will see that if r = 0 or r ≡ n (mod 2), only the idempotents of rank r are needed to generate Ir. But first
we prove some intermediate results.

Lemma 3.11. Let 1 ≤ r ≤ n− 1, and suppose α ∈ Dr−1 has an upper singleton block and a lower singleton
block. Then α ∈ 〈Dr〉.
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Proof. Write

α =

(
i1 · · · ir−1 Ak

j1 · · · jr−1 Bl

)
k∈K, l∈L

,

and suppose {u} and {v′} are blocks of α. Since r ≤ n − 1, we may choose further elements x ∈
{i1, . . . , ir−1, u}c and y ∈ {j1, . . . , jr−1, v}c. Then α = βγδ (see Figure 7), where

β =

(
i1 · · · ir−1 u Ak

i1 · · · ir−1 u

)
k∈K

, γ =

(
i1 · · · ir−1 x

j1 · · · jr−1 y

)
,

δ =

(
j1 · · · jr−1 v

j1 · · · jr−1 v Bl

)
l∈L

. 2

i1 is u v is+1 ir−2

1 s r n

β

i1 ir−1 u x

j1 jr−1 v y

α

i1 is u v is+1 ir−2

β1

i1 ir−1 u x

β

1 s r n

β2 γ

j1 jr−1 v y

δ

Figure 7: Diagrammatic verification of the equations β = β1β2 and α = βγδ from the proofs of Lemmas 3.8
and 3.11 — left and right, respectively. Note the ordering on vertices. In the left diagram, red vertices are
arranged in the order 1, . . . , n, and black vertices in the order i1, . . . , is, u, v, is+1, . . . , ir−2 (followed by an
arbitrary but fixed ordering on {i1, . . . , ir−2, u, v}c). In the right diagram, black vertices are arranged in the
order i1, . . . , ir−1, u, x (followed by an arbitrary but fixed ordering on {i1, . . . , ir−1, u, x}c), and red vertices
in the order j1, . . . , jr−1, v, y (followed by an arbitrary but fixed ordering on {j1, . . . , jr−1, v, y}c). See the
text for a full explanation.

Corollary 3.12. If r = 0 or 1 ≤ r ≤ n− 2 satisfies r ≡ n (mod 2), then Ir = 〈Dr〉 = 〈E(Dr)〉.

Proof. If r = 0, then I0 = D0 = 〈D0〉. Next, suppose 1 ≤ r ≤ n−2 satisfies r ≡ n (mod 2). Since n−(r−1)
is odd, every element of Dr−1 has an upper singleton block and a lower singleton block, so Dr−1 ⊆ 〈Dr〉, by
Lemma 3.11. The result now follows from Corollary 3.10. 2

Lemma 3.13. Suppose 0 ≤ r ≤ n− 2 satisfies r 6≡ n (mod 2), and let α ∈ Ds where s ≤ r. Then α ∈ 〈Dr〉
if and only if r ≡ s (mod 2) or α has an upper singleton block and a lower singleton block.

Proof. We have already seen that 〈Dr〉 ⊇ Dr ∪Dr−2 ∪ · · · . Since n − r is odd, every element of Dr, and
hence every element of 〈Dr〉, has at least one upper singleton block and at least one lower singleton block.
Conversely, if r 6≡ s (mod 2), then any element of Ds with an upper singleton block and a lower singleton
block belongs to 〈Ds+1〉 ⊆ 〈Dr〉, by Lemmas 3.11 and 3.8. 2

For the statement of the next result, recall that k!! = 0 if k is even, and that
(
n
−1
)

= 0.
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Theorem 3.14. If 0 ≤ r ≤ n− 2, then Ir = Ir(PBn) is idempotent-generated, and

rank(Ir) = idrank(Ir) =

(
n

r − 1

)
· (n− r)!! +

(
n

r

)
· a(n− r),

where the numbers a(m) satisfy

a(0) = a(1) = 1, a(m) = a(m− 1) + (m− 1)a(m− 2) for m ≥ 2.

Proof. If r = 0 or 1 ≤ r ≤ n − 2 satisfies r ≡ n (mod 2), then the first term in the sum is equal to 0,
and the result follows immediately from Corollary 3.12, Lemma 2.2(iii) and Proposition 2.7(iv). For the
remainder of the proof, suppose 1 ≤ r ≤ n− 2 satisfies r 6≡ n (mod 2). Let Σ be an arbitrary generating set
for Ir. Clearly Σ ∩Dr is a generating set for 〈Dr〉, so it follows from Lemma 2.2(i) and Proposition 2.7(iv)
that

|Σ ∩Dr| ≥ |P (Dr)| =
(
n

r

)
· a(n− r). (1)

Now suppose α ∈ P (Dr−1(Bn)), noting that α has no upper singleton blocks. (Recall that Bn ⊆ PBn denotes
the Brauer monoid.) Consider an expression α = β1 · · ·βk, where β1, . . . , βk ∈ Σ. Since each element of Dr

has an upper singleton block, it follows that β1 ∈ Dr−1. In particular, β1Dα = β1(β2 · · ·βk). By stability,
it follows that β1Rβ1(β2 · · ·βk) = α. So Σ contains at least one element from the R-class of every such
α ∈ P (Dr−1(Bn)). Since projections belong to distinct R-classes, it follows from Proposition 2.7(ii) that

|Σ ∩Dr−1| ≥ |P (Dr−1(Bn))| =
(

n

r − 1

)
· (n− r)!!. (2)

Adding equations (1) and (2) shows that the stated value of rank(Ir) is a lower bound.

To complete the proof, it suffices to give an idempotent generating set for Ir of the stated size. With this
in mind, let Γ = P (Dr) ∪ P (Dr−1(Bn)). By Lemma 3.11, 〈Dr〉 contains every projection from Dr−1 having
at least one singleton block. Any other projection from Dr−1 belongs to Bn, so it follows that 〈Γ〉 contains
P (Dr ∪ Dr−1), and we have already seen that Ir = 〈E(Dr ∪ Dr−1)〉 = 〈P (Dr ∪ Dr−1)〉, so it follows that
Ir = 〈Γ〉. It follows from Proposition 2.7(ii) and (iv) that Γ has the required size. 2

We now consider the top two ideals In−1 = PBn \Sn and In = PBn, which were not covered in the previous
result. Unlike the other ideals, these are not idempotent-generated (unless n = 1).

Proposition 3.15. The singular ideal In−1(PBn) = PBn \ Sn is not idempotent-generated for n ≥ 2. We
have

PBn \Sn = 〈Dn−1∪Dn−2〉 = 〈Dn−1(In)∪Dn−2(Bn)〉 and rank(PBn \Sn) =

{(
n+1
2

)
if n ≤ 3

1 +
(
n+1
2

)
if n ≥ 4.

Proof. It is obvious that In−1 = PBn \ Sn is not idempotent-generated if n ≥ 2. Indeed, the idempotents
from Dn−1(PBn) = Dn−1(In) all commute, so no non-idempotent from Dn−1 can be a product of idempo-
tents. It is also obvious that rank(PB0 \S0) = 0 and rank(PB1 \S1) = 1, so suppose n ≥ 2 for the remainder
of the proof.

Suppose In−1 = 〈Σ〉. Since Dn−1(In) = Dn−1(PBn) ⊆ In−1, and since In \ Sn = 〈Dn−1(In)〉, it follows that
Σ contains a generating set Σ1 for In \ Sn. Now,

rank(In \ Sn) = ρ+ n where ρ =

{
0 if n ≤ 3

1 if n ≥ 4.

Indeed, this follows quickly for n = 2, 3 from the easily checked4 facts that

I2 \ S2 =
〈

,
〉

and I3 \ S3 =
〈

, ,
〉
,

4by hand or by GAP [67]
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and from [35, Theorem 3.7] for n ≥ 4. (Note that [35, Theorem 3.7] incorrectly states that rank(I3\S3) = 4.)
In particular, |Σ1| ≥ ρ + 1. Next, we claim that |Σ \ Σ1| ≥

(
n
2

)
. With this in mind, let 1 ≤ i < j ≤ n and

consider an expression τij = α1 · · ·αk, where α1, . . . , αk ∈ Σ. Now n − 2 = rank(τij) ≤ rank(α1) ≤ n − 1,
but we could not have rank(α1) = n− 1 or else α1 (and hence also τij) would then have a singleton upper
block, so it follows that rank(α1) = n− 2. So α1Dτij , and the usual stability argument allows us to deduce
that α1Rτij . In particular, Σ \ Σ1 contains an element from the R-class of τij for each 1 ≤ i < j ≤ n, and
it follows that |Σ \ Σ1| ≥

(
n
2

)
, as claimed. We then have |Σ| = |Σ1|+ |Σ \ Σ1| ≥ (ρ+ n) +

(
n
2

)
= ρ+

(
n+1
2

)
.

Since Σ was an arbitrary generating set, it follows that rank(In−1) ≥ ρ+
(
n+1
2

)
.

Conversely, suppose In \ Sn = 〈Γ〉 with |Γ| = ρ + n = rank(In \ Sn), and let Σ = Γ ∪ T , where T =
P (Dr−2(Bn)) = {τij : 1 ≤ i < j ≤ n}. The proof will be complete if we can show that In−1 = 〈Σ〉. Now
Dn−1 ⊆ 〈Γ〉 ⊆ 〈Σ〉. Also, P (Dn−2) = T ∪ {εiεj : 1 ≤ i < j ≤ n} is clearly contained in 〈Σ〉, so 〈Σ〉 ⊇
〈P (Dn−2)〉 = In−2 by Corollary 3.12. Since In−1 = Dn−1 ∪ In−2, the proof is complete. 2

Proposition 3.16. The semigroup PBn is not idempotent-generated for n ≥ 2. We have

rank(PBn) =

{
n+ 1 if n ≤ 2

4 if n ≥ 3.

Proof. The statement is obvious for n ≤ 1, so suppose n ≥ 2. Again, it is clear that PBn is not idempotent-
generated. Since rank(S2) = 1 and rank(Sn) = 2 for n ≥ 3, it suffices to show that rank(PBn) = 2+rank(Sn).
Since PBn \ Sn is an ideal, any generating set must contain a generating set for Sn, so it is enough to show
that rank(PBn : Sn) = 2.

Now suppose PBn = 〈Sn ∪Σ〉. By considering an expression ε1 = α1 · · ·αk, where α1, . . . , αk ∈ Sn ∪Σ, it is
easy to see that the first factor not from Sn, say αi, must have rank n−1. But then 〈Sn∪{αi}〉 = In 6= PBn
(see [35, Theorem 3.1]). It follows that |Σ| ≥ 2. The proof will be complete if we can show that PBn
is generated by Sn ∪ {ε1, τ12}. But 〈Sn ∪ {ε1}〉 = In and 〈Sn ∪ {τ12}〉 = Bn (see [55, Lemma 3.5]), so
Proposition 3.15 gives PBn = 〈Sn ∪ {ε1, τ12}〉. 2

Remark 3.17. The fact that PBn = 〈Sn ∪ {ε1, τ12}〉 was also noted in [55], where a presentation for PBn
was obtained (with respect to a different generating set). See also [64, Lemma 11].

We conclude this section by describing the idempotent-generated subsemigroup E(PBn) = 〈E(PBn)〉. If
n ≤ 1, then E(PBn) = E(PBn) = PBn, so we just consider the case n ≥ 2.

Theorem 3.18. If n ≥ 2, then E(PBn) = E(Dn ∪Dn−1) ∪ In−2, and

rank(E(PBn)) = idrank(E(PBn)) = 1 +

(
n+ 1

2

)
.

Proof. Since In−2 is idempotent-generated, it is clear that E(Dn ∪ Dn−1) ∪ In−2 ⊆ E(PBn). Conversely,
suppose α1, . . . , αk ∈ E(PBn), and put β = α1 · · ·αk. If β 6∈ In−2, then all of α1, . . . , αk belong to
E(Dn ∪Dn−1) = {1} ∪ {ε1, . . . , εn}, from which it follows quickly that β ∈ E(Dn ∪ En−1). We have shown
that E(PBn) = E(Dn ∪Dn−1) ∪ In−2.

Next, suppose E(PBn) = 〈Σ〉, where Σ ⊆ E(PBn) is arbitrary. Clearly, Σ must contain E(Dn ∪Dn−1). As
in the proof of Proposition 3.15, we may show that Σ contains at least

(
n
2

)
elements of rank n− 2. It follows

that |Σ| ≥ (1 + n) +
(
n
2

)
= 1 +

(
n+1
2

)
, giving rank(E(PBn)) ≥ 1 +

(
n+1
2

)
.

To complete the proof, it suffices to find an idempotent generating set of size 1+
(
n+1
2

)
. Given that E(PBn) =

E(Dn∪Dn−1)∪In−2 = E(Dn∪Dn−1)∪〈P (Dn−2)〉, it is clear that E(PBn) is generated by E(Dn∪Dn−1)∪T ,
where T = {τij : 1 ≤ i < j ≤ n}, since 〈E(Dn−1) ∪ T 〉 ⊇ P (Dn−2) = T ∪ {εiεj : 1 ≤ i < j ≤ n}. 2
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Remark 3.19. From the above proof, it quickly follows that any minimal (in size) idempotent generating
set of E(PBn) is of the form E(Dn ∪Dn−1)∪Γ, where Γ is a minimal idempotent generating set of Bn \ Sn.
The minimal idempotent generating sets of Bn \ Sn were classified (in terms of factorizations of certain
Johnson graphs) in [25, Proposition 8.7], but the enumeration of such generating sets for n ≥ 6 remains an
open problem.

4 The Motzkin monoid Mn

The situation with Motzkin monoid ideals is somewhat different to partial Brauer monoid ideals. It is still
the case that each proper ideal Ir(Mn) is generated by its top two D-classes (Proposition 4.2), but the ideals
are never generated by a single D-class, apart from I0(Mn) = D0(Mn). Idempotent generation is also more
subtle, with the ideal Ir(Mn) being idempotent-generated if and only if 0 ≤ r < bn2 c (Proposition 4.10). We
are still able to calculate the rank and (when appropriate) idempotent rank of the ideals (Theorem 4.12). We
also describe the subsemigroups ofMn generated by a single D-class (Proposition 4.5) and the idempotent-
generated subsemigroup of each ideal (Theorems 4.16 and 4.17), which includes the idempotent-generated
subsemigroup E(Mn). In particular, apart from the r = n case, we see that the rank of E(Ir(Mn)) is equal
to the rank of Ir(Mn), even when r ≥ bn2 c.

In this section, we use the abbreviations

Dr = Dr(Mn) = {α ∈Mn : rank(α) = r} and Ir = Ir(Mn) = {α ∈Mn : rank(α) ≤ r}.

As noted in Remark 3.9, the next result has already been proved.

Lemma 4.1. Let 0 ≤ s ≤ r ≤ n− 2 with r ≡ s (mod 2). Then Ds ⊆ 〈Dr〉. 2

Recall the maps λA, ρA defined near the beginning of Section 3.

Proposition 4.2. If 1 ≤ r ≤ n− 1, then Ir = 〈Dr ∪Dr−1〉.

Proof. The r ≤ n− 2 case follows from Lemma 4.1. Since In−1 = Dn−1 ∪ In−2 = Dn−1 ∪ 〈Dn−2 ∪Dn−3〉,
it remains to show that Dn−3 ⊆ 〈Dn−1 ∪Dn−2〉. So let α ∈ Dn−3 be arbitrary, and write

α =

(
i1 · · · in−3 Ak

j1 · · · jn−3 Bl

)
k∈K, l∈L

,

where i1 < · · · < in−3 and j1 < · · · < jn−3. Note that K and L each have size at most 1. Again, α = βγ,
where

β =

(
i1 · · · in−3 Ak

1 · · · n− 3

)
k∈K

and γ =

(
1 · · · n− 3

j1 · · · jn−3 Bl

)
l∈L

.

By symmetry, we just need to show that β ∈ 〈Dn−1 ∪ Dn−2〉. If K is empty, then β ∈ Dn−3(On) ⊆
〈Dn−1(On)〉 ⊆ 〈Dn−1 ∪ Dn−2〉, so suppose K = {k}, and write Ak = {x < y}. Also, let dom(α)c =
dom(β)c = {x, y, z}. We now consider separate cases depending on the ordering of the set {x, y, z}.

Case 1. Suppose first that z < x or y < z. By planarity, it follows that y = x + 1. In either case,
we have β = τxy · λ{x,y,z}c (see Figure 8, which just pictures the z < x case). Since τxy ∈ Dn−2 and
λ{x,y,z}c ∈ Dn−3(On) ⊆ 〈Dn−1 ∪Dn−2〉, the proof is complete in this case.

Case 2. Now suppose that x < z < y. This time, planarity forces z = x + 1 and y = x + 2. In this case,
we have β = λ{z}c · τxz · λ{x,z}c (again, see Figure 8), with all factors belonging to Dn−1 ∪Dn−2. 2

As noted above, an ideal Ir = Ir(Mn) of Mn is never generated by its top D-class Dr = Dr(Mn) (apart
from the trivial case in which r = 0), as we now describe. Recall from Lemma 4.1 that 〈Dr〉 contains all of
Ds for any 0 ≤ s ≤ r with r ≡ s (mod 2). So, to fully describe 〈Dr〉, we need to characterise the elements
of Ds ∩ 〈Dr〉 with 0 ≤ s ≤ r and r 6≡ s (mod 2). We begin with a simple lemma.
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1 z x y n

β

1 x z y n

β

1 z x y n

τxy

1 x z y n

λ{z}c

λ{x,y,z}c τxz

λ{x,z}c

Figure 8: Diagrammatic verification of the equations β = τxy · λ{x,y,z}c and β = λ{z}c · τxz · λ{x,z}c from the
proof of Proposition 4.2 — left and right, respectively. See the text for a full explanation.

Lemma 4.3. Let 0 ≤ r ≤ n− 1, and let α ∈Mn. Then α ∈ 〈Dr〉 if and only if αα∗, α∗α ∈ 〈Dr〉.

Proof. If α ∈ 〈Dr〉, then α = β1 · · ·βk for some β1, . . . , βk ∈ Dr; but then α∗ = β∗k · · ·β∗1 ∈ 〈Dr〉, so that
αα∗, α∗α ∈ 〈Dr〉. Conversely, suppose αα∗, α∗α ∈ 〈Dr〉, and put s = rank(α) = rank(αα∗), noting that
s ≤ r ≤ n − 1. Let β be the unique element of On with dom(β) = dom(α) and codom(β) = codom(α).
Then β ∈ Ds(On) ⊆ 〈Dr(On)〉 ⊆ 〈Dr〉, and α = αα∗ · β · α∗α ∈ 〈Dr〉, as we show in Figure 9. 2

α

αα∗

β

α∗α

Figure 9: Diagrammatic verification of the equation α = αα∗ ·β ·α∗α from the proof of Lemma 4.3. See the
text for a full explanation.

Let α ∈ Mn, and suppose A,B are upper non-transversal blocks of α. We say that A is nested by B, and
write A ≺α B, if min(B) < min(A) ≤ max(A) < max(B). Note that this forces |B| = 2, but we may
have |A| = 1 or 2. (Also note that a block is never nested by itself.) We define the nesting depth of an
upper non-transversal block A of α to be the maximum value of d such that A ≺α B1 ≺α · · · ≺α Bd, where
B1, . . . , Bd are upper non-transversal blocks of α. For example, the blocks {1}, {2, 10}, {11, 12}, {3, 6},
{7, 9}, {4, 5}, {8} have nesting depths 0, 0, 0, 1, 1, 2, 2, respectively, for

α =

1 2 3 4 5 6 7 8 9 10 11 12

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′ 11′ 12′

∈M12.

We similarly define nesting and nesting depth for lower blocks. The next lemma will be useful on a number
of occasions.
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Lemma 4.4. Let α ∈ P (Dr−1), where 1 ≤ r ≤ n − 1. Then α ∈ 〈Dr〉 if and only if α has an unnested
singleton block, in which case α ∈ 〈P (Dr)〉.

Proof. Suppose first that α has an unnested singleton block, {x}, and let y ∈ dom(α)c \ {x} be arbitrary.
Then one may easily check that α = βγβ, where γ = iddom(α)∪{y}, and β is obtained from α by adding the
edge {x, x′}, showing that α ∈ 〈P (Dr)〉.

Conversely, suppose α has no unnested singleton blocks, but that α = β1 · · ·βk for some β1, . . . , βk ∈ Dr.
Now, dom(α) ⊆ dom(β1) and, since also rank(β1) = rank(α) + 1, it follows that dom(β1) = dom(α) ∪ {x}
for some x ∈ dom(α)c, and hence also dom(α)c = dom(β1)

c ∪ {x}. We consider separate cases according to
the size of the block of α that x belongs to, showing that either case leads to a contradiction.

Case 1. Suppose first that {x} is a block of α. Then {x} is nested by an upper hook {y < z} of α. Since
dom(β1) = dom(α) ∪ {x}, we see that y, z ∈ dom(β1)

c. If {y} or {z} was a block of β1, then {y} or {z}
would be a block of α = β1 · · ·βk (respectively), a contradiction. If {y, w} was a block of β1 for some w 6= z,
then {y, w} would be a block of α, a contradiction. It follows that {y, z} is a block of β1. But together with
y < x < z and x ∈ dom(β1), this contradicts the planarity of β1.

Case 2. Next suppose {x, y} is a block of α for some y 6= x. This time, we would deduce that either {y}
or {y, z} (for some z ∈ {x, y}c) is a block of β1, and hence also of α, a contradiction. 2

The next result characterises the elements of 〈Dr(Mn)〉.

Proposition 4.5. Let α ∈ Ds, where 0 ≤ s ≤ r ≤ n− 2 and r 6≡ s (mod 2). Then α ∈ 〈Dr〉 if and only if
α has singleton upper and lower blocks each with nesting depth at most (r − s− 1)/2.

Proof. We prove the lemma by induction on k = (r− s− 1)/2. Suppose first that k = 0, so that s = r− 1.
Then

α ∈ 〈Dr〉 ⇔ αα∗, α∗α ∈ 〈Dr〉 by Lemma 4.3

⇔ αα∗ and α∗α both have unnested singletons by Lemma 4.4

⇔ α has an unnested upper singleton and an unnested lower singleton,

establishing the result for k = 0. Suppose now that k ≥ 1. Note that s = r − 2k − 1 ≤ r − 3 ≤ n− 5.

Suppose first that α has singleton upper and lower blocks each with nesting depth at most k = (r−s−1)/2.
We aim to show that α ∈ 〈Dr〉. The assumption on the blocks of α entails that αα∗ and α∗α have singleton
blocks of nesting depth at most k. Thus, to prove that α ∈ 〈Dr〉, it suffices, by Lemma 4.3, to show that
any projection β ∈ P (Ds) with a singleton block of nesting depth at most k belongs to 〈Dr〉, so suppose
β ∈ P (Ds) is such a projection. If β has an unnested singleton, then β ∈ 〈Ds+1〉 ⊆ 〈Dr〉, by Lemmas 4.4
and 4.1, so suppose β has no unnested singletons. By the above assumptions, β has a singleton block {x}
with nesting depth 1 ≤ d ≤ k. Suppose the outer-most block nesting {x} is B = {u < v}. Let γ be obtained
from β by replacing the blocks B and B′ by {u, u′} and {v, v′}. Since rank(γ) = s + 2 ≤ r − 1, and since
{x} is a singleton block of γ of nesting depth d− 1 ≤ k − 1, an induction hypothesis gives γ ∈ 〈Dr〉. Next,
write dom(β) = {i1 < · · · < is}, and suppose 0 ≤ m ≤ s is such that im < u < v < im+1; here, we define
i0 = 0 and is+1 = n+ 1. Now let

δ =

(
1 · · · m m+ 3 · · · s+ 2 n− 1 n m+ 1,m+ 2

1 · · · m m+ 3 · · · s+ 2 n− 1 n m+ 1,m+ 2

)
.

Since s ≤ n − 5, we see that δ ∈ P (Ds+2) and that {n − 2} is an unnested singleton block of δ. So
Lemmas 4.4 and 4.1 give δ ∈ 〈Ds+3〉 ⊆ 〈Dr〉. But then, writing C = dom(β) ∪ {u, v}, we see in Figure 10
that β = γ · λC · δ · ρC · γ. Since also λC , ρC ∈ Ds+2(On) ⊆ 〈Dr(On)〉, it follows that β ∈ 〈Dr〉. As noted
above, this completes the proof that α ∈ 〈Dr〉.

Conversely, suppose α ∈ 〈Dr〉. We will show that α has an upper singleton block of nesting depth at
most k = (r − s − 1)/2. Since a symmetrical argument shows that α also has a lower singleton block of
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nesting depth at most k, the proof will then be complete. With this goal in mind, suppose to the contrary
that α does not have an upper singleton block of nesting depth at most k. Write α = β1 · · ·βm, where
β1, . . . , βm ∈ Dr. Since dom(α) ⊆ dom(β1), and since rank(β1) = r = s + 2k + 1 = rank(α) + 2k + 1, we
have | dom(β1) \ dom(α)| = 2k + 1.

Case 1. Suppose first that there exists x ∈ dom(β1)\dom(α) such that {x} is a block of α. By assumption,
{x} has nesting depth at least k + 1, so {x} ≺α B1 ≺α · · · ≺α Bk+1 for some blocks B1, . . . , Bk+1 of α.
Now, B1 ∪ · · · ∪ Bk+1 ⊆ dom(α)c and |B1 ∪ · · · ∪ Bk+1| = 2k + 2, so it follows that at least one element of
B1 ∪ · · · ∪Bk+1 belongs to dom(β1)

c. Suppose 1 ≤ q ≤ k + 1 is such that Bq = {z, w} and z ∈ dom(β1)
c.

Subcase 1.1. If {z} was a block of β1, then {z} would be a block of β1 · · ·βm = α, contradicting the fact
that Bq = {z, w} is a (non-singleton) block of α.

Subcase 1.2. Instead, suppose {z, h} is a block of β1 for some h. Since any upper block of β1 is a block
of α = β1 · · ·βm, it follows that h = w, so in fact Bq = {z, w} is a block of β1. But also x ∈ dom(β1) and
either w < x < z or z < x < w, since {x} ≺α {w, z}, and this contradicts the planarity of β1.

Case 2. Finally, suppose that every element of dom(β1) \ dom(α) belongs to an upper hook of α. In
particular, since dom(β1) \ dom(α) has odd size, there must exist x ∈ dom(β1) \ dom(α) and y ∈ dom(β1)

c

such that {x, y} is a block of α. Since x ∈ dom(β1) and y ∈ dom(β1)
c, it follows that either {y} or {y, z} is

a block of β1 for some y 6= x. But then {y} or {y, z} would be a block of β1 · · ·βm = α, contradicting the
fact that {x, y} is a block of α. 2

1 i1 im u v im+1 is n

β

1 i1 im u v im+1 is n

γ

λC

δ

ρC

γ

Figure 10: Diagrammatic verification of the equation β = γ ·λC · δ · ρC · γ from the proof of Proposition 4.5.
See the text for a full explanation.

Another major difference between PBn and Mn concerns idempotent-generation of the ideals. Unlike the
situation with PBn, where all but the top two of the ideals Ir(PBn) are idempotent-generated, more than
half of the ideals Ir = Ir(Mn) are not idempotent-generated. As such, we must work harder to determine
which elements of Mn are products of idempotents. To do so, we must first prove a number of technical
results. The proof of the next lemma uses the ], \, [ mappings defined before Lemma 3.6.

Lemma 4.6. Suppose A ⊆ [n] is such that n− 1, n ∈ Ac. Then λA, ρA ∈ 〈E(Dr)〉, where r = |A|.
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Proof. We just prove the statement for λA, and we do this by induction on n. The result is obvious if
n = 2 (in which case A = ∅), so suppose n ≥ 3. Let m = max(A). We consider two separate cases.

Case 1. Suppose first that m ≤ n − 3. Since n − 2, n − 1 ∈ [n− 1] \ A, an induction hypothesis gives

λ[A = α1 · · ·αk for some α1, . . . , αk ∈ E(Dr(Mn−1)). But then λA = α\1 · · ·α
\
k ∈ 〈E(Dr(Mn))〉.

Case 2. Now suppose m = n − 2. Put B = A \ {n − 2}. Since n − 2, n − 1 ∈ [n− 1] \ B, an induction
hypothesis gives λ[B ∈ 〈E(Dr−1(Mn−1))〉, and it quickly follows that (λ[B)] ∈ 〈E(Dr(Mn))〉. In Figure 11,
we show that λA = β1β2 · (λ[B)] · γ1γ2, where

β1 =

(
x

x n− 1, n

)
x∈A

, β2 =

(
x n− 2, n− 1

x

)
x∈B∪{n}

,

γ1 =

(
x

x r, n− 1

)
x∈[r−1]∪{n}

, γ2 =

(
x n− 1, n

x

)
x∈[r]

.

Since β1, β2, γ1, γ2 ∈ E(Dr(Mn)), the proof is complete. 2

It turns out that for α ∈ Mn, being a product of Motzkin idempotents depends on the distribution of
elements in dom(α)c and codom(α)c. With this in mind, we say a subset A ⊆ [n] is sparse if for all i ∈ [n],
i ∈ A ⇒ i+ 1 6∈ A. We say A is cosparse if Ac is sparse.

Lemma 4.7. Suppose A ⊆ [n] is non-cosparse. Then λA, ρA ∈ 〈E(Dr)〉, where r = |A|.

Proof. For a non-cosparse subset X ⊆ [n], let m(X) = max{i ∈ [n] : i− 1, i ∈ Xc}. We prove the lemma
by descending induction on k = m(A). Note that the case in which k = n was proved in Lemma 4.6, so we
assume that k ≤ n−1. Note that maximality of k = m(A) gives k+1 ∈ A. Now put B = (A\{k+1})∪{k−1}.
Since k, k + 1 ∈ Bc, we have m(B) ≥ k + 1 (but we note that it is possible to have m(B) = k + 2). In
particular, an induction hypothesis gives λB ∈ 〈E(Dr)〉. But then the proof is complete upon noting that
λA = βγ · λB (see Figure 11), where

β =

(
x

x k − 1, k

)
x∈A

and γ =

(
x k, k + 1

x

)
x∈B

both belong to E(Dr). 2

Corollary 4.8. Let α ∈ Dr with dom(α) and codom(α) both non-cosparse. Then α ∈ 〈E(Dr)〉.

Proof. As in Remark 3.2, we have α = β · λdom(α) · ρcodom(α) · δ, for some β, δ ∈ E(Dr). Lemma 4.7 gives
λdom(α), ρcodom(α) ∈ 〈E(Dr)〉. 2

We now describe the situation when one or both of dom(α) or codom(α) is cosparse.

Lemma 4.9. Let α ∈ Mn be such that dom(α) or codom(α) is cosparse. Then α ∈ E(Mn) if and only if
α ∈ E(Mn), in which case α = iddom(α).

Proof. Suppose dom(α)c is sparse, and that α = β1 · · ·βk for some β1, . . . , βk ∈ P (Mn). We claim that
each of β1, . . . , βk belongs to E(In). Indeed, suppose this was not the case, and let l ∈ [k] be minimal so
that βl 6∈ E(In). So β1 · · ·βl−1 = idB for some B ⊆ [n]. Note that dom(α) ⊆ dom(β1 · · ·βl−1) = B. In
particular, Bc ⊆ dom(α)c is also sparse. Since βl 6∈ E(In), we may write

βl =

(
i1 · · · ir At

i1 · · · ir At

)
t∈T

,
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1 r m n

λA

1 k n

λA

β1

1 k n

β

β2 γ

(λ[B)] λB

γ1

1 r m n

γ2

Figure 11: Diagrammatic verification of the equations λA = β1β2 · (λ[B)] · γ1γ2 and λA = βγ · λB from the
proofs of Lemmas 4.6 and 4.7 — left and right, respectively. Red shaded parts are assumed to be identity
maps on the relevant domains. See the text for a full explanation.

where T 6= ∅. Fix some u ∈ T , and write Au = {x < y}. We consider separate cases.

Case 1. Suppose first that x ∈ dom(α) ⊆ B. Then {x, y} or {x} would be an upper block of idB · βl,
depending on whether y ∈ B or y 6∈ B, respectively. But then {x, y} or {x} would be an upper block of
α = idB · βl · · ·βk, contradicting the fact that x ∈ dom(α).

Case 2. A similar argument shows that we cannot have y ∈ dom(α).

Case 3. Finally, suppose x, y ∈ dom(α)c. Since dom(α)c is sparse, we have x + 1 ∈ dom(α) ⊆ B.
If x + 1 6∈ dom(βl), then we would have x + 1 ∈ dom(idB · βl)c ⊆ dom(idB · βl · · ·βk)c = dom(α)c, a
contradiction. It follows that x + 1 ∈ dom(βl). But x < x + 1 < y, with x + 1 ∈ dom(βl) and {x, y} an
upper hook of βl, contradicting the planarity of βl.

So we have verified the original claim that β1, . . . , βk ∈ E(In). In particular, α = β1 · · ·βk ∈ E(In) ⊆
E(Mn), and the proof is complete. 2

Proposition 4.10. Let 0 ≤ r ≤ n where n ≥ 2. Then Ir is idempotent-generated if and only if r < bn2 c.

Proof. Suppose first that r < bn2 c. Then there are no cosparse r-subsets of [n], and hence no elements
of Ir with cosparse domain or codomain. It then follows from Corollary 4.8 that every element of Ir is a
product of idempotents of rank ≤ r. Conversely, suppose r ≥ bn2 c. Choose arbitrary subsets A,B ⊆ [n]
with |A| = |B| = bn2 c such that A 6= B and A is cosparse (there is a unique such set A if n is odd). Then
Lemma 4.9 tells us that λAρB ∈ Ir is not a product of idempotents. 2

Our next task is to calculate rank(Ir) (and idrank(Ir) if appropriate). It turns out that nested blocks play
a major role in this calculation.

Lemma 4.11. Let 1 ≤ r ≤ n− 1. Then Ir = 〈Dr ∪ Σ〉, where

Σ = {α ∈ P (Dr−1) : α has no unnested singleton block}.
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Proof. Since Ir = 〈Dr ∪ Dr−1〉, it suffices to show that Dr−1 ⊆ 〈Dr ∪ Σ〉. So let α ∈ Dr−1 be arbitrary,
and write

α =

(
i1 · · · ir−1 Ak

j1 · · · jr−1 Bl

)
k∈K, l∈L

.

Then α = αα∗ · β · α∗α, as in Lemma 4.3, where β ∈ On satisfies dom(β) = dom(α) and codom(β) =
codom(α). Now, β ∈ Dr−1(On) ⊆ 〈Dr(On)〉 ⊆ 〈Dr〉. Also, αα∗ belongs to either 〈Dr〉 or Σ, by Lemma 4.4,
depending on whether α has an unnested upper singleton block or not (respectively). Similarly, α∗α belongs
to either 〈Dr〉 or Σ. In any case, we have proved that α ∈ 〈Dr ∪ Σ〉. 2

The statement of the next result uses the numbers m(n), m(n, r) and m′(n, r) defined in Section 2.

Theorem 4.12. We have rank(I0(Mn)) = m(n). If 1 ≤ r ≤ n− 1, then

rank(Ir(Mn)) = m(n, r) +m′(n, r − 1).

Further, Ir(Mn) is idempotent-generated if and only if n ≤ 1 or r < bn2 c, in which case

idrank(Ir(Mn)) = rank(Ir(Mn)).

Proof. The formula for rank(I0) = idrank(I0) follows from Lemma 2.2(iii) and Proposition 2.8. For the
remainder of the proof, let 1 ≤ r ≤ n− 1.

Since Dr is a maximal D-class of Ir, we have rank(Ir) = rank(〈Dr〉) + rank(Ir : Dr). By Lemma 2.2(ii) and
Proposition 2.8, rank(〈Dr〉) = |P (Dr)| = m(n, r). Next, we note that |Σ| = m′(n, r−1), by Proposition 2.9,
where Σ is the set in Lemma 4.11. It follows that rank(Ir : Dr) ≤ m′(n, r − 1).

Now suppose Ir = 〈Dr ∪ Γ〉. To complete the proof that rank(Ir) = m(n, r) + m′(n, r − 1), it suffices to
show that |Γ| ≥ m′(n, r − 1). The usual stability argument shows that for each element α of Σ, Γ contains
an element R-related to α, from which |Γ| ≥ |Σ| = m′(n, r − 1) quickly follows.

To complete the proof, suppose r < bn2 c. By Proposition 4.10, Ir is idempotent-generated. In particular,
〈Dr〉 = 〈E(Dr)〉 = 〈P (Dr)〉, so Ir = 〈P (Dr) ∪ Σ〉. Thus, P (Dr) ∪ Σ is an idempotent generating set of size
m(n, r) +m′(n, r − 1). 2

Although the previous result does not apply to the entire semigroup Mn = In, we may quickly deduce the
value of rank(Mn).

Theorem 4.13. We have rank(M0) = 1 and rank(Mn) = 2n for n ≥ 1.

Proof. The n ≤ 1 values being clear, suppose n ≥ 2. Since Mn = {1} ∪ In−1, and since 1 is an irreducible
element of Mn, we see that In−1 = 〈Γ〉 if and only if Mn = 〈Γ ∪ {1}〉, so that

rank(Mn) = 1 + rank(In−1) = 1 +m(n, n− 1) +m′(n, n− 2) = 1 + n+ (n− 1) = 2n. 2

Remark 4.14. Interpreting the proof of Lemma 2.2(ii) in the case that D = Dn−1(Mn), we see that

{1} ∪ {β} ∪ {α1, . . . , αn−1} ∪ {τ1, . . . , τn−1}

is a generating set for Mn of size 2n = rank(Mn), where

1 =

1 n

, β =

1 n

, αj =

1 j n

, τj =

1 j n

.

Note that {β}∪{α1, . . . , αn−1} generates On as a monoid; see [27], where a presentation was obtained for On
with respect to this generating set. A monoid presentation forMn is given in [70] in terms of the (monoid)
generating set {α1, . . . , αn−1} ∪ {α∗1, . . . , α∗n−1} ∪ {τ1, . . . , τn−1}.
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We have seen that an ideal Ir = Ir(Mn) is only idempotent-generated when r < bn2 c. In particular, the
idempotent-generated subsemigroup E(Ir) = 〈E(Ir)〉 is a proper subsemigroup of Ir for r ≥ bn2 c. Our final
task in this section is to describe these idempotent-generated subsemigroups E(Ir).

Lemma 4.15. Let 2 ≤ r ≤ n− 2. Then P (Dr−2) ⊆ 〈P (Dr ∪Dr−1)〉.

Proof. Let α ∈ P (Dr−2) be arbitrary, and write

α =

(
i1 · · · ir−2 Ak

i1 · · · ir−2 Ak

)
k∈K

.

Again, if K = ∅, then α ∈ E(Dr−2(On)) ⊆ 〈E(Dr(On))〉 ⊆ 〈P (Dr)〉, so suppose K 6= ∅. Suppose l ∈ K is
such that Al = {x, y}, where x ∈ [n] is minimal such that x belongs to an upper hook of α.

Case 1. Suppose there exists z ∈ dom(α)c with z < x or y < z. Then α = βγβ (see Figure 12, which covers
the z < x case)), where

β =

(
i1 · · · ir−2 x y Ak

i1 · · · ir−2 x y Ak

)
k∈K\{l}

and γ =

(
i1 · · · ir−2 z x, y

i1 · · · ir−2 z x, y

)
.

Since β ∈ P (Dr) and γ ∈ P (Dr−1), the proof is complete in this case.

Case 2. Finally, suppose that dom(α)c = [x, y]. Since r ≤ n − 2, we see that y − x ≥ 3. But then
α = βγδγ∗β∗ (see Figure 13), where

β =

(
i1 · · · ir−2 x y Ak

i1 · · · ir−2 x y x+ 1, x+ 2

)
k∈K\{l}

,

γ =

(
i1 · · · ir−2 x+ 2 y x, x+ 1

i1 · · · ir−2 x+ 2 y

)
,

δ =

(
i1 · · · ir−2 x x+ 1 x+ 2, y

i1 · · · ir−2 x x+ 1 x+ 2, y

)
.

Since β, γ, δ ∈ E(Dr) = P (Dr)
2, the proof is complete in this case. 2

1 z x y n

α

1 z x y n

β

γ

β

Figure 12: Diagrammatic verification of the equation α = βγβ from Case 1 of the proof of Lemma 4.15.
Red shaded parts are understood to be parts of iddom(α). See the text for a full explanation.

We are now able to describe the idempotent-generated subsemigroups of the ideals Ir with r ≤ n − 2.
Curiously, the rank (and idempotent rank) of E(Ir) is equal to rank(Ir) for each such r, even though we do
not necessarily have Ir = E(Ir). Note that E(I0) = I0 was covered in Theorem 4.12.
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1 x y n

α

1 x y n

β

γ

δ

γ∗

β∗

Figure 13: Diagrammatic verification of the equation α = βγδγ∗β∗ from Case 2 of the proof of Lemma 4.15.
See the text for a full explanation.

Theorem 4.16. Let 1 ≤ r ≤ n− 2. Then

E(Ir) = {idA : A ⊆ [n] is cosparse and |A| ≤ r} ∪ {α ∈ Ir : dom(α) and codom(α) are non-cosparse}.

We have rank(E(Ir)) = idrank(E(Ir)) = m(n, r) +m′(n, r − 1).

Proof. The description of the elements of E(Ir) follows quickly from Corollary 4.8 and Lemma 4.9. Let
Γ = P (Dr) ∪ Σ, where Σ ⊆ P (Dr−1) was defined in Lemma 4.11. By Lemma 4.4, P (Dr−1) \ Σ ⊆ 〈P (Dr)〉,
and it follows that P (Dr ∪ Dr−1) ⊆ 〈Γ〉. But then Lemma 4.15 (and a simple induction) shows that
P (Ir) = P (Dr) ∪ P (Dr−1) ∪ · · · ∪ P (D0) ⊆ 〈Γ〉, so that E(Ir) = 〈E(Ir)〉 = 〈P (Ir)〉 ⊆ 〈Γ〉. So E(Ir) = 〈Γ〉
and idrank(E(Ir)) ≤ |Γ| = m(n, r) +m′(n, r − 1).

Now suppose E(Ir) = 〈∆〉. To complete the proof, it suffices to show that |∆| ≥ m(n, r) +m′(n, r− 1). The
usual stability argument shows that ∆ contains an element from the R-class of each element of P (Dr), giving
|∆∩Dr| ≥ |P (Dr)| = m(n, r). Now let α ∈ Σ be arbitrary, and suppose α = δ1 · · · δk, where δ1, . . . , δk ∈ ∆.
As in the proof of Lemma 4.4, we cannot have rank(δ1) = r, and it quickly follows that rank(δ1) = r − 1.
As usual, stability then gives δ1Rα, and we conclude that |∆ ∩Dr−1| ≥ |Σ| = m′(n, r − 1). 2

The previous result does not apply to the idempotent-generated subsemigroup of the top two ideals In =Mn

and In−1 =Mn \ {1}. We deal with these cases now. In fact, since E(In−1) = E(In) \ {1}, it suffices to just
consider E(In) = E(Mn). Things are quite different here: E(Mn) is not generated by the idempotents in
its top two D-classes; instead, we need (some of the) idempotents from the top four D-classes. If n ≤ 1,
then E(Mn) = E(Mn) =Mn, so we just deal with the n ≥ 2 case.

Theorem 4.17. If n ≥ 2, then

E(Mn) = {idA : A ⊆ [n] is cosparse} ∪ {α ∈Mn : dom(α) and codom(α) are non-cosparse},

and rank(E(Mn)) = idrank(E(Mn)) = 3n− 2.

Proof. Again, the description of the elements of E(Mn) follows from Corollary 4.8 and Lemma 4.9. Let

Γ = {1} ∪ {ε1, . . . , εn} ∪ {τ1, . . . , τn−1} ∪ {µ1, . . . , µn−2},
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where

εi =

1 i n

, τj =

1 j n

, µk =

1 k n

.

We first show that E(Mn) = 〈Γ〉. It suffices to show that 〈Γ〉 ⊇ P (Mn). In fact, since P (Dn ∪Dn−1) ⊆ Γ,
and since P (Dn−2∪· · ·∪D0) ⊆ E(In−2) = 〈P (Dn−2∪Dn−3)〉, it is enough to show that P (Dn−2∪Dn−3) ⊆ 〈Γ〉.
But this is obvious, since

P (Dn−2) ={τ1, . . . , τn−1} ∪ {εiεj : 1 ≤ i < j ≤ n},
P (Dn−3) ={µ1, . . . , µn−2} ∪ {εiεjεk : 1 ≤ i < j < k ≤ n}

∪ {τiεk : 1 ≤ k < i ≤ n− 1 or 1 ≤ i < k − 1 ≤ n− 1}.

Next, suppose E(Mn) = 〈∆〉. To complete the proof, it suffices to show that |∆| ≥ 3n− 2. We claim that:

(i) ∆ contains E(Dn ∪Dn−1) = {1} ∪ {ε1, . . . , εn},

(ii) for all 1 ≤ j ≤ n− 1, there exists α ∈ ∆ such that αRτj , and

(iii) for all 1 ≤ k ≤ n− 2, there exists α ∈ ∆ such that αRµk.

Since the projections 1, ε1, . . . , εn, τ1, . . . , τn−1, µ1, . . . , µn−2 belong to distinct R-classes of Mn, it would
then follow that |∆| ≥ 1 + n+ (n− 1) + (n− 2) = 3n− 2. Now, (i) is obvious, and (ii) follows by the usual
stability argument, so we just prove (iii). With this in mind, let 1 ≤ k ≤ n− 2, and suppose µk = α1 · · ·αt,
where α1, . . . , αt ∈ ∆. If rank(αi) ≥ n− 1 for all i, then we would have αi ∈ {1} ∪ {ε1, . . . , εn} for all i, in
which case µk = α1 · · ·αt ∈ E(In), a contradiction. Let s ∈ [t] be minimal so that rank(αs) ≤ n− 2. Then,
as before, we would have α1 · · ·αs−1 = idA for some A ⊆ [n]. Now, since each element of {k + 1}c belongs
to a block of µk of size 2, we could only have A = [n] or A = {k + 1}c.

Case 1. Suppose first that A = [n], so that α1 · · ·αs−1 = 1, and µk = αsαs+1 · · ·αt with rank(αs) ≤ n− 2.
If we had rank(αs) = n− 2, then (by planarity) either αs would have two singleton upper blocks or else an
upper block {x, x+1} for some x ∈ [n]. Since such upper blocks are not in fact blocks of µk = αsαs+1 · · ·αt,
it follows that we cannot have rank(αs) = n− 2. Since n− 3 = rank(µk) = rank(αsαs+1 · · ·αt) ≤ rank(αs),
it follows that rank(αs) = n − 3. In particular, αsDµk = αsαs+1 · · ·αt so, by stability, it follows that
αsRαsαs+1 · · ·αt = µk, completing the proof of (iii) in this case.

Case 2. Finally, suppose A = {k + 1}c, so that α1 · · ·αs−1 = εk+1, and µk = εk+1αs · · ·αt. Now, if
αs had (at least) two upper singleton blocks, then these would be blocks of εk+1αs and, hence, also of
µk = εk+1αs · · ·αt, a contradiction. It follows that αs has (at least) one upper hook, say {x, y}. Note that
we cannot have x = k + 1 or else then {y} would be a block of εk+1αs and hence also of µk. Similarly,
y 6= k + 1. In particular, x, y ∈ {k + 1}c = dom(εk+1), so that {x, y} is a block of εk+1αs and hence also
of µk. It follows that {x, y} = {k, k + 2}. By planarity, {k + 1} must also be a block of αs. It then follows
that εk+1αs = αs, so that µk = αs · · ·αt, and the proof concludes as in the previous case. 2

Remark 4.18. From the above proof, it quickly follows that any minimal (in size) idempotent generating
set of E(Mn) is of the form E(Dn ∪ Dn−1) ∪ Γ ∪ ∆, where Γ is a minimal idempotent generating set of
Jn \ {1}, and ∆ ⊆ E(Dn−3) is such that: |∆| = n − 2, and for all 1 ≤ k ≤ n − 2, ∆ contains an element
R-related to µk and an element L -related to µk. It is easy to check that Rµk ∩Lµl is non-empty if and only
if k = l, so that we can only have ∆ = {µ1, . . . , µn−2}. It follows that the minimal idempotent generating
sets of E(Mn) are in one-one correspondence with the minimal idempotent generating sets of Jn \{1}. Such
generating sets were classified and enumerated (in terms of Fibonacci numbers) in [25, Theorem 9.8].

Remark 4.19. Presentations for the idempotent-generated subsemigroups E(Bn) and E(Pn) of the Brauer
monoid Bn and the partition monoid Pn were given in [58] and [22], respectively. These presentations used
generating sets of minimal size consisting entirely of projections. It would therefore be interesting to try
and find a presentation for E(Mn) in terms of the generating set Γ from the proof of Theorem 4.17, which
is of minimal size and consists entirely of projections.
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5 Applications to diagram algebras

In this section, we apply results of previous sections to obtain important information about the representa-
tion theory of the corresponding diagram algebras: namely, the partial Brauer algebras [43,60] and Motzkin
algebras [9]. Specifically, we combine general results of Wilcox [74] with our normal forms (Lemma 3.1 and
Remark 3.2) to deduce cellularity of these algebras, and we also use our combinatorial results on regular
∗-semigroups and Green’s classes of diagram monoids (Propositions 2.1, 2.7 and 2.8) to determine the dimen-
sions of the cell representations (which are precisely the irreducible representations in the semisimple case).
Although the results we obtain here are already known [9, 43, 60], our techniques are different to existing
methods. We include these derivations to demonstrate the utility of the semigroup theoretic approach to
diagram algebras, which we believe will be of use in future investigations.

5.1 Cellular algebras

Cellular algebras were introduced in [36] to provide a unified framework for studying the representation
theory of many important algebras, including Brauer algebras, Temperley-Lieb algebras, and certain Hecke
algebras. Many other examples of cellular algebras are now known [3,19,34,41,42,73–76]. See also [62,63],
where a broader class of algebras, called cell algebras, were introduced in order to capture even more natural
examples. We now recall the definitions and ideas from [36] that we will need.

Let R be a commutative ring with 1, and A a finite dimensional unital R-algebra. Recall that A is a cellular
algebra with cell datum (Λ,M,C , ∗) if:

(i) Λ is a finite partially ordered set,

(ii) for all λ ∈ Λ, M(λ) is a finite set,

(iii) C = {Cλs,t : λ ∈ Λ, s, t ∈M(λ)} is a basis of A, and the map (λ, s, t) 7→ Cλs,t is injective,

(iv) the map ∗ : A→ A determined on basis elements (and then extended linearly) by (Cλs,t)
∗ = Cλt,s is an

R-linear (anti-)involution of A,

(v) for all λ ∈ Λ, s, t ∈M(λ) and a ∈ A,

aCλs,t ≡
∑

s′∈M(λ)

ra(s
′, s)Cλs′,t (mod A(< λ)), (3)

where each ra(s
′, s) ∈ R is independant of t, and where A(< λ) is the R-submodule of A spanned by

{Cµu,v : µ ∈ Λ, µ < λ, u, v ∈M(µ)}.

From equation (3) (and its ∗-dual), it follows that for all λ ∈ Λ and s1, s2, t1, t2 ∈M(λ),

Cλs1,t1C
λ
s2,t2 ≡ φ(t1, s2)C

λ
s1,t2 (mod A(< λ))

for some φ(t1, s2) ∈ R that depends only on t1 and s2.

For each λ ∈ Λ, there is a natural left A-module W (λ), called the cell module corresponding to λ; W (λ) has
basis {Cs : s ∈M(λ)}, and the action of A on W (λ) is given by

aCs =
∑

s′∈M(λ)

ra(s
′, s)Cs′ , (4)

where the scalars ra(s
′, s) are defined in (3). There is a natural bilinear form φλ : W (λ)×W (λ)→ R defined

by φλ(Cs, Ct) = φ(s, t) for each s, t ∈M(λ). The radical of λ is then defined to be the A-submodule of W (λ)

rad(λ) = {x ∈W (λ) : φλ(x, y) = 0 (∀y ∈W (λ)},

and we define the quotient modules Lλ = W (λ)/ rad(λ). It was shown in [36, Theorem 3.4(i)] that when R
is a field, {Lλ : λ ∈ Λ, φλ 6= 0} is a complete set of (representatives of isomorphism classes of) absolutely
irreducible A-modules. In particular, the dimensions of these irreducible A-modules are given by

dim(Lλ) = |M(λ)| − dim(rad(λ)).
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In general, calculating the values of dim(rad(λ)) is very difficult; see for example [61, page 48]. It was shown
in [36, Theorem 3.8] that when R is a field, the following are equivalent:

(i) A is semisimple,

(ii) the non-zero cell modules W (λ) are irreducible and pairwise non-isomorphic,

(iii) the form φλ is non-degenerate (i.e., rad(λ) = 0) for each λ ∈ Λ.

5.2 The partial Brauer algebra

Let α, β ∈ PBn. Recall that when forming the product αβ ∈ PBn, we created the product graph Γ(α, β). In
general, this graph could have several connected components that involve vertices from [n]′′ (in the middle
row); we call these floating components (of Γ(α, β)). Floating components come in two kinds: loops and
paths. Following [60], we consider singleton floating components to be paths (of length 0) rather than loops.
We write l(α, β) and p(α, β) for the number of floating loops and paths in Γ(α, β), respectively. For example,
with α, β ∈ PB12 as in Figure 1, we have l(α, β) = 1 and p(α, β) = 2. It is easy to check that

l(α, β) + l(αβ, γ) = l(α, βγ) + l(β, γ)

p(α, β) + p(αβ, γ) = p(α, βγ) + p(β, γ)

}
for all α, β, γ ∈ PBn. (5)

Now let R be a commutative ring with identity, and fix some x, y ∈ R. We define the twisting map

τ : PBn × PBn → R by τ(α, β) = xl(α,β)yp(α,β).

For example, with α, β ∈ PB12 as in Figure 1, we have τ(α, β) = xy2. The partial Brauer algebra Rτ [PBn] is
the associative R-algebra with basis PBn and multiplication ? defined on basis elements (and then extended
linearly) by

α ? β = τ(α, β)αβ for α, β ∈ PBn.

(Note that associativity follows from (5).) In this way, we see that Rτ [PBn] is a twisted semigroup algebra
of PBn with respect to the twisting map τ . As a special case, if x = y = 1, then Rτ [PBn] = R[PBn] is the
(ordinary) semigroup algebra of PBn. It is clear that

τ(α, β) = τ(β∗, α∗) for any α, β ∈ PBn (6)

τ(α, β) = τ(α, γ) for any α, β, γ ∈ PBn with βRγ. (7)

For 0 ≤ r ≤ n, recall that the H -class (in PBn) of the projection

id[r] =

(
1 · · · r

1 · · · r

)
∈ P (Dr(Mn)),

was denoted S[r] just before Lemma 3.1, and is isomorphic to the symmetric group Sr. It is well known that
the (ordinary) symmetric group algebra R[Sr] is cellular. We fix a cell datum (Λr,Mr,Cr,−1) for the group
algebra R[S[r]] for each 0 ≤ r ≤ n, where (Λr,�) is the set of all integer partitions of r ordered by dominance,

Mr(λ) is the set of all standard tableaux of shape λ for each λ ∈ Λr, and Cr = {Cλs,t : λ ∈ Λr, s, t ∈Mr(λ)}
is the Murphy basis, as described in [68] and [61, Chapter 3]. We now describe a cell datum (Λ,M,C , ∗) for
the partial Brauer algebra Rτ [PBn].

First, put Λ = Λ0 ∪ Λ1 ∪ · · · ∪ Λn with order ≤ defined, for λ ∈ Λi and µ ∈ Λj by

λ ≤ µ ⇔ i < j or [i = j and λ� µ].

For 0 ≤ r ≤ n and λ ∈ Λr, we define M(λ) = P (Dr(PBn)) ×Mr(λ). (Recall that Mr is part of the cell
datum for R[S[r]].)

For a projection α ∈ P (Dr(PBn)), write ξα = β · λdom(α) and ζα = ρcodom(α) · δ, where β, δ are as in the
proof of Lemma 3.1. For 0 ≤ r ≤ n, λ ∈ Λr, α, β ∈ P (Dr(PBn)) and s, t ∈Mr(λ), define

Cλ(α,s),(β,t) = ξα · Cλs,t · ζβ ∈ Rτ [PBn].
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Since Cs,t is an R-linear combination of elements from S[r], we see that Cλ(α,s),(β,t) is an R-linear combination

of elements from the H -class of ξα · ζβ ∈ Dr(PBn). Now put

C =
n⋃
r=0

{Cλ(α,s),(β,t) : λ ∈ Λr, s, t ∈ Λr, α, β ∈ P (Dr(PBn))}.

Then, by the above discussion, [74, Corollary 7] tells us that (Λ,M,C , ∗), as constructed above, is a cell da-
tum for Rτ [PBn]. Note that the anti-involution ∗ on Rτ [PBn] is the R-linear extension of the anti-involution
on PBn we have been using throught the article. The discussion in Section 5.1 allows us to construct the
irreducible representations of Rτ [PBn] in the case that R is a field. In particular, the dimensions of the cell
modules W (λ) are given by

dim(W (λ)) =
∣∣M(λ)

∣∣ =
∣∣P (Dr(PBn))

∣∣ · ∣∣Mr(λ)
∣∣ =

(
n

r

)
· a(n− r) ·

∣∣Mr(λ)
∣∣ for each λ ∈ Λr,

by Propositions 2.7(iv) and 2.1(iii), where the numbers a(m) are defined in Proposition 2.7. Formulae for the
values |Mr(λ)

∣∣ are well known [61, Exercise 3.25]. In particular, in the case that Rτ [PBn] is semisimple,5 the
irreducible Rτ [PBn]-modules are precisely the cell modules, so Lλ = W (λ) for each λ ∈ Λ, with dimensions
as stated above.

5.3 Motzkin algebras

Again let R be a commutative ring with 1. The R-submodule of the partial Brauer algebra Rτ [PBn] spanned
by Mn ⊆ PBn is a subalgebra of Rτ [PBn]. This subalgebra is the Motzkin algebra [9], and we denote it by
Rτ [Mn]. Again, we may apply results of previous sections to quickly demonstrate the cellularity of Rτ [Mn]
and calculate the dimensions of the cell modules (which coincide with the irreducible Rτ [Mn]-modules in
the semisimple case). SinceMn is aperiodic (i.e., all its subgroups are trivial), the situation is a little easier
for Rτ [Mn] than for Rτ [PBn]; this contrasts interestingly with earlier sections, in which we generally had
to work harder for Mn than for PBn.

This time, we define Λ = {0, 1, . . . , n} ordered by ≤. For r ∈ Λ, we define M(r) = P (Dr(Mn)) to be the
set of all rank r Motzkin projections. For r ∈ Λ and α, β ∈M(r), we write

Crα,β = ξα · ζβ,

where ξα and ζβ were defined in the previous section (see also Lemma 3.1 and Remark 3.2). We then define

C = {Crα,β : r ∈ Λ, α, β ∈M(r)}.

Then by [74, Corollary 7] again, Rτ [Mn] is cellular, with cell datum (Λ,M,C , ∗), where again ∗ denotes the
natural anti-involution on Mn. In fact, by Lemma 3.1 and Remark 3.2, we see that the cellular basis C is
precisely Mn itself. Again, when R is a field, in the semisimple case,6 the irreducible Rτ [Mn]-modules are
precisely the cell modules as defined generally in Section 5.1. In fact, because of the simpler nature of the
Motzkin algebra, we can describe these modules quite easily. For 0 ≤ r ≤ n, the cell module W (r) has basis
{Cα : α ∈M(r)}. (Recall that M(r) = P (Dr(Mn)).) The action of Rτ [Mn] on W (r) from (4) is given, for
α ∈Mn and β ∈M(r), by

α · Cβ =

{
τ(α, β)Cαβα∗ if rank(αβ) = r

0 if rank(αβ) < r.

We note that this corresponds to the geometric definition given in [9, Section 4.1]. We also note that the
dimensions of these cell modules (which are precisely the irreducible modules in the semisimple case) are
given by

dim(W (r)) =
∣∣M(r)

∣∣ =
∣∣P (Dr(Mn))

∣∣ = m(n, r),

by Propositions 2.8 and 2.1(iii), where the Motzkin numbers m(n, r) are defined in Proposition 2.8.

5When R = C is the field of complex numbers, it is known that Cτ [PBn] is generically semisimple [60, Theorem 1.1 and
Corollary 3.6]; i.e., Cτ [PBn] is semisimple for all but a finite number of choices of x, y.

6In [9, Theorem 5.14], semisimplicity was characterised in the case x = y in terms of certain expressions involving Chebyshev
polynomials.
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6 Calculated values

In this final section, we provide calculated values of the ranks (and idempotent ranks, where appropriate)
of the ideals Ir(PBn) and Ir(Mn) as well as the idempotent-generated subsemigroups E(PBn) and E(Mn).

n \ r 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1 2

2 2 3 3

3 4 6 6 4

4 10 19 12 11 4

5 26 50 55 20 16 4

6 76 171 150 125 30 22 4

7 232 532 651 350 245 42 29 4

8 764 1961 2128 1876 700 434 56 37 4

9 2620 6876 9297 6384 4536 1260 714 72 46 4

10 9496 27 145 34 380 32 565 15 960 9702 2100 1110 90 56 4

Table 3: Values of rank(Ir(PBn)). These values also give idrank(Ir(PBn)) for r ≤ n− 2.

n \ r 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1 2

2 2 3 4

3 4 6 5 6

4 9 15 11 7 8

5 21 36 32 17 9 10

6 51 91 83 56 24 11 12

7 127 232 226 157 88 32 13 14

8 323 603 608 459 266 129 41 15 16

9 835 1585 1655 1305 832 419 180 51 17 18

10 2188 4213 4517 3726 2499 1397 626 242 62 19 20

Table 4: Values of rank(Ir(Mn)). These values also give idrank(E(Ir(Mn))) for r ≤ n− 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

rank(E(PBn)) 1 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211

rank(E(Mn)) 1 2 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Table 5: Values of rank(E(PBn)) = idrank(E(PBn)) and rank(E(Mn)) = idrank(E(Mn)).
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[39] R. Gray and N. Ruškuc. Generating sets of completely 0-simple semigroups. Comm. Algebra, 33(12):4657–4678, 2005.

[40] R. D. Gray. The minimal number of generators of a finite semigroup. Semigroup Forum, 89(1):135–154, 2014.

[41] Nicolas Guay and Stewart Wilcox. Almost cellular algebras. J. Pure Appl. Algebra, 219(9):4105–4116, 2015.

[42] Xiaojiang Guo and Changchang Xi. Cellularity of twisted semigroup algebras. J. Pure Appl. Algebra, 213(1):71–86, 2009.

33



[43] Tom Halverson and Elise delMas. Representations of the Rook-Brauer algebra. Comm. Algebra, 42(1):423–443, 2014.

[44] Tom Halverson and Arun Ram. q-rook monoid algebras, Hecke algebras, and Schur-Weyl duality. Zap. Nauchn. Sem. S.-
Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 283(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 6):224–250, 262–263,
2001.

[45] Tom Halverson and Arun Ram. Partition algebras. European J. Combin., 26(6):869–921, 2005.

[46] Tom Halverson and Mike Reeks. Gelfand models for diagram algebras. J. Algebraic Combin., 41(2):229–255, 2015.

[47] Peter M. Higgins. Techniques of semigroup theory. Oxford Science Publications. The Clarendon Press, Oxford University
Press, New York, 1992.

[48] J. M. Howie. The subsemigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc.,
41:707–716, 1966.

[49] J. M. Howie. Idempotent generators in finite full transformation semigroups. Proc. Roy. Soc. Edinburgh Sect. A, 81(3-
4):317–323, 1978.

[50] John M. Howie. Fundamentals of semigroup theory, volume 12 of London Mathematical Society Monographs. New Series.
The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications.

[51] John M. Howie, Ewing L. Lusk, and Robert B. McFadden. Combinatorial results relating to products of idempotents in
finite full transformation semigroups. Proc. Roy. Soc. Edinburgh Sect. A, 115(3-4):289–299, 1990.

[52] John M. Howie and Robert B. McFadden. Idempotent rank in finite full transformation semigroups. Proc. Roy. Soc.
Edinburgh Sect. A, 114(3-4):161–167, 1990.
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