
Host Defense against Viral Infection Involves Interferon
Mediated Down-Regulation of Sterol Biosynthesis
Mathieu Blanc1, Wei Yuan Hsieh1, Kevin A. Robertson1,2, Steven Watterson1,2, Guanghou Shui3, Paul

Lacaze1, Mizanur Khondoker1, Paul Dickinson1,2, Garwin Sing1, Sara Rodrı́guez-Martı́n1, Peter Phelan5,

Thorsten Forster1,2, Birgit Strobl6, Matthias Müller6, Rudolph Riemersma7, Timothy Osborne5, Markus R.

Wenk3, Ana Angulo4, Peter Ghazal1,2*

1 Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom, 2 Centre for Systems Biology at Edinburgh, The

King’s Buildings, Edinburgh, United Kingdom, 3 Department of Biochemistry and Department of Biological Sciences, National University of Singapore, Singapore, 4 Institut

d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain, 5 Metabolic Signaling Diseases Program, Sanford-Burnham Medical Research Institute, Orlando, Florida,

United States of America, 6 Institute of Animal Breeding and Genetics, Veterinary University of Vienna, Vienna, Austria, 7 Centre for Cardiovascular Disease, University of

Edinburgh, Edinburgh, United Kingdom

Abstract

Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we
report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network
characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series
experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated
negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNc or b but not TNF,
IL1b, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar
level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a
reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show
augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the
requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or
IFNb treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s)
to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages
containing a genetic knockout of the major type I interferon, IFNb, leads to only a partial suppression of the sterol pathway,
while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component,
tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically
cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNb
treatment at both the protein and de novo transcription level. The reduction in srebf2 gene transcription upon infection and
IFN treatment is also found to be strictly dependent on ifnar1. Altogether these results show that type 1 IFN signaling is
both necessary and sufficient for reducing the sterol metabolic network activity upon infection, thereby linking the
regulation of the sterol pathway with interferon anti-viral defense responses. These findings bring a new link between sterol
metabolism and interferon antiviral response and support the idea of using host metabolic modifiers of innate immunity as
a potential antiviral strategy.

Citation: Blanc M, Hsieh WY, Robertson KA, Watterson S, Shui G, et al. (2011) Host Defense against Viral Infection Involves Interferon Mediated Down-Regulation
of Sterol Biosynthesis. PLoS Biol 9(3): e1000598. doi:10.1371/journal.pbio.1000598

Academic Editor: Skip W. Virgin, Washington University School of Medicine, United States of America

Received August 4, 2010; Accepted January 26, 2011; Published March 8, 2011

Copyright: � 2011 Blanc et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Wellcome Trust (WT066784/Z/02/Z) and by the BBSRC/EPSRC and reagent support by the RNAi Global Initiative to PG.
MB was supported by a studentship from the British Heart Foundation reference FS/05/022 and University of Edinburgh Alumni Fund. SRM was supported by a
BBSRC studentship and Principal’s Fellowship. PL is supported by BBSRC studentship. The Centre for Systems Biology at Edinburgh is a Centre for Integrative
Systems Biology (CISB) supported by the BBSRC and EPSRC, reference BB/D019621/1. BS and MM are supported by the Austrian Science Fund FWF SFB F28 and
Austrian Federal Ministry of Science and Research GEN-AU III Austromouse. MRW is supported by the Singapore National Research Foundation under CRP Award
No. 2007-04, the Biomedical Research Counncil of Singapore (R-183-000-211-305) and the National Medicial Research Council (R-183-000-224-213. AA is supported
by funding from the Ministerio de Educación y Ciencia (SAF2008-00382). The funders had no role in study design, data collection and analysis, decision to publish
or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: CMV, cytomegalovirus; Fdps, farnesyl diphosphate synthase; HCV, Hepatitis C virus; hpi, hours post-infection; HSV1, herpes simplex virus 1; IFN,
interferon; IFNAR1, IFN-a/b receptor; JAK, Janus kinase; LAG, Lipid Associated Gene; mCMV, murine cytomegalovirus; MRM, multiple reaction monitoring; PRR,
host recognition receptor; SREBP2, sterol regulatory binding protein 2; STAT, signal transducer and activator of transcription; Tyk 2, tyrosine kinase 2

* E-mail: p.ghazal@ed.ac.uk

Introduction

Sterols and fatty acids are common intermediary metabolites

that play key roles in many biological pathways involved in

inflammatory diseases such as atherosclerosis and chronic heart

disease [1–4]. Significantly, mounting evidence shows a connec-

tion between innate immune signaling processes and the

regulation of sterol and fatty acid metabolism [5–8]. Specifically,
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cholesterol and its metabolites have been shown to alter

inflammatory mediator behavior [9–11], and conversely, innate

immune signaling has been shown to modulate the dynamics of

cholesterol transport, storage, and excretion [12–15]. Recent

studies have also begun to show that the perturbation of lipid

metabolism in a range of virally infected cells is a hallmark of

cellular changes associated with infection. For instance, studies

analyzing the consequences of human cytomegalovirus (CMV)

infection have shown that increases in the flux of the fatty acid

biosynthesis pathway are essential for optimal viral growth in

fibroblasts [16]. Further, Hepatitis C virus (HCV) has been shown

to co-opt the prenylation pathway to promote the efficient

replication of its genome [17–19]. More generally, a number of

other viruses, notably Measles, HIV, West Nile virus, and Dengue

virus, also have the ability to change cholesterol pathway gene

expression in a variety of cellular systems [20–24]. Whether the

effects of virus infection on the cholesterol pathway are directly

mediated by the pathogen or indirectly host-mediated mechanisms

is not known. From a therapeutic perspective, studies have also

shown that the pharmacological disruption of the cholesterol

metabolism by statins and other metabolic modifiers can result in

the inhibition of viral replication [25–32].

It is well documented that the cross-talk between immune

programs of macrophage activation and lipid homeostasis plays a

central part in chronic inflammatory diseases [33,34]. In particular

an anti-atherosclerosis transcriptional axis of PPARc regulating a

pathway of cholesterol efflux by inducing ABCA1 expression and

cholesterol removal from macrophages, via a transcriptional

cascade mediated by activated LXRa, has been reported [35].

Significantly, cellular metabolic, signaling, and regulatory pathways

also play a critical ‘‘collaborative’’ role in modulating immune

responses to infection [36]. In this context, Toll-like pathogen

recognition receptors, crucial to the initiation of innate immune

signaling, have recently been shown to regulate the expression of

key lipid-associated genes following bacterial infection. This occurs

due to microbial ligand activation of the IRF3 pathway, which

blocks the induction of LXR target genes such as ABCA1 and

inhibits cholesterol efflux from macrophages in an interferon

independent manner [5]. In this context, LXRa2/2 mice are

more susceptible to bacterial infection [37], further emphasizing the

importance of this pathway in the innate immune response. From a

viral perspective, an interferon-inducible protein ‘‘viperin’’ is known

to inhibit influenza A virus and HCV by disrupting the formation of

cholesterol-enriched lipid rafts, which act as attachment sites for

viral production [38,39]. Significantly, despite increasing numbers

of studies in this area, the question remains as to whether the

immune regulation of lipid pathways can also serve a role as part of

a protective anti-viral response. Indeed, in the context of host

protection pathways, it is not known whether a central immune

regulatory mechanism involving interferon response is directly or

indirectly required in modulating lipid metabolism in infection.

We are interested in elucidating the relationship between

transcriptional networks and immune regulatory pathways and

host-cell dependency mechanisms of pathogens, especially viruses,

as identifying host dependency mechanisms at the pathway level

provides a new molecular systems-level approach for understanding

viral pathogenesis, which can be harnessed as an anti-infective

strategy [40–42]. For many years, studies of virus-host interactions,

in particular for large DNA viruses, have proven invaluable in the

characterization of host cell molecular pathways and their

connectivity to the inflammatory response. Murine cytomegalovirus

(mCMV), which has a large double-stranded DNA genome,

represents one of the few model organisms studied in its natural

host and has both biological and clinical relevance to human CMV

disease [43]. In this study, we have sought to apply a systems-level

approach, bringing together functional genomics, lipidomics, and

biochemical experimentation, to understand the interplay between

sterol pathway down-regulation and the innate immune response to

mCMV infection. Our investigations reveal a previously undis-

closed dependency role for down-regulation of the sterol metabolic

network, which is integral to the protective immune response

requiring a type 1 interferon receptor regulatory loop mechanism.

Results

Sterol Biosynthesis Pathway–Associated Genes Are Co-
ordinately Down-Regulated by IFNc Treatment and
mCMV Infection in Primary Bone-Marrow–Derived
Macrophages

As a first step, an integrative approach combining bioinfor-

matics tools and a time-series analysis of gene expression changes

was applied to mCMV-infected or interferon (IFN) c-activated

primary bone-marrow-derived macrophages (BMDM). These

primary BMDM cultures represent a physiologically relevant cell

system for the combined analysis of infection, inflammation, and

lipogenesis [44–46]. In the following experiments, infected or

IFNc-treated BMDM RNA was harvested every 30 min up to

12 h post-challenge for microarray gene expression profiling. In

this study, analysis of expression data was exclusively restricted to

lipogenic-associated genes. For this purpose, a combination of

literature and data-mining identified over one thousand genes with

published direct or indirect functions relating to cellular lipid

metabolism, regulation, and synthesis (Text S1). When this

resource was used to interrogate a subset of our time-series data

Author Summary

Currently, little is known about the crosstalk between the
body’s immune and metabolic systems that occurs after
viral infection. This work uncovers a previously unappre-
ciated physiological role for the cholesterol-metabolic
pathway in protecting against infection that involves a
molecular link with the protein interferon, which is made
by immune cells and known to ‘‘interfere’’ with viral
replication. We used a clinically relevant model based on
mouse cytomegalovirus (CMV) infection of bone-marrow-
derived cells. Upon infection these cells produce high
levels of interferon as part of the innate-immune response,
which we show in turn signals through the interferon
receptor resulting in lowering enzyme levels on the
cholesterol pathway. We observed this effect with a range
of other viruses, and in each case it leads to a notable drop
in the metabolites involved in the cholesterol pathway. We
found that the control mechanism involves regulation by
interferon of an essential transcription factor, named
SREBP-2, which coordinates the gene activity of the
cholesterol pathway. This mechanism may explain clinical
observations of reduced cholesterol levels in patients
receiving interferon treatment. Our initial investigation
into how lowered cholesterol might protect against viral
infection reveals that the protection is not due to a
requirement of the virus for cholesterol itself but instead
involves a particular side-branch of the pathway that
chemically links lipids to proteins. Drugs such as statins
and small interfering RNAs that block this part of the
pathway are also shown to protect against CMV infection
of cells in culture and in mice. This provides the first
example of targeting a host metabolic pathway in order to
protect against an acute infection.
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which passed a stringent filtering threshold (p,1026), 89% of

lipogenic-associated genes were detected, of which 12% were

significantly regulated (113/958) upon IFNc treatment and 23%

were significantly altered in their expression (195/958) after

mCMV infection. This represented a significant and highly

selective lipogenic response (Figure S1) with altered genes showing

a high degree of overlap between infection and IFNc activation

(Table S1). Notably, clear differences in the specific class of

lipogenic genes in up- and down-regulated groups were observed.

Of the IFNc down-regulated transcripts, a significant proportion

(14/35, 40%) were related to the sterol pathway, while fatty acid

pathways were pre-eminent (6/35, 17%) in the up-regulated gene

group (Figure S1C). A statistical evaluation investigating pathway

over-representation indicated a highly pathway-specific response

including previously known pathways for inositol (Table S2E–F)

[47] perturbed by mCMV infection. Significantly, however, the

most pronounced pathway changes in the down-regulated genes

common to both stimuli were associated with sterol lipid

metabolism (Table S2E and Figure 1A), which exhibited a

gradual, temporal decline in expression from 6 h post-infection

(hpi) onwards (Figure 1B). Additional microarray experiments to

further explore this observation revealed a further reduction in

sterol pathway gene expression observed at 24 hpi (unpublished

data). It is worth noting, however, that the observed level of

reduction in expression for any particular transcript was relatively

modest (ranging from 1.3- to 5-fold for infection and 1.3- to 3-fold

for IFNc treatment over a 24 h time frame).

To independently validate the microarray data described above, Q-

RT-PCR analyses of five independent experiments were performed for

both infection and IFNc treatment. In agreement, we find that Q-RT-

PCR analysis of selected members of the pathway—Hmgcs1, Hmgcr,

IdI1, and Sqle—shows a statistically significant but quantitatively

modest reduction in expression (Figure 1C and 1D). Notably, a similar

quantitative decrease is also exhibited at the protein level for

HMGCS1, HMGCR, and SQLE (Figure 2A).

Down-Regulation of the Sterol Biosynthesis Pathway Is
Specific to IFNc and IFNb Treatment

Since the alterations in expression of the cholesterol-related

genes were consistent but of relatively small magnitude, we

considered whether these perturbations represented either non-

specific ‘‘noise’’ generated during the pro-inflammatory stimula-

tion of a macrophage or a more specific response to a particular

challenge. To test whether alternative pro-inflammatory mediators

could also lead to the modulation of the sterol pathway genes,

macrophage cultures were treated with a range of doses of the

following inflammatory cytokines: IL1b, TNF, IL6, and IFNb.

Hmgcs1, Hmgcr, Idi1, and Sqle gene expression changes were then

analyzed by Q-RT-PCR (Figure 1E–H). Of the cytokines tested,

only IFNb elicited the down-regulation of sterol pathway gene

expression in primary macrophage cultures (Figure 1E). In

summary, these data indicate a highly specific response of

macrophages through a coordinated negative regulation of

multiple sterol pathway members upon viral infection or treatment

with IFNc or b but not IL1b, TNF, or IL6. Once again, these

effects are quantitatively ‘‘modest’’ but statistically significant.

Experimental Testing of Bioinformatic Predictions:
Infection Results in a Decrease of Sterol Metabolites in
Primary Macrophages and Fibroblasts

We next sought to explore how multiple small reductions in

enzyme levels impact upon the biosynthetic activity of the pathway

by measuring the steady-state metabolic output of the pathway. For

these experiments, free intra-cellular cholesterol level, as a

metabolic end product of the sterol pathway, was determined using

an enzymatic method on infected macrophages (Figure 2B). We

observe a significant decrease in cholesterol metabolite levels 24 hpi.

Similar results were also observed with infection of NIH/3T3 cells

(Figure 2C), indicating that the effect is not macrophage specific.

It is possible that the experimentally observed drop in sterol lipid

levels could be due to a non-specific and generalized response to

infection, although from the microarray analysis of the lipidomic

associated genes we clearly observe highly specific lipogenic

responses rather than a broad response to infection (Figures S1

and S2). To further determine whether the down-regulation of sterol

biosynthesis is specific between mCMV infection and select

lipogenesis pathways, total cell extracts were analyzed by electro-

spray ionization as well as atmosphere chemical ionization mass

spectrometry (see Materials and Methods). These lipidomic

approaches allow quantification of the major membrane lipid classes

(such as glycerophospholipids and sterols) as well as individual

molecular lipid species at high sensitivity. Overall, we find no

coordinated or substantial differences in the overall levels of major

glycerophospholipids (phosphatidylcholine, phosphatidylserine, and

phosphatidylethanolamine) during infection with CMV, although a

small number of the individual species in the phosphatidylcholine

and phosphatidylserine group are affected (Figure S3A–C). In

marked contrast, levels of free cholesterol, as well as its immediate

precursor, zymosterol, 14-demethyl-lanosterol, and 7-dehydrocho-

lesterol, were strongly reduced at 24 hpi (2–3-fold) and 48 hpi (4–6-

fold) (Figure S2A–D). These results further support a specific

alteration of sterol biosynthesis upon infection. Furthermore, the

reduced free cholesterol levels are also developed in a dose-

dependent manner by treatment with IFNb and c but not IL1b,

IL6, or TNF (Figure 2D). Altogether, we conclude that the effect of

the coordinated down-regulation is to reduce metabolic output of the

sterol pathway.

Pharmacologic Inhibition and siRNA Knock-Down of the
Sterol Biosynthesis Pathway Has an Antiviral Effect

To assess whether the sterol biosynthesis pathway plays a pro-

or anti-viral role in regulating mCMV replication, we exploited

the pharmacologic compound ‘‘simvastatin,’’ a potent and

selective inhibitor of HMGCR [48]. Inhibition of HMGCR is

known to result in a reduction of the metabolic intermediate

mevalonate (Figure 3) and an accompanying drop in cholesterol

synthesis by the cell [49]. The treatment of cells with simvastatin

resulted in a dose-dependent inhibition of mCMV plaque

formation (unpublished data) and in live cell replication assays

(Figure 4A) with an IC50 of 2 mM that is comparable to the ‘‘gold

standard’’ anti-viral Gancyclovir (Figure 4A) in the murine model

system. Notably, the observed inhibitory effect of simvastatin

occurred below a level at which non-specific toxic effects to cells

were observed (15 mM) (Figure S7). These experiments pointed to

a potential protective anti-viral role via a targeted disruption of the

sterol pathway and raised the question of whether pharmacologic

treatment in vivo also develops an inhibitory effect. To investigate

whether simvastatin could play an anti-infective role in vivo, mice

were administered with an established pre-clinical pharmacologic

dose of simvastatin or vehicle alone and infected by intra-

peritoneal inoculation with mCMV. Viral titres were then

determined in a variety of organs at day 4 post-inoculation.

Markedly, viral titres are reduced by over one order of magnitude

in multiple organs following treatment with simvastatin (Figure 4B).

To determine the extent of the overlap between the sterol

biosynthesis pathway and anti-viral activity, we employed a series

of metabolite rescue and interference RNA knock-down experi-
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ments. In these experiments we observed that simvastatin anti-

viral activity could be completely reversed by the addition of

mevalonate to cells in culture (Figure 5A). This showed that the

anti-viral mechanism was due to an inhibition of HMGCoA

reductase. While this result supports the requirement of the

mevalonate arm of the sterol pathway, it does not necessarily

implicate cholesterol as being responsible for the anti-viral activity.

Notably, feeding macrophages with a cell permeable form of

cholesterol or squalene failed to reverse the inhibitory activity

(Figures 3 and 5A), indicating that the anti-viral effect is unlikely to

be cholesterol mediated and thus unrelated to any regulatory

sterols or to the structural requirements of virus replication

associated with lipid droplets. The addition of cell permeable

farnesol also did not rescue the inhibitory activity of simvastatin,

while conversely the addition of geranylgeraniol fully rescued the

anti-viral activity (Figures 3 and 5A). These experiments show the

specificity of the metabolic requirement for anti-viral activity and

highlight a possible role for the mevalonate-isoprenoid arm of the

sterol pathway in protection against mCMV infection (Figure 3).

While the rescue of statin inhibition of viral growth by

mevalonate and geranylgeraniol strongly indicates the involve-

ment of the proximal arm of the sterol pathway, it is still

conceivable that other mechanisms of action unrelated to the

capacity to inhibit biosynthesis may be responsible for the effect

on virus replication. For this reason and to additionally test the

specific requirement of members of the sterol biosynthesis

pathway for viral growth control, siRNA knock-down experi-

ments were performed. For these experiments, Hmgcs1 and Hmgcr

were first targeted in the pathway using low concentrations of

siRNA to avoid non-specific interferon responses, including a

series of non-targeting siRNA for non-targeting effects. Knock-

down of these genes (Figure S5) resulted in a specific and

significant decrease in the optimal rate and end-point yield of

viral replication (Figures 5B). To further dissect the specific role

of pathway members in mediating the anti-viral response,

additional siRNA inhibition studies were conducted involving

targeted genes distal to the mevalonate-prenylation branch of the

sterol biosynthesis pathway. In these experiments, Fdft1, Sqle,

and Dhcr7 were targeted. Figure 5B clearly shows that targeting

these members of the pathway fails to inhibit and even positively

influences viral growth, a result that is consistent with the above

described metabolite rescue experiments. To further investigate

and to independently assess the specificity of the prenylation

branch of the pathway, additional siRNA knock-down experi-

ments were performed targeting farnesyl diphosphate synthase

(Fdps), an enzyme essential for isoprenoid biosynthesis, and all

three prenyltransferases (these are farnesyltransferase, geranyl-

geranyltransferase type I, and Rab geranylgeranyltransferase

type II enzymes). In these experiments knock-down of Hmgcr

and Dhcr7 and viral ORFs (M54 and M86) are used as controls

and developed the expected knock-down profile (Figure 5C).

Notably, significant inhibition of viral replication is observed for

knock-down of Fdps. In the case of the downstream prenyl-

transferases, reduced viral replication is observed with siRNA

targeting Rabggtb specific for geranylgeranyltransferase type II

enzyme, but not Pggt1b or Fntb specific for gernylgeranyltrans-

ferase type I and farsenyltransferase, respectively (Figure 5C).

These experiments indicate specificity of targeting the isoprenoid

pathway but will require further functional validation work.

Overall, these findings show that inhibition of viral growth is not

due to cholesterol deprivation, but rather a part of the pathway

involving a proximal mevalonate-prenylation step. This raises the

notion of whether depletion of geranylgeraniol may be one potential

mode for interferon to inhibit viral replication. In this scenario we

might expect that feeding cells with geranylgeraniol upon interferon

treatment would counter, in part, the anti-viral effect. To determine

the effect of interferon on viral replication, in the absence and

presence of geranylgeraniol, we performed a metabolite rescue

experiment in the presence of increasing units of IFNb. Figure 5D

shows that the anti-viral effect of 1 and 5 U/ml of IFNb is

dramatically reduced in the presence of geranylgeraniol (at both 15

and 150 mM), while at a more potent level of IFNb (at 25 U/ml)

approximately 70% and 25% of the anti-viral activity remains with

15 and150 mM GGOH, respectively. Taken together, these results

support a role of the mevalonate-isoprenoid arm of the sterol

pathway for optimal mCMV replication and highlight the potential

role for down-regulating this pathway in protecting the host from

viral infection. These findings also suggest that sterol biosynthesis

regulation acts as a marker for antiviral activity.

An Interferon Regulatory Loop Is Responsible for the
Transcriptional Down-Regulation of the Sterol
Biosynthesis Pathway in Response to Infection

We next sought to investigate whether specific viral or cellular

modes of action might be responsible for the reduction in sterol

biosynthesis upon infection. First, it is possible that the effects

monitored in our experimental system are specific to mCMV. To

test whether the down-regulation of sterol pathway gene

expression is a more general effect rather than specific to mCMV,

primary macrophages (BMDM) were infected with a number of

different viruses and harvested for gene expression analysis.

Figure 6A shows the expression profile of the sterol pathway and

other pathways for infection (innate immune activation pathways)

by an enveloped DNA virus, herpes simplex (HSV1); an RNA

virus, semliki forest virus (SFV); cytoplasmic DNA virus, vaccinia

virus (VV); and non-enveloped nuclear DNA virus, adenovirus. All

the viruses tested show a specific and coordinate decrease in gene

expression for members of the sterol biosynthesis pathway.

In the case of mCMV, it is worth noting that the reduction in

gene expression occurs approximately 6 hpi (e.g., see Figure 1).

Consequently, it is possible that a viral early or late gene product

may be required for the effect. To test this possibility, we used a

replication and early/late gene defective mCMV virus

(mCMVdie3 in [50]). The mCMVdie3 strain is capable of

infecting cells at levels equivalent to wild-type virus but is

incapable of expressing its genome downstream of a rather

Figure 1. Regulation of the cholesterol pathway upon mCMV infection. (A) The Sterol biosynthesis pathway shown in KEGG notation with
abbreviated metabolites (abbreviations listed in Text S1). The geranylgeranylation pathway responsible for GGPP synthesis is shown in the dashed
box. (B) Heat map of the cholesterol biosynthesis temporal genes’ expression during the first 12 h of mCMV infection (left panel) or IFNc treatment
(right panel). Each time point corresponds to one independent biological sample, and columns indicate time in hours. Fold changes of expression
levels are represented on a Log2 scale compared to mock-treated cells, ranging from a 0.86 lower expression (dark blue) to a 1.26higher expression
(bright yellow). (C–H) Expression analysis measured by qRT-PCR of Hmgcs1, Hmgcr, Idi1, and Sqle genes in BMDM infected with mCMV(24 hpi) (C) or
treated for 24 h with IFNc (10 and 100 U/ml) (D), IFNb (10 and 25 U/ml) (E), IL6 (10 and 25 U/ml) (F), IL1b (10 and 100 U/ml) (G), or TNF (10 and 100 U/
ml) (H). Graphs show levels of mRNA expression of the respective genes either infected or cytokines-treated relative to mock samples. Bars represent
the means 6 SD of five independent experiments with biological triplicates for each experiment. *p,0.05, **p,0.01, ***p,0.001, determined with
an unpaired Student’s t test.
doi:10.1371/journal.pbio.1000598.g001
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Figure 2. Effect of a coordinated reduction in multiple enzymes on sterol biosynthesis. (A) Comparison by Western blot analysis of
HMGCS1, HMGCR, and SQLE protein levels in mCMV infected (24 hpi) or mock-treated BMDM. Infection was measured by detection of the IE1 mCMV
antigen. Intensity values relative to b-actin calculated by densitometry show a decrease of the total amount of protein in the mCMV-infected BMDM
compared to the mock-treated samples of 64% for HMGCS1, 50% for HMGCR, and 85% for SQLE. Graphs are representative of two independent
experiments with biological duplicates and triplicates, respectively. (B–C) Free cholesterol concentration was determined experimentally by
enzymatic assay (Materials and Methods) at 0, 6, 24, 48, and 72 hpi in BMDM (B) and NIH/3T3 cells (C). Cholesterol content is presented as the
percentage of free intracellular cholesterol concentration from infected cells compared to mock treatment. Graphs represent the means 6 SD of
three independent experiments with biological quadruplicates for each experiment. (D) Free cholesterol concentration in BMDM cultures treated
with varying concentrations of IFNc, IFNb, TNF, IL1b, or IL6. The cholesterol concentration was measured as mentioned above after 48 h post-
cytokine treatment. Bars represent means 6 SD of two independent experiments with biological quadruplicates for each experiment. *p,0.05,
**p,0.01, ***p,0.001, determined with an unpaired Student’s t test.
doi:10.1371/journal.pbio.1000598.g002
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restricted immediate-early phase. The results of these experiments

are shown in Figure 6B, in which mCMVdie3 potently develops

an equivalent level of down-regulation of sterol genes as the

parental wild-type and revertant viruses, respectively.

It is well established for many viruses, including mCMV, that

infection leads to the induced expression of type 1 interferon and

pro-inflammatory cytokines. Two signaling cascades—a virus-

induced interferon-producing signal and an interferon receptor-

mediated secondary signal—regulate the interferon system. The first

is initiated by the detection of viral components by host recognition

receptors (PRRs) and leads to the activation of transcription

factors—NFkB, ATF2/c-Jun, IRF3, and IRF7—that activate IFNa
and b genes. The expressed interferons then transmit a secondary

autocrine or paracrine signal through interactions with type I

receptors that activate the JAK-STAT pathway. In this context, the

above studies with the combined observation that interferon

treatment and the cell response to infection are equally capable of

causing a down-regulation of the sterol metabolic pathway raise the

question of whether infection-mediated regulation might result from

an interferon regulated loop. In support of this notion we find that

Figure 3. Schematic of the mevalonate-isoprenylation branch point of the sterol biosynthesis pathway. Metabolites (shown in inverse
print) and inhibitor (Simvastatin) (shown in grey) used to dissect the pathway are indicated: Simvastatin inhibits HMGCR and prevents the synthesis of
mevalonate and downstream lipids.
doi:10.1371/journal.pbio.1000598.g003

Down-Regulation of Sterol Synthesis Network by IFN
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low multiplicities of infection still exhibit a significantly reduced level

of free cholesterol (Figure S6) and that conditioned media from

infected macrophages 8 hpi (prior to release of any new viral

particles) are sufficient to down-regulate the sterol biosynthesis

pathway genes in uninfected control cultures (Figure 6C).

On the basis of temporal expression, causal inference of

candidate effectors can be tested. A search of cytokine profiles

suggested a strong correlation following IFNb synthesis, further

raising the hypothesis for a potential interferon regulatory loop

mechanism that is responsible for modulating sterol biosynthesis.

First, we investigated directly whether IFNb is responsible by

infecting BMDM from ifnb2/2 mice and examining gene

expression for representative members of the sterol pathway.

Figure 7A shows that following the genetic ablation of IFNb, there is

still statistically significant sterol gene expression reduction but that

there is a partial loss in the degree of reduction indicating that IFNb
is not absolutely necessary. It is possible that other type I IFN

members may compensate for the lack of IFNb. The redundancy

among the various type I interferons can be directly evaluated

through genetic knockout of their shared receptor, IFNAR1.

For this reason we next investigated whether the sterol response

to infection is dependent on the type I interferon receptor. To this

end, primary macrophages derived from IFNAR12/2 mice were

challenged with mCMV or IFNb, and the sterol biosynthesis gene

expression and free cholesterol levels were analyzed. As shown in

Figure 7B–D, the lack of interferon type I receptor abolished the

ability of macrophages to reduce both sterol biosynthesis gene

expression and cholesterol yield upon either infection with mCMV

or treatment with IFNb. We conclude from these experiments that

a type I interferon-dependent innate immune response stringently

regulates the metabolic alteration of the sterol biosynthesis

network observed upon infection.

Type 1 interferon has an important role in the control of

mCMV replication, and the tyrosine kinase 2 (Tyk 2) signaling

component is absolutely essential for the type I defense against

mCMV infection. Notably, the lack of Tyk2 is known to selectively

impair the transcription of only a subset of virally induced

IFNAR1 responsive genes [51]. Since this occurs at the promoter-

transcriptional level, we first asked whether the down-regulation of

the sterol pathway in response to infection also occurs at the level

of gene transcription. For this purpose and to directly measure the

level of de novo transcription of members of the sterol pathway, we

exploited a recently established labeling protocol for the isolation

and analysis of newly transcribed RNA [52]. In these experiments,

macrophages were infected with mCMV in the presence of 4-

thiouridine, for 30 min at 6 hpi, allowing efficient labeling of

nascent RNA for isolation and interrogation by microarray

analysis. Figure 8A shows that infection by mCMV results in the

anticipated reduced level of newly transcribed RNA of the sterol

biosynthetic pathway genes. Next we sought to test whether the

Tyk2 receptor-signaling component is required for the type I

interferon-dependent down-regulation of the sterol pathway. For

these experiments we used tyk22/2 macrophages and observe an

almost complete abrogation of the transcriptional down-regulation

by mCMV infection (Figure 8B). These results demonstrate a

requirement for Tyk2 in the mCMV-mediated gene down-

regulation of the sterol biosynthesis pathway and suggest a novel

role of interferon type I receptor signaling as a transcriptional

modifier of the host’s metabolic response to infection.

SREBP2 Is Down-Regulated upon Infection and IFN
Treatment by a Type I Interferon-Dependent Mechanism

The above studies strongly point to a transcriptional mechanism

in down-regulating the sterol pathway upon infection. The sterol

regulatory binding protein 2 (SREBP2) is the principal transcription

factor involved in coordinating the regulation of the sterol

biosynthesis pathway [53]. SREBP2 is synthesized as a precursor

and anchored in the endoplasmic reticulum membrane and through

limited proteolysis is activated to generate mature forms that can

enter the nucleus and interact with multiple sterol pathway genes to

coordinate their expression. Hence, in order to gain further insight

into the potential mechanism for participating in the transcriptional

down-regulation of the sterol pathway, we investigated in the first

instance the protein levels of activated cleaved forms of SREBP2

Figure 4. Effect of statins on mCMV growth in vitro and in vivo.
(A) NIH/3T3 cells were infected with mCMV-GFP (MOI of 0.2) and
subsequently treated with varying concentrations of Simvastatin or
Gancyclovir immediately after infection. GFP expression was measured
to monitor the level of infection (Materials and Methods). Graph
represents the percentage of viral inhibition as a function of drug
treatment. Data points represent mean 6 SD of two independent
experiments with six biological replicates for each experiment. (B) Mice
were fed with simvastatin (50 mg/kg/mice) daily for 5 d by gavages and
at day 1 post-treatment, were challenged with 26106 PFU of mCMV by
intraperitoneal injection, and sacrificed; at 4 dpi, viral titers in different
organs were measured by plaque assay and are expressed per gram of
tissue. Data points represent mean 6 SD of two independent
experiments with five mice per group for each experiment. *p,0.05,
**p,0.01, ***p,0.001, determined with a Mann-Whitney U test.
doi:10.1371/journal.pbio.1000598.g004
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Figure 5. Metabolic investigation of the sterol pathway in infection. (A) NIH/3T3 cells were infected with mCMV-GFP (MOI of 0.2) and
subsequently treated with Simvastatin (SMV) (2.5 mM) and mevalonate (MEV) (300 mM) or geranylgeraniol (GGOH) (15 mM) or farnesol (FOH) (15 mM)
or squalene (SQE) (15 mM) or of water soluble cholesterol (complexes of cholesterol with methyl-b-cyclodextrin, CHO/MCD) (5 mg/ml) for 72 h. The
level of infection was determined by measuring GFP fluorescence at 76 hpi (Material and Methods). Graph represents the relative level of infection
compared to the untreated cells, and bars represent mean values 6 SD of three independent experiments with five biological replicates for each
experiment. (B) NIH/3T3 cells were transfected for 48 h with either non-targeted, eGFP, Hmgcs1, Hmgcr, Sqle, Fdft1, or Dhcr7 On-target plus siRNA
smart pool and then infected with mCMV-GFP (MOI of 0.2). (C) NIH/3T3 cells were transfected for 48 h with either Risc Free, M54, and M86 (knocking
down mCMV viral genes), Hmgcr, Dhcr7, Fdps, Fntb, Pggt1b, or Rabggtb On-target plus siRNA smart pool, and then infected with mCMV-GFP (MOI of
0.2). The level of non-targeted siRNA (B) and Risc Free (C) treated cells was used as a baseline estimate for the cutoff point (two standard deviations
and a p value ,0.001 (determined with an unpaired Student’s t test) as significant). Bars represent means 6 SD of two independent experiments with
three biological replicates for each experiment. (D) NIH/3T3 cells were incubated with various doses of IFNb for 18 h in the presence or absence of 15
and 150 mM GGOH. The graph represents the inhibition of viral replication (in percentages) as a function of drug concentration. Bars represent mean
6 SD of biological triplicates for each experiment. *p,0.05, **p,0.01, ***p,0.001, determined with an unpaired Student’s t test.
doi:10.1371/journal.pbio.1000598.g005
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upon infection and interferon treatment. Accordingly, we next

performed Western blot experiments to determine levels of mature

form of SREBP2. In these experiments, infection of macrophages

with mCMV at 24 hpi developed a significant decrease in the

nuclear form (Figure 9A). Furthermore, treatment of macrophages

with either IFNb or IFNc clearly exhibits a decrease in SREBP2

levels (Figure 9A). We next sought to examine whether this is also

seen at the level of transcription. In experiments measuring de novo

RNA synthesis, we observed a specific transcriptional reduction

from the Srebf2 gene upon infection while increased levels of

transcription are seen for interferon-associated transcription factor

Stat1 (Figure 9B), indicating a selective transcriptional basis for the

reduced levels of expression. Markedly, the reduction in RNA levels

upon infection was completely reversed upon genetic ablation of the

ifnar1 gene (Figure 9C). Altogether these results demonstrate a

coordinate reduction in SREBP2 at both the protein and RNA

expression level upon infection, which is tightly dependent on

activation of the type 1 interferon receptor.

Discussion

Through the application of a pathway biology strategy

integrating genomic, lipidomic, and biochemical approaches with

bioinformatics, we show, for the first time, the coupling of the type

I interferon response upon viral infection to the sterol pathway and

identify the mevalonate-isoprenoid arm as playing a pivotal role in

antiviral functions. A definitive link to sterol metabolism that is

independent of cholesterol is established by the observation that

the anti-viral effect of down-regulating the sterol pathway upon

infection is completely blocked if cells are provided with an excess

of mevalonate but not cholesterol. Furthermore, the anti-viral

potency of type 1 interferon is severely diminished in the presence

of excess geranylgeraniol metabolite, highlighting a requirement of

the mevalonate-isoprenoid branch as part of an interferon

mechanism for protecting against infection. Further on the basis

of genetic elimination studies we unequivocally document a

molecular dependency between sterol biosynthesis and interferon

signaling upon infection, leading to a modest but highly significant

coordinate decrease in gene expression, which subsequently causes

a marked alteration in the metabolic activity of the sterol pathway.

A Two-Step Immune-Signaling Cascade Involved in
Regulating Sterol Biosynthesis upon Infection

Our results are consistent with a model involving a two-step

interferon response for modulating endogenous sterol pathway

activity upon infection. Figure 10 illustrates the two signaling

cascades, a virus-induced interferon-producing signal and an

interferon receptor-mediated secondary signal. The first is initiated

by the detection of virion proteins and nucleic acids by host

recognition receptors with the result of the infected cell producing

type I interferon. As part of the second step all type I interferons

bind to one common receptor (IFNAR1). The IFN-a/b receptor

(IFNAR1) signals through the JAK/STAT pathway by phosphor-

ylation of the Janus kinase (JAK)1, tyrosine kinase (Tyk)2, and signal

transducer and activator of transcription (STAT)1 and STAT2,

which subsequently modulates a diverse array of genes. In the case

of mCMV the first step has been extensively investigated and shown

to involve TLR2, TLR3, and TLR9 recognition receptors [54,55],

whose activation leads to the induction of transcription factors,

NFkB, ATF2/c-Jun, and IRF3 that directly activate IFNa and b
genes. Interestingly, previous studies [5,37] have shown that

microbial activation of TLR3 or TLR4 inhibits by an as-yet

unknown mechanism LXR target genes such as ABCA1, resulting

in the inhibition of cholesterol efflux from macrophages. This is

reported to occur in a type I interferon-independent manner [5].

Similar to microbial-mediated TLR activation of IRF3, many

viruses including mCMV potently induce IRF3 and may also have

the potential to inhibit LXR functions. Despite recent progress in

the definition of links between intracellular cholesterol homeostasis

and innate immunity, little is known regarding the influence of

interferon-regulated signaling on this phenomenon.

In the present study, we demonstrate that transcriptional

regulation of the cellular sterol biosynthesis pathway upon

infection has an impact on viral replication and depends on an

interferon-regulated loop involving type 1 interferon signaling.

Specifically, we show that infection of cells by a wide range of

viruses or direct interferon stimulation is accompanied by the

down-regulation of sterol biosynthesis as a result of reducing the

rate of sterol gene transcription. In the context of ligand-activation

of the type I receptor, we also demonstrate that this requires the

Tyk2 signaling component (Figure 10).

In the context of type I interferon genes induced upon infection, it

is worth noting that viperin, a type I interferon-regulated gene, is

involved in cellular defense against a number of viruses and functions

to disrupt cholesterol-rich lipid rafts that are used as viral production

sites in the cell [34,38,56]. In addition, an intracellular interaction of

viperin with Fdps, an enzyme essential for isoprenoid biosynthesis

(Figure 3), has been reported to lower, by a small extent, the activity of

the enzyme [38]. It is not known whether targeting Fdps enzyme

activity alone is an effective anti-viral mechanism, although the RNAi

targeting results of Figure 5 (panel C) suggest that this may be a

plausible mechanism (Figure 5C). However, it is more likely that a

combination of interferon-mediated transcriptional down-regulation

of the sterol biosynthesis genes and the potential enzymatic protein

modification at the isoprenoid branch point represents a concerted

anti-viral host defense mechanism.

Coordinate Transcriptional Regulation of Sterol Pathway
Members

From a transcriptional perspective, the sterol biosynthesis

pathway genes are co-ordinately controlled by the sterol regulatory

Figure 6. Alteration of gene expression upon HSV1, SFV, VV, adenovirus, and non-infectious mCMV in primary macrophages. (A)
Heat map of expression levels of a set of genes after 24 h mock treatment, infection with Herpes simplex virus 1 (HSV1), Semliki forest virus (SFV),
Vaccinia virus (VV), or Adenovirus (Ad) in BMDM (Text S1). Genes represent the innate immunity activation, the MHC class II antigen presentation, and
the cholesterol and unsaturated fatty acids biosynthesis. Each square represents a single biological replicate. Fold changes of expression levels are
represented on a Log2 scale compared to mock-treated cells, ranging from a 0.46 lower expression (dark blue) to a 1.66higher expression (bright
yellow). (B) Expression analysis measured by qRT-PCR of Hmgcs1, Hmgcr, Idi1, and Sqle genes in BMDM after 24 h mock treatment, mCMV, or
mCMVdie3 infection, respectively. Graphs show the level of expression of the indicated genes relative to mock-treated samples and bars represent
mean 6 SD of two independent experiments with triplicate biological measurements for each experiment. (C) BMDM were infected with mCMV or
mock treated, and supernatant was collected after 8 h and directly added to fresh BMDM. After 24 h, RNA from these cultures was collected and
Hmgcs1, Hmgcr, and Sqle expression were measured by qRT-PCR. To test for the presence of any detectable virus, an aliquot of the supernatant was
used to perform a standard plaque assay (no infectious virus detected, unpublished data). Graphs show the level of expression of the indicated genes
relative to mock-treated samples and bars represent means 6 SD of three independent experiments with triplicate biological measurements for each
experiment. *p,0.05, **p,0.01, ***p,0.001, determined with an unpaired Student’s t test.
doi:10.1371/journal.pbio.1000598.g006
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element binding protein 2 transcription factor (SREBP2).

Significantly, we find in our system that the overall abundance

of the mature protein (the proteolytically cleaved active form) and

the rate of gene transcription of its gene are significantly reduced

upon infection or interferon treatment. Significantly, both are

strictly dependent on the presence and activation of the type 1

interferon receptor Ifnar1. These findings suggest that a possible

mechanism for the coordinate down-regulation of sterol biosyn-

thesis is by interferon regulation of Srebf2. Interestingly and

consistent with the possibility of interferon regulating Srebf2,

chemical inhibition of SREBP2 has been shown to inhibit HCV

replicon activity [32]. This would also support the view of

Figure 7. Contribution of type I interferon response in the regulation of sterol biosynthesis genes upon infection. (A–C) Wild type
BMDM or BMDM from IFNb2/2 knockout mice or from IFNAR12/2 knockout mice were mock treated, infected with mCMV, or treated with IFNb
(10 U/ml) for 24 h. RNA was collected and the gene expression of Hmgcs1, Hmgcr, Idi1, and Sqle was measured by qRT-PCR. Graphs show the level of
expression of the indicated genes relative to mock-treated samples. Bars represent the mean 6 SD of biological quadruplicates. (D) Wild type BMDM
or BMDM from IFNAR12/2 knockout mice were infected with mCMV or treated with IFNb (10 U/ml). After 48 h, free cholesterol concentration was
measured by enzymatic assay (Materials and Methods). Bars represent the mean 6 SD of biological quadruplicates. *p,0.05, **p,0.01, ***p,0.001,
determined with an unpaired Student’s t test.
doi:10.1371/journal.pbio.1000598.g007
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implicating negative feedback on SREBP-2 via oxysterol metab-

olites. Further studies are required to elucidate more precisely the

mechanism or mechanisms by which interferon mediates down-

regulation of the sterol biosynthesis pathway. Whatever the

mechanism, the IFN-dependent coupling of the mevalonate-sterol

metabolic network and anti-viral activity represents a previously

unrecognized mechanism in the regulation of protective immunity.

From an immune response and metabolic/pharmacological

perspective, modulating cholesterol biosynthesis via small, coordi-

nate transcriptional changes offers advantages and disadvantages

over single enzyme control. At the homeostatic level, coordinate

control of a metabolic pathway could potentially increase the

robustness of modulation; the redundant rate-limiting interactions,

downstream of the true rate-limiting interaction, can protect the

pathway from surges in the levels of downstream metabolites.

Coordinate control also increases the specificity of the pathway

modulation as a small reduction of the enzyme level in an

interaction ensures that the level of the interacting metabolite need

not drop as far to affect a reduction in flux. This has the advantage

of potentially lessening the impact on other branched or cross-

linked pathways that use the same metabolites and thus provides a

high degree of pathway specificity.

Figure 8. Measurement of de novo mRNA synthesis of sterol biosynthesis genes upon viral infection. Wild Type or Tyk22/2 BMDM were
infected with mCMV at an MOI of 1 for 1 h. De novo RNA was labeled between 360 and 390 min post-infection, isolated, and hybridized to Affymetrix
Gene 1.0 ST microarrays (Materials and Methods). After scanning and data capture, gene expression in mock-infected or infected cells was analyzed,
and for the purposes of presentation, gene expression values from control (mock infected) BMDM (black) were adjusted to a value of 1. Values for
expression in infected cells (white) were then expressed as a number relative to the control.
doi:10.1371/journal.pbio.1000598.g008
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Therapeutic Perspective
Several viruses including human CMV have been reported to

be sensitive to statin administration [25,26,28–31]. Although the

mechanism of action of most is not known, it has in some cases

been correlated with a lower abundance of cholesterol in lipid rafts

of cell membranes. A recognized potential complicating factor of

using statins to specifically reduce cholesterol levels is that

suppression of the proximal mevalonate arm also perturbs the

synthesis of branch derivatives such as geranylgeraniol and

farnesol involved in the protein farnesylation and prenylation

pathways. In the case of HCV, the mechanisms of the inhibitory

effects of the statins have been examined extensively and have

been shown to relate to the prenylation of a host protein (FLB2)

essential for viral replication [18,57]. Recently a combination

chemical screening study has been conducted to explore how the

sterol and protein prenylation pathways work together to affect

HCV in a replicon assay [32]. In agreement with those studies we

also find reduced mCMV growth in siRNA knock-down

experiments targeting enzymes in the isoprenod biosynthesis

pathway. These studies indicate the importance of the geranylger-

anylation to viral replication. Although, it is worth noting that the

isoprenoid biosynthesis pathway is highly complicated with

multiple branch points involving redundant enzymatic steps,

sharing of subunits, and competing reactions. In our current study,

we uncoupled the cholesterol synthesis pathway from non-steroidal

modifications through targeted metabolic rescue and siRNA

knock-down studies of mCMV and reveal an absolute requirement

for the prenylation branch of the sterol pathway for mediating

anti-viral effects. As further indicated from computational

modeling work (unpublished data), targeting HMGCR is likely

to have a broad range of non-specific effects on various efferent

branch points of the pathway and thus may well not be ideal for

anti-infective therapy. In addition, statins are also known to have a

range of immune-modulatory activities by mechanisms yet to be

fully characterized. In this context, it is worth noting that the

activity of the type I interferons, especially IFNb, have

considerable overlap with many of the immune-related activities

of statins [58]. Moreover, it is especially noteworthy that IFNb
treatment in patients has also been reported to have decreased

plasma cholesterol levels [59,60]. Since our studies uncover a

Figure 9. Regulation of SREBP2 by mCMV infection and IFNb treatment. (A) Comparison of cleaved SREBP2 protein in mock-infected (lane
1), mCMV-infected (MOI of 1) (lane 2), mock-treated (lane 3), IFNb- (50 U/ml) (lane 4), or IFNc- (50 U/ml) treated (lane 5) BMDM for 24 h by Western
blot analysis using YY1 as a loading control. Arrow indicates SREBP2 cleaved form that is induced upon lovastatin and ezetimibe treatment from liver
extracts of cholesterol-fed mice (see Figure S8). The blot is representative of two independent experiments with biological triplicates for each
experiment. (B) Wild type BMDM were infected with mCMV for 1 h. De novo RNA was labeled between 360 and 390 min post-infection, isolated, and
hybridized to Affymetrix Gene 1.0 ST microarrays (Materials and Methods). After scanning and data capture, gene expression in mock-infected or
infected cells was analyzed, and for the purposes of presentation, Srebf2 gene expression values from control (mock-infected) BMDM (black) were
adjusted to a value of 1. Values for expression in infected cells (white) were then expressed as a number relative to the control. (C) BMDM from wild
type or IFNAR12/2 knockout mice were treated with 10 U/ml of IFNb or infected with mCMV. After 24 h, RNA was collected and the gene expression
of Srebf2 was measured by qRT-PCR. Results show the level of gene expression of the treated or infected samples relative to the mock-treated
samples. Bars represent the mean 6 SD of biological quadruplicates. *p,0.05, **p,0.01, ***p,0.001, determined with an unpaired Student’s t test.
doi:10.1371/journal.pbio.1000598.g009
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molecular dependency of type 1 signaling, including a Tyk2

signaling component, this may provide an entirely new therapeutic

pathway for lowering cholesterol. Moreover, our findings may

have important implications for the development of broadly active

new adjuvant strategies (e.g., the use of inhibitors of SREBP2

activity) to existing anti-infective therapies (e.g., antiviral drugs

such as ganciclovir). On this basis we posit the principal of using

metabolic modifiers, i.e. drugs that target metabolic pathways, of

protective innate immunity as holding future promise for

developing host-directed anti-viral therapies. Overall, this study

supports the original concept [40,41] of selectively targeting host

pathways as an efficacious anti-infective strategy.

Materials and Methods

Microarray Experiment, Bioinformatic Analysis
Microarray analysis of the time course experiments of infected

and interferon treated macrophages were conducted using Agilent

microarray platform and a detailed description of the experimental

set up; statistical and bioinformatics analysis is in the Supporting

Information section. All other microarray studies were conducted

using Affymetrix (Mouse Genome 430) microarray platform. Data

from hybridized Affymetrix microarrays were acquired using

proprietary Affymetrix platform scanners and GCOS software

(Affymetrix). Processed CEL files were imported into Partek

Genomics SuiteTM (MO, USA), then background corrected,

quantile normalized, and probe-set summarized using the RMA

algorithm [61,62]. A non-specific filter was applied to remove

genes that were not expressed on any of the samples across the

experiment. Microarray signals were then per-gene normalized to

the average of the three mock samples (which was set to a value of

1) for visualization purposes in the heat map for Figure 6. In the

case of de novo RNA expression, analysis was performed using the

Affymetrix Mouse Gene 1.0 ST arrays, consisting of a total of eight

chips and three experiment factors: time (60–90 min, 360–

390 min), genetic background (Tyk2KO, WT), and treatment

(mock, mCMV). Data from hybridized chips were acquired using

GCOS software (Affymetrix). Prior to further processing and

analysis with the R statistical programming environment,

Affymetrix Power Tools (APT, Affymetrix) were used to

summaries and annotate chip data to gene level. After initial

quality control assessment, data were background-corrected,

quantile normalized, and probe-set summarized using the RMA

algorithm.

Mice BMDM Cultures
Wild type C57BL/6 and BALBc were from the Biomedical

Research Resources, Little France, University of Edinburgh.

IFNb2/2 and Tyk22/2 mice were from the Institute of Animal

Breeding and Genetics Veterinary University of Vienna. BMDM

were derived from monocytes obtained from femurs of male mice

aged 10 to 12 wk. Cells were grown in DMEM-F12 media

supplemented with 10% L929 cell-conditioned medium as a

source of macrophage colony-stimulating factor (M-CSF) for 7 d

as described [63]. Characterization of BMDM was performed by

standard flow cytometry, evaluating the presence of the F4/80

marker and CD11b surface protein. In average of all experiments

more than 93% of cells possessed both proteins.

Viruses
The mouse CMV C3X strain, generated from the recombinant

C3X bacterial artificial chromosome clone and originally derived

for the Smith strain of mCMV [64], was propagated in NIH 3T3

cells, and titers were determined by standard plaque assay on

MEFp532/2. For live cell assay, NIH/3T3s were infected with a

recombinant mCMV expressing the green fluorescent protein

(GFP) marker inserted in front of the ie2 gene (pSM3fr-rev, called

mCMV-GFP in this study [65]). Viral growth curves comparing

wild type and GFP virus were assessed by standard plaque assay,

and the results showed no differences between the growth curve of

the two viruses (unpublished data). To establish the role of viral

gene expression in the regulation of sterol genes, the mCMVdie3

strain was used [50]. For the microarray experiment, Semliki

Forest Virus (SFV, MOI of 10), Herpes simplex virus type 1

(HSV1, MOI of 1), Vaccinia virus (VV, MOI of 1), and

Adenovirus (Ad, MOI of 100) were used to infect BMDM for

1 h in DMEM:F12 3% FCS, 10% L929, and 100 U of penicillin/

streptomycin per ml.

Infection
BMDM and NIH/3T3 were infected with the different viruses

at an MOI of 1, unless specified. For BMDM, viral stock was

diluted in DMEM:F12 3% FCS, 10% L929, and 100 U of

penicillin/streptomycin per ml, and after 1 h adsorption, cells

were washed in PBS and incubated in fresh DMEM:F12 10%

Figure 10. Proposed model for down-regulation of the sterol
synthesis by type I interferon response to viral infection.
doi:10.1371/journal.pbio.1000598.g010
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FCS, 10% L929, and 100 U of penicillin/streptomycin per ml.

For NIH/3T3 viral stock was diluted in DMEM 3% CS and

100 U of penicillin/streptomycin per ml, and after 1 h adsorption,

cells were washed in PBS and incubated in fresh DMEM:F12 10%

CS and 100 U of penicillin/streptomycin per ml. SFV (MOI of

10), HSV1 (MOI = 1), VV (MOI of 1), and Ad (MOI of 100) were

used to infect BMDM for 1 h in DMEM:F12 3% FCS, 10% L929,

and 100 U of penicillin/streptomycin per ml.

Cytokines and Pharmacological Treatments
IFNc (Boehringer Manheim Corp), IFNb, IL6, TNF, and IL1b

(Biosource International, USA) stock were dissolved in PBS

supplemented with 0.2% BSA and diluted in fresh media just

prior to the experiment. The effect of cytokine treatment on cell

viability was tested for each concentration used in the experiment

and did not show any alteration of viability. For the pharmaco-

logical experiment, 25 mg of simvastatin (Sigma-Aldrich) was

activated by hydrolysis of the lactone by adding 1 ml of 0.1 N

NaOH, 100% ethanol. After heating at 50uC for 2 h, the solution

was neutralized with HCl to a pH of <7.2 and sterilized by

filtration through a 0.2 mm filter. The stock solution was diluted to

the appropriate concentration in sterile PBS and the solution was

aliquoted, stored at 220uC, and used within a month of

activation. Mevalonate and water soluble cholesterol (Sigma-

Aldrich, Germany) was resuspended in media to the appropriate

concentration and sterilized by filtration through a 0.2 mm filter.

Geranylgeraniol and farnesol squalene (Sigma-Aldrich, Germany)

stocks were dissolved in DMSO and sterilized by filtration through

a 0.2 mm filter. The stock solutions were dissolved in media at the

appropriate concentration just prior to the experiment. The final

concentration of DMSO in media did not exceed 0.1%. Effects of

sterol intermediates treatment on the cell were tested for each

concentration used in the experiment and did not show any

alteration of viability. Gancyclovir (Cymevene, Hoffman-La

Roche, UK) was resuspended in saline solution and sterilized by

filtration through a 0.2 mm filter. Gancyclovir was then diluted in

media, to the indicated concentration.

Quantitative RT-PCR
Taqman Primer probe sets were purchased from Applied

Biosystems, Warrington, UK (Assay ID: Hmgcs1: Mm00524111-

m1; Hmgcr: Mm01282499-m1; Idi1: Mm00836417-g1; Sqle:

Mm00436772-A1). For each sample QRT-PCR was performed in

20 ml volumes using MicroAmp Optical 96-well reaction plates

and MicroAmp Optical Caps (Applied Biosystems). Two micro-

liters of diluted RNA samples (<100 ng of RNA) were added to

10 ml of 26PCR master mix, 1 ml of a Taqman primer/probe set

(Applied Biosystems, CA) for the gene of interest at the

recommended concentration, 0.25 ml of Superscript III (Applied

Biosystems, CA), and 6.25 ml of double-distilled H20. After an

initial incubation at 50uC for 30 s to activate the RNA

polymerase, samples were then subject to 40 cycles under Taqman

standard conditions (combined annealing and primer extension

phase at 60uC for 1 min and a short denaturation at 72uC for

30 s). Stratagene MXPro software was then used to analyze the

data. Threshold determinations were automatically performed by

the instrument for each reaction. The CT values were exported

into Microsoft Excel and relative quantification of marker gene

mRNA expression was calculated with the comparative CT

method [66].

Western Blot Analysis
BMDM cells were washed with PBS and resuspended in whole-

cell lysis buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1%

NP40, protease inhibitors, and phosphatase inhibitors), and cell

lysates were centrifuged at 4uC for 10 min and the collected

supernatants were stored at 220uC. Protein concentration was

measured by Pierce BCA assay (Thermo Scientific). For Western

blotting, proteins were separated by SDS-PAGE, transferred to

Immobilon-FL membranes (Millipore), and probed with goat anti-

HMGCR (Santa Cruz, sc-27578, 1:500), goat anti-SQLE (Santa

Cruz, sc-49754, 1:500), anti-HMGCS1 (Santa Cruz, Sc-32422,

1:500), mouse anti-mCMV IE1 (Chroma 101, 1:1000), and rabbit

anti-b-actin (Cell Signalling, 4970, 1:2500) diluted in PBST (0.1%

Tween20). For secondary anti-goat IR-680 (Invitrogen, A21088,

1:10,000), IR-800 anti-mouse (Thermo Fisher Scientific, 35571,

1:10,000), and IR-800 anti-rabbit (Cell Signalling, 5151, 1:10,000),

antibodies were diluted in Odyssey blocking buffer (0.1%

Tween20, 0.01% SDS). For probing, visualization, and quantifi-

cation, the Odyssey protocol (LI-COR) was followed. The

fluorescence was quantified by Odyssey system (Li-COR). For

details of anti-mouse SREBP-2 polyclonal antibody (custom

antibody raised against mature SREBP-2 form [67]) and

immunoblot procedures, see Text S1.

Measurement of Free Cholesterol Concentration by
Enzymatic Assay

Intracellular cholesterol concentration was determined enzy-

matically using the Amplex-Red cholesterol Assay Kit (Molecular

Probes) according to manufacturer recommendations. Briefly, cells

were washed with 1 ml ice-cold PBS and then lysed in 200 ml cold

Lipid buffer containing 0.5 M of potassium phosphate, pH 7.4,

0.25 mM cholic acid, and 0.5% triton X-100. Cell lysates were

sonicated on ice with three 10-s pulses at high intensity. 20 ml were

then used to determine protein concentration using a standard

BCA assay to normalize the protein concentration. For cholesterol

measurement, 20 ml of each sample were added to the 80 ml assay

solution, which contained 300 mM Amplex Red reagent, 2 U per

ml HRP and 2 U per ml cholesterol oxidase, 0.1 M of potassium

phosphate, pH 7.4, 0.05 mM cholic acid, and 0.1% triton X-100.

After preincubation for 30 min at 37uC under light exclusion

conditions, fluorescence was measured using excitation at

53062.5 nm and fluorescence detection at 59062.5 nm with a

Polarstar Optima Multifunciton Microplate Reader (BMG

Labtech, UK). The values were corrected from the background.

The relative amount of free cholesterol to the mock-treated

samples was calculated using the manufacturer’s supplied standard

curve.

Analysis of Lipids Using High-Performance Liquid
Chromatography/Mass Spectrometry and Electrospray
Ionization

An Agilent high-performance liquid chromatography (HPLC)

system coupled with an Applied Biosystem Triple Quadrupole/

Ion Trap mass spectrometer (4000Qtrap) was used for quantifi-

cation of individual polar lipids (Phospholipids and sphingolipids).

Electrospray ionization-based multiple reaction monitoring

(MRM) transitions were set up for the quantitative analysis of

various polar lipids [68]. HPLC atmosphere chemical ionization/

MS were carried out for analysis of sterols [69].

Live Cell Replication Assay
To measure the effect of multiple drugs and siRNA transfection

on viral growth, a sensitive live cell infection assay was developed

using the properties of the mCMV GFP tagged virus. 1.56104

NIH/3T3 cells were infected for 1 h in black 96-well plates

(Costar, UK) at an MOI of 0.2 in 25 ml of fresh DMEM phenol
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red-free media, 3% CS, and 100 U of penicillin/streptomycin per

ml. After infection, the inoculums were carefully removed by

pipetting and replaced by 150 ml of DMEM phenol red-free media

with 10% FCS. Viral growth was measured by recording the GFP

signal over time using an OPTIMA Polarstar plate reader

(excitation wave length of 485 nm and emission of 520 nm). As

an optimization step we checked the correlation between GFP

levels and MOIs. Results showed a good correlation between

multiplicity of infection and growth kinetics (Figure S4). Compar-

ing the GFP value and number of viral particles per ml using

plaque assay checked levels of GFP signal corresponding to

different levels of virus. Results (unpublished data) showed a strong

correlation between differences in levels of GFP expression and

differences in number of viral particles assessed by plaque assay: a

drop of 20% of GFP signals corresponding to a log difference in

the number of viral particles monitored by plaque assay.

Transfection and siRNA Knock-Down Assays
For transfection, siRNA (SMARTpools-ON-TARGETplus

modification) from Thermo Fisher Inc. were purchased. The

samples were supplied at a concentration of 5 mM and diluted and

aliquoted in 2 mM amounts. To transfect at a final concentration

of 20 nM per well, 1 ml of siRNA SMARTpool was used with 9 ml

of Optimem (Invitrogen, CA, USA) solution while 0.4 ml of

Dharmafect 1 (Dharmacon, Perbio Science, Bonn, Germany) was

mixed with 9.6 ml Optimem. Following incubation for 5 min, the

siRNA mix was added to the Dharmafect 1 (0.4%) mix and

incubated for a further 30 min, after which 1.56104 NIH3T3 cells

in 80 ml of DMEM 10% CS medium lacking antibiotics was added

to the siRNA:Dharmafect 1 complexes. Growth medium was

removed and cells were washed 16 in PBS before 100 ml of the

siRNA: Dharmafect 1 liposomes were added. Transfection

conditions were optimized by using siGLO RED from Thermo

Fisher Scientific (Dharmacon) as an indicator of transfection

efficiency and cell viability was assessed as described before. For

every gene targeted, the knock-down efficiency was checked by

QPCR after 48 h incubation. Each of the three genes targeted

(Hmgcs1, Hgmcr, and Idi1) were knocked down by more than 70%,

48 h after transfection (Figure S5). Knock-down efficiency and cell

viability were also checked at 5 d post-infection for the mCMV-

GFP assay, and showed no alteration of the viability and a knock-

down efficiency $50% (unpublished data).

Nascent RNA Expression Profiling of TYK22/2 mCMV
Infected Macrophages Experiment

BMDM were isolated and grown in the presence of Csf1

derived from L929 cells as described [63] except cells were

cultivated in 15 cm diameter tissue culture plates for 7 d before

treatment. Incorporation of 4-thiouridine (Sigma) into nascent

RNA was undertaken as described [52]. In brief, at 360 min post-

infection, 10 ml medium was aspirated from all plates, added to

80 ml 4-Thiouridine, mixed, and immediately returned to the

culture dish. After 30 min, to end the RNA labeling period,

terminate transcription, and lyse the cells, medium was aspirated

from the labeled BMDM and replaced with 4 ml of RLT lysis

buffer (Qiagen). Total RNA was isolated using an RNeasy Midi kit

(Qiagen) according to the manufacturer’s instructions, quantitated

using a Nanodrop (Thermo Scientific), and integrity was

confirmed using an Agilent Bioanalyser (Agilent UK). Newly

transcribed RNA (ntRNA) was then isolated as described in [52]

and again quantitated using a Nanodrop.

Processing of ntRNA samples (94 ng) for hybridization to

Affymetrix Mouse Gene 1.0 ST arrays was undertaken according

to the manufacturer’s instructions (Affymetrix). Hybridisation,

washing, staining, and scanning of the arrays were also undertaken

following standard Affymetrix protocols. For the purposes of

presentation, gene expression values for the specific genes of

interest from control (mock-infected) BMDM were adjusted to a

value of 1. Values for expression in infected cells (white) were then

expressed as a number relative to the control.

In Vivo Studies
All animal experiments had approval by the local animal ethics

committee (University of Edinburgh, Edinburgh, UK) in accor-

dance with recommendations of the Federation of European

Animal Science Association and European legislation. Twelve

mice (C57/BL6, Charles River, 12 wk of age) were randomized

into two groups of six animals each in two separate experiments.

Simvastatin was prepared as described above. The dosages of

statins used in the present investigation were chosen according to

the literature [30]. At day 1, mice were inoculated i.p. with 26106

PFU per mouse. Animals were sacrificed 4 d post-infection.

Spleen, liver, kidney, heart, and lung were harvested and sonicated

as a 10% (wt/vol) tissue homogenate, and titers were determined

by standard plaque assays, including centrifugal enhancement of

infectivity on MEFp532/2. The dashed line indicates the limit of

detection (56102 PFU/g). Horizontal bars indicate the median

values.

Statistical Analysis
Normalization, filtering, statistical hypothesis testing for micro-

array data was carried out within the R Language and

Environment for Statistical Computing (www.r-project.org), using

packages provided through the Bioconductor repository (www.

bioconductor.org). The majority of explorative analyses and

visualizations were conducted with Partek (Partek Incorporated,

USA) and GeneSpring GX (Agilent). Statistical analyses on other

data sources were performed in Microsoft Excel software. For real-

time PCR and replication assay, all graphs represent the mean 6

SD. An unpaired Student’s t test was used for evaluation of

statistical significance of real-time PCR. For in vivo experiment a

Mann-Whitney U test was used. See Text S1 for statistical analysis

of microarray experiments. Statistical significance: *p,0.05,

**p,0.01, ***p,0.001.

Supporting Information

Figure S1 Pie chart representing the percentage of lipid class

present in (A): 62 down-regulated and 133 up-regulated Lipid

Associated Genes (LAGs) upon mCMV infection, (B) 51 down-

regulated and 65 up-regulated LAGs after IFNc treatment, and

(C) 35 down-regulated and 47 up-regulated LAGs by mCMV

infection and IFNc treatment.

Found at: doi:10.1371/journal.pbio.1000598.s001 (3.83 MB TIF)

Figure S2 Concentrations of four cholesterol synthesis-related

metabolites following mCMV infection. (A–D) Concentrations of

Zymosterol, 14-demethyl-lanosterol, 7-dehydro-cholesterol, and

free cholesterol are measured from lipid extract by MRM analysis

(Materials and Methods) from BMDM following mCMV infection

(MOI of 1 at 24 and 48 hpi). Bars represent means 6 SD of

triplicates biological measurements.

Found at: doi:10.1371/journal.pbio.1000598.s002 (0.31 MB TIF)

Figure S3 Lipidomic analysis using high performance liquid

chromatography/mass spectrometry and electroscopy ionization

of mCMV infected BMDM. Lipid analysis of total glyceropho-

spholipids (phosphatidylcholine, phosphatidylserine, phosphatidyl-

ethanolamine; A) and individual species of phosphatidylcholine (B)
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and phosphatidylserine (C) (Materials and Methods). Bars

represent means 6 SD of triplicates biological measurements.

Found at: doi:10.1371/journal.pbio.1000598.s003 (6.02 MB TIF)

Figure S4 Live cell mCMV-GFP growth curve. NIH3T3 were

infected at an MOI of 0.01, 0.1, and 1 with mCMV-GFP for 1 h,

and viral inoculums were replaced by fresh media. GFP signal was

measured at a different time post-infection (Materials and

Methods).

Found at: doi:10.1371/journal.pbio.1000598.s004 (0.09 MB TIF)

Figure S5 Knock-down efficiency. NIH3T3 cells were trans-

fected with 0.4% Dharmafect 1 and 25 nm of Hmgcs1, Hmgcr, or

Idi1 SiRNA smart pool (Dharmacon). After 48 h, RNA was

collected and QPCR was performed to check gene expression for

Hmgcs1, Hmgcr, and idi1. Gapdh was used for normalization.

Hmgcs1 shows an 81% decrease in expression following

transfection, Hmgcr a 70% decrease, and Idi1 an 82% decrease.

Bars represent means 6 SD of triplicate biological measurements.

Found at: doi:10.1371/journal.pbio.1000598.s005 (1.23 MB TIF)

Figure S6 mCMV infection reduced free intra-cellular choles-

terol in a dose-dependent manner in BMDM at 48 hpi. BMDM

were infected at different MOI (0, 0.1, 0.2, 0.5, and 1) with

mCMV virus. Data are represented as the percentage of free

intracellular cholesterol concentration from infected cells in

comparison to mock treatment. Results represent means 6 SD

from two independent experiments with triplicate biological

measurements for each experiment.

Found at: doi:10.1371/journal.pbio.1000598.s006 (1.32 MB TIF)

Figure S7 Effects of various concentrations of Simvastatin on

NIH-3T3 fibroblasts cell viability. NIH-3T3 fibroblasts were

treated with various concentrations of Simvastatin or with vehicle

for 72 h. Cell viability was determined using the Cell titre blue

assay as described in Methods. Cell viability is expressed as the

percentage of fluorescence signal from treated cells compared to

untreated cells. Graphs represent the average values (6SD) of two

independent experiments with triplicate biological measurements

for each experiment.

Found at: doi:10.1371/journal.pbio.1000598.s007 (0.04 MB TIF)

Figure S8

Found at: doi:10.1371/journal.pbio.1000598.s008 Specificity of

the SREBP2 antibody. Lane 1 and 2: Nuclear extract protein

prepared from livers of mice fed chow supplemented with either a

2% cholesterol diet (CHOL) or a mixture of lovastatin and

ezetimibe were loaded as controls. Arrow indicates the specific

SREBP2 cleaved form. As a comparison, lanes 3 and 4 show

nuclear protein extracts prepared from macrophages cultured

from mock or mCMV infected. YY1 protein was used as a loading

control. (1.36 MB TIF)

Table S1 List of lipogenic associated genes (LAGs) down- (A) or

up- (B) regulated by mCMV infection or down- (C) and up- (D)

regulated by IFNc treatment.

Found at: doi:10.1371/journal.pbio.1000598.s009 (0.09 MB XLS)

Table S2 Canonical pathway analysis. Analysis was performed

using IPA from Ingenuity (www.ingenuity.com): (A) 62 down-

regulated LAGs in response to mCMV infection, (B) 133 up-

regulated LAGs in response to mCMV infection, (C) 51 down-

regulated LAGs in response to IFNc treatment, (D) 65 up-

regulated LAGs in response to IFNc treatment, (E) 35 down-

regulated LAGS in response to mCMV infection and IFNc
treatment, and (F) 47 up-regulated LAGs in response to mCMV

infection and IFNc treatment. For each table, the top 5 most

significant pathways are represented.

Found at: doi:10.1371/journal.pbio.1000598.s010 (0.02 MB XLS)

Text S1 Supporting methods. This file gives an overview of the

methods used in this article.

Found at: doi:10.1371/journal.pbio.1000598.s011 (0.13 MB

DOC)

Acknowledgments

We would like to thank Daniel M. Wall and Maire C. O’Sullivan for

experimental help, Dr. John McLauchlan and Dr. Amy Buck for advice

and helpful comments, and Marie Craigon and Andrew Livingston for

technical support.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: MB PG.

Performed the experiments: MB WYH KAR GS SRM TO. Analyzed

the data: MB WYH KAR SW GS PL MK PD GS TF RR MRW AA PG.

Contributed reagents/materials/analysis tools: PP BS MM. Wrote the

paper: MB PG.

References

1. Makowski L, Hotamisligil GS (2005) The role of fatty acid binding proteins in

metabolic syndrome and atherosclerosis. Curr Opin Lipidol 16: 543–548.

2. Lusis AJ (2000) Atherosclerosis. Nature 407: 233–241.

3. Wood DA, Butler S, Riemersma RA, Thomson M, Oliver MF, et al. (1984)

Adipose tissue and platelet fatty acids and coronary heart disease in Scottish

men. Lancet 2: 117–121.

4. Riemersma RA, Perkins D, Brown AJ, Brown J (1994) Linoleic acid and

coronary artery disease. Am J Clin Nutr 59: 949–950.

5. Castrillo A, Joseph SB, Vaidya SA, Haberland M, Fogelman AM, et al. (2003)

Crosstalk between LXR and toll-like receptor signaling mediates bacterial and

viral antagonism of cholesterol metabolism. Mol Cell 12: 805–816.

6. Zelcer N, Tontonoz P (2006) Liver X receptors as integrators of metabolic and

inflammatory signaling. J Clin Invest 116: 607–614.

7. Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, et al. (2005) Molecular

determinants of crosstalk between nuclear receptors and toll-like receptors. Cell

122: 707–721.

8. Wang S, Wu D, Lamon-Fava S, Matthan NR, Honda KL, et al. (2009) In vitro

fatty acid enrichment of macrophages alters inflammatory response and net

cholesterol accumulation. Br J Nutr 102: 497–501.

9. Yvan-Charvet L, Wang N, Tall AR (2010) Role of HDL, ABCA1, and ABCG1

transporters in cholesterol efflux and immune responses. Arterioscler Thromb

Vasc Biol 30: 139–143.

10. Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, et al.

(2009) 25-Hydroxycholesterol secreted by macrophages in response to Toll-like

receptor activation suppresses immunoglobulin A production. Proc Natl Acad

Sci U S A 106: 16764–16769.

11. Zhu X, Lee JY, Timmins JM, Brown JM, Boudyguina E, et al. (2008)

Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice

enhances pro-inflammatory response of macrophages. J Biol Chem 283:

22930–22941.

12. Haas MJ, Mooradian AD (2010) Regulation of high-density lipoprotein by

inflammatory cytokines: establishing links between immune dysfunction and

cardiovascular disease. Diabetes Metab Res Rev.

13. Maitra U, Parks JS, Li L (2009) An innate immunity signaling process suppresses

macrophage ABCA1 expression through IRAK-1-mediated downregulation of

retinoic acid receptor alpha and NFATc2. Mol Cell Biol 29: 5989–5997.

14. Gerbod-Giannone MC, Li Y, Holleboom A, Han S, Hsu LC, et al. (2006)

TNFalpha induces ABCA1 through NF-kappaB in macrophages and in

phagocytes ingesting apoptotic cells. Proc Natl Acad Sci U S A 103: 3112–3117.

15. Eguchi J, Yan QW, Schones DE, Kamal M, Hsu CH, et al. (2008) Interferon

regulatory factors are transcriptional regulators of adipogenesis. Cell Metab 7:

86–94.

16. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, et al. (2008) Systems-level

metabolic flux profiling identifies fatty acid synthesis as a target for antiviral

therapy. Nat Biotechnol 26: 1179–1186.

17. Kapadia SB, Barth H, Baumert T, McKeating JA, Chisari FV (2007) Initiation

of hepatitis C virus infection is dependent on cholesterol and cooperativity

between CD81 and scavenger receptor B type I. J Virol 81: 374–383.

Down-Regulation of Sterol Synthesis Network by IFN

PLoS Biology | www.plosbiology.org 18 March 2011 | Volume 9 | Issue 3 | e1000598



18. Wang C, Gale M, Jr., Keller BC, Huang H, Brown MS, et al. (2005)

Identification of FBL2 as a geranylgeranylated cellular protein required for
hepatitis C virus RNA replication. Mol Cell 18: 425–434.

19. Ye J, Wang C, Sumpter R, Jr., Brown MS, Goldstein JL, et al. (2003) Disruption

of hepatitis C virus RNA replication through inhibition of host protein
geranylgeranylation. Proc Natl Acad Sci U S A 100: 15865–15870.

20. Park CY, Jun HJ, Wakita T, Cheong JH, Hwang SB (2009) Hepatitis C virus
nonstructural 4B protein modulates sterol regulatory element-binding protein

signaling via the AKT pathway. J Biol Chem 284: 9237–9246.

21. Robinzon S, Dafa-Berger A, Dyer MD, Paeper B, Proll SC, et al. (2009)
Impaired cholesterol biosynthesis in a neuronal cell line persistently infected with

measles virus. J Virol 83: 5495–5504.
22. Zheng YH, Plemenitas A, Fielding CJ, Peterlin BM (2003) Nef increases the

synthesis of and transports cholesterol to lipid rafts and HIV-1 progeny virions.
Proc Natl Acad Sci U S A 100: 8460–8465.

23. Mackenzie JM, Khromykh AA, Parton RG (2007) Cholesterol manipulation by

West Nile virus perturbs the cellular immune response. Cell Host Microbe 2:
229–239.

24. Rothwell C, Lebreton A, Young Ng C, Lim JY, Liu W, et al. (2009) Cholesterol
biosynthesis modulation regulates dengue viral replication. Virology 389: 8–19.

25. Mohan KV, Muller J, Atreya CD (2008) Defective rotavirus particle assembly in

lovastatin-treated MA104 cells. Arch Virol 153: 2283–2290.
26. Bader T, Fazili J, Madhoun M, Aston C, Hughes D, et al. (2008) Fluvastatin

inhibits hepatitis C replication in humans. Am J Gastroenterol 103: 1383–1389.
27. Liu S, Rodriguez AV, Tosteson MT (2006) Role of simvastatin and methyl-beta-

cyclodextrin [corrected] on inhibition of poliovirus infection. Biochem Biophys
Res Commun 347: 51–59.

28. Cohen JI (2005) HMG CoA reductase inhibitors (statins) to treat Epstein-Barr

virus-driven lymphoma. Br J Cancer 92: 1593–1598.
29. del Real G, Jimenez-Baranda S, Mira E, Lacalle RA, Lucas P, et al. (2004)

Statins inhibit HIV-1 infection by down-regulating Rho activity. J Exp Med 200:
541–547.

30. Gower TL, Graham BS (2001) Antiviral activity of lovastatin against respiratory

syncytial virus in vivo and in vitro. Antimicrob Agents Chemother 45:
1231–1237.

31. Potena L, Frascaroli G, Grigioni F, Lazzarotto T, Magnani G, et al. (2004)
Hydroxymethyl-glutaryl coenzyme a reductase inhibition limits cytomegalovirus

infection in human endothelial cells. Circulation 109: 532–536.
32. Owens CM, Mawhinney C, Grenier JM, Altmeyer R, Lee MS, et al. Chemical

combinations elucidate pathway interactions and regulation relevant to Hepatitis

C replication. Mol Syst Biol 6: 375.
33. Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by

PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18: 461–467.
34. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease.

N Engl J Med 352: 1685–1695.

35. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, et al. (2001) A PPAR
gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux

and atherogenesis. Mol Cell 7: 161–171.
36. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters KA, et al. Temporal

proteome and lipidome profiles reveal hepatitis C virus-associated reprogram-
ming of hepatocellular metabolism and bioenergetics. PLoS Pathog 6: e1000719.

doi:10.1371/journal.ppat.1000719.

37. Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, et al. (2004) LXR-
dependent gene expression is important for macrophage survival and the innate

immune response. Cell 119: 299–309.
38. Wang X, Hinson ER, Cresswell P (2007) The interferon-inducible protein

viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host

Microbe 2: 96–105.
39. Hinson ER, Cresswell P (2009) The antiviral protein, viperin, localizes to lipid

droplets via its N-terminal amphipathic alpha-helix. Proc Natl Acad Sci U S A
106: 20452–20457.

40. Ghazal P, Gonzalez Armas JC, Garcia-Ramirez JJ, Kurz S, Angulo A (2000)

Viruses: hostages to the cell. Virology 275: 233–237.
41. Fruh K, Simmen K, Luukkonen BG, Bell YC, Ghazal P (2001) Virogenomics: a

novel approach to antiviral drug discovery. Drug Discov Today 6: 621–627.
42. Wenk MR (2006) Lipidomics of host-pathogen interactions. FEBS Lett 580:

5541–5551.
43. Reddehase MJ, Podlech J, Grzimek NK (2002) Mouse models of cytomegalo-

virus latency: overview. J Clin Virol 25(Suppl 2): S23–S36.

44. Brautigam AR, Dutko FJ, Olding LB, Oldstone MB (1979) Pathogenesis of
murine cytomegalovirus infection: the macrophage as a permissive cell for

cytomegalovirus infection, replication and latency. J Gen Virol 44: 349–359.

45. Selgrade MK, Osborn JE (1974) Role of macrophages in resistance to murine

cytomegalovirus. Infect Immun 10: 1383–1390.
46. Davies P (1976) Essential role of macrophages in chronic inflammatory

processes. Schweiz Med Wochenschr 106: 1351–1354.

47. Valyi-Nagy T, Bandi Z, Boldogh I, Albrecht T (1988) Hydrolysis of inositol
lipids: an early signal of human cytomegalovirus infection. Arch Virol 101:

199–207.
48. Ishida F, Sato A, Iizuka Y, Kamei T (1989) Inhibition of acyl coenzyme A:

cholesterol acyltransferase by 3-hydroxy-3-methylglutaryl coenzyme A reductase

inhibitors. Chem Pharm Bull (Tokyo) 37: 1635–1636.
49. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature

343: 425–430.
50. Ghazal P, Messerle M, Osborn K, Angulo A (2003) An essential role of the

enhancer for murine cytomegalovirus in vivo growth and pathogenesis. J Virol
77: 3217–3228.

51. Strobl B, Bubic I, Bruns U, Steinborn R, Lajko R, et al. (2005) Novel functions

of tyrosine kinase 2 in the antiviral defense against murine cytomegalovirus.
J Immunol 175: 4000–4008.

52. Dolken L, Ruzsics Z, Radle B, Friedel CC, Zimmer R, et al. (2008) High-
resolution gene expression profiling for simultaneous kinetic parameter analysis

of RNA synthesis and decay. RNA 14: 1959–1972.

53. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol
metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:

331–340.
54. Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, et al. (2004) Toll-like

receptors 9 and 3 as essential components of innate immune defense against
mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101: 3516–3521.

55. Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, et al. (2003) Human

cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-
like receptor 2. J Virol 77: 4588–4596.

56. Jiang D, Weidner JM, Qing M, Pan XB, Guo H, et al. Identification of five
interferon-induced cellular proteins that inhibit west nile virus and dengue virus

infections. J Virol 84: 8332–8341.

57. Kapadia SB, Chisari FV (2005) Hepatitis C virus RNA replication is regulated
by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A 102:

2561–2566.
58. Neuhaus O, Stuve O, Archelos JJ, Hartung HP (2005) Putative mechanisms of

action of statins in multiple sclerosis–comparison to interferon-beta and
glatiramer acetate. J Neurol Sci 233: 173–177.

59. Dixon RM, Borden EC, Keim NL, Anderson S, Spennetta TL, et al. (1984)

Decreases in serum high-density-lipoprotein cholesterol and total cholesterol
resulting from naturally produced and recombinant DNA-derived leukocyte

interferons. Metabolism 33: 400–404.
60. Morra VB, Coppola G, Orefice G, De Michele G, Vacca G, et al. (2004)

Interferon-beta treatment decreases cholesterol plasma levels in multiple sclerosis

patients. Neurology 62: 829–830.
61. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003)

Exploration, normalization, and summaries of high density oligonucleotide array
probe level data. Biostatistics 4: 249–264.

62. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, et al. (2003) Summaries
of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

63. Martinat C, Mena I, Brahic M (2002) Theiler’s virus infection of primary

cultures of bone marrow-derived monocytes/macrophages. J Virol 76:
12823–12833.

64. Wagner M, Jonjic S, Koszinowski UH, Messerle M (1999) Systematic excision of
vector sequences from the BAC-cloned herpes virus genome during virus

reconstitution. J Virol 73: 7056–7060.

65. Ghazal P, Visser AE, Gustems M, Garcia R, Borst EM, et al. (2005) Elimination
of ie1 significantly attenuates murine cytomegalovirus virulence but does not

alter replicative capacity in cell culture. J Virol 79: 7182–7194.
66. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:

402–408.
67. Jeon TI, Zhu B, Larson JL, Osborne TF (2008) SREBP-2 regulates gut peptide

secretion through intestinal bitter taste receptor signaling in mice. J Clin Invest
118: 3693–3700.

68. Fei W, Shui G, Gaeta B, Du X, Kuerschner L, et al. (2008) Fld1p, a functional
homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell

Biol 180: 473–482.

69. Huang Q, Shen HM, Shui G, Wenk MR, Ong CN (2006) Emodin inhibits
tumor cell adhesion through disruption of the membrane lipid Raft-associated

integrin signaling pathway. Cancer Res 66: 5807–5815.

Down-Regulation of Sterol Synthesis Network by IFN

PLoS Biology | www.plosbiology.org 19 March 2011 | Volume 9 | Issue 3 | e1000598


