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Abstract

Accurate estimation of acoustic speech features from noisy speech and

from different speakers is an ongoing problem in speech processing. Many

methods have been proposed to estimate acoustic features but errors increase

as signal-to-noise ratios fall. This work proposes a robust statistical framework

to estimate an acoustic speech vector (comprising voicing, fundamental fre-

quency and spectral envelope) from an intermediate feature that is extracted

from a noisy time-domain speech signal. The initial approach is accurate in

clean conditions but deteriorates in noise and with changing speaker. Adap-

tation methods are then developed to adjust the acoustic models to the

noise conditions and speaker. Evaluations are carried out in stationary and

nonstationary noises and at SNRs from -5dB to clean conditions. Comparison

with conventional methods of estimating fundamental frequency, voicing and

spectral envelope reveals the proposed framework to have lowest errors in all

conditions tested.
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adaptation, Speaker adaptation

1. INTRODUCTION

Acoustic speech features take many forms and include parameters such

as voicing, fundamental frequency, spectral envelope, formant frequencies and

voice activity. Excitation features, such as voicing and fundamental frequency,

are used in many speech processing applications and include, for example,

speech coding, enhancement, noise estimation, automatic speech recognition

in noisy conditions and tonal language speech recognition (Kaewtip et al.,

2013; Kawahara et al., 2001; Lei et al., 2006; Ma et al., 2007; McAulay and

Champion, 1990; Morales-Cordovilla et al., 2011a,b). Similarly, spectral

envelope and formant features are used in a range of applications such as

speech coding, synthesis, recognition and voice conversion (Hermansky, 1990;

Kawahara et al., 2001, 2009; Koriyama et al., 2014). Consequently, many

methods have been developed to estimate acoustic speech features and these

operate in both clean and noisy conditions. In this work a single statistical

framework is proposed for estimating a set of acoustic speech features and

is designed to be robust at low signal-to-noise ratios (SNRs). Specifically,

from a wide range of acoustic features, this work concentrates on estimating

voicing, fundamental frequency and spectral envelope, although could equally

be applied to other acoustic features.

Many approaches have been developed to estimate voicing and funda-

mental frequency (f0) and attain good accuracy in noise free conditions but

deteriorate as signal-to-noise ratios (SNRs) reduce.
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In fact such methods have been applied to a range of periodic signals, such

as music, sonar and heart rate monitoring (Godsill and Davy, 2002; Schäck

et al., 2015), although in this work the focus is on speech signals. Methods to

estimate fundamental frequency can be broadly considered as being parametric

or non-parametric. Common non-parametric methods include RAPT and

YIN (de Cheveigné and Kawahara, 2002; Talkin, 1995). RAPT uses peaks

in the autocorrelation function (ACF) as candidate fundamental frequencies

and then uses dynamic programming to find voiced frames and an f0 contour.

YIN takes peaks of the squared difference function as fundamental frequency

estimates, which is shown to be more robust than the ACF. Further processing

reduces over- and underestimation although no voicing classification is made.

However, these methods are generally inaccurate in low noise conditions and

when estimating low fundamental frequencies (Nielsen et al., 2016). Noise-

robust non-parametric methods include XAFE and PEFAC (ETSI, 2003;

Gonzalez and Brookes, 2014). XAFE first employs explicit noise reduction

and then searches the power spectrum for spectral peaks, corresponding to

harmonics, which form f0 candidates. PEFAC works in the log-frequency

spectral domain and achieves robustness by first normalising the speech

periodogram to reduce noise and channel effects before using a matched

filter to extract a series of f0 candidates. A voiced speech probability is

also computed and dynamic programming applied to identify voiced regions

and an f0 contour. Parametric methods employ a model of the noisy speech

signal with one of its parameters being fundamental frequency (although

other parameters such as the amplitudes and phases of the harmonics can

also be included in the parameter set). An estimate of the model parameters
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is then made from the noisy signal using, for example, maximum likelihood

(ML), non-linear least squares (NLS) and weighted least squares (WLS)

methods (Christensen and Jakobsson, 2009; Li et al., 2000; Nielsen et al., 2016).

Parametric methods are inherently robust to noise and can come close to

optimal performance according to the Cramér-Rao lower bound (Christensen

and Jakobsson, 2009). A further benefit of parametric methods is that they

have been shown to estimate accurately low fundamental frequencies which

non-parametric methods tend to be less effective at doing (Christensen, 2013a).

Furthermore, including prior information on how the fundamental frequency

evolves from frame to frame enabled a maximum a posteriori (MAP) estimator

capable of tracking fundamental frequencies through a dynamic programming

implementation (Tabrikian et al., 2004). While some methods of fundamental

frequency estimation implicitly provide voicing classification, other methods

have been developed explicitly for voicing classification (Dhananjaya and

Yegnanarayana, 2013; Harding and Milner, 2012).

Methods to estimate spectral envelope seek a smooth contour that joins

important spectral peaks and is estimated typically by linear predictive coding

(LPC) (Makhoul, 1975), cepstrum processing (Oppenheim and Schafer, 1975)

or filterbank analysis (Cappe and Moulines, 1996). Again, the accuracy of

these methods is good in clean conditions but deteriorates in noise. Applying

noise removal methods, for example (Ephraim and Malah, 1985; Scalart

and Vieira-Filho, 1996), before estimation improves the resulting spectral

envelopes.

This work proposes a single statistical framework for estimating an

acoustic speech vector from an intermediate feature vector that is extracted

4



from a time-domain speech signal. The acoustic speech vector in this work

contains fundamental frequency, voicing and spectral envelope and is estimated

in its entirety within the statistical framework rather than requiring individual

algorithms for each acoustic feature. The intermediate feature vector can

take different forms and could be, for example, an MFCC vector, filterbank

vector or other suitable representation (Milner, 2002). Earlier work into

statistical estimation of acoustic features developed effective methods of

fundamental frequency, voicing and formant estimation in noise-free conditions

(Darch, 2008). More recently, noise compensation was included using parallel

model combination (PMC) which increased accuracy (Gales and Young, 1996;

Milner and Darch, 2011). This work advances earlier work in three areas.

First, the previous work operated within the ETSI DSR standard which

constrained the intermediate feature to be a 13-D MFCC vector extracted

from a 23-D mel filterbank (ETSI, 2003). This constraint is now removed

which allows better intermediate features to be found. Second, previous

work found that when moving from speaker dependent modelling to speaker

independent modelling the increased speaker variability reduced estimation

accuracy. Speaker adaptation is now integrated into the estimation procedure

to improve acoustic modelling. Third, noise compensation uses a nonlinear

noise mismatch function that considers both phase mismatch and spectral

mismatch and is applied using the unscented transform (Hu and Huo, 2006).

Similarity can be drawn between the proposed method and the extended

invariance principle (EXIP) where a set of intermediate parameters are

also first extracted from the signal and then fitted to a more structured

model (Stoica and Söderström, 1989). EXIP has been applied to a range of
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tasks that include radar target estimation and speech processing applications

such as vector quantisation for speech enhancement and separation as well

as fundamental frequency estimation (Christensen, 2013b; Li et al., 2000;

Swindlehurst and Stoica, 1998). As an example, the Markov-like weighted least

squares (WLS) method of fundamental frequency estimation (Li et al., 2000)

extracts first from the speech signal a set of unstructured initial parameter

estimates that include harmonic frequencies and their amplitudes and phases.

These are then fitted to a structured model where a weighting matrix accounts

for uncertainty (or accuracy of estimation) and dependencies within the

parameter vector. The final estimate of fundamental frequency is a closed-

form solution that is a weighted summation of the unstructured harmonic

frequencies.

The remainder of this paper is organised as follows. Section II reviews

statistical estimation of acoustic speech features and extends previous work by

considering forms that the intermediate feature may take. Sections III and IV

examine the effect of speaker and noise variability and integrate adaptation

methods into the estimation. Experimental results are presented in Section V

that analyse fundamental frequency, voicing and spectral envelope estimation

using speaker dependent and speaker independent systems.

2. FEATURES AND ESTIMATION

This section begins with an overview of statistical estimation of acoustic

speech features and then considers choices for the intermediate feature. The

effects of noise and speaker variability are then examined which leads to the

proposal of a noise and speaker adaptive method of estimating acoustic speech
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features.

2.1. Statistical estimation of acoustic speech features

Several studies have shown correlation to exist between acoustic speech

features (fundamental frequency, voicing, formant frequencies and spectral

envelope) and intermediate features such as MFCCs, filterbank, and LPC

coefficients (Darch, 2008; Harding, 2013; Hirahara, 1988; Syrdal and Steele,

1985). Previous work used this correlation to enable a statistical method of

estimating acoustic speech features from intermediate vectors (Milner and

Darch, 2011). A joint feature vector, zi, is defined

zi = [xi,θi] (1)

where xi and θi are the intermediate vector and acoustic speech feature

extracted from the ith frame of speech - note, for clarity, the frame index is

subsequently omitted. The elements of the acoustic feature vector, θ, depend

on the acoustic features being modelled, which in this work are voicing,

fundamental frequency and spectral envelope. This gives an acoustic feature

θ = [f0,χ] (2)

where f0 and χ are the fundamental frequency and spectral envelope of the

frame of speech. To signify unvoiced speech and non-speech f0 is set to zero.

Spectral envelope is represented using an M -channel filterbank where each

element χ(m) is the log amplitude of the mth channel. The framework allows

other acoustic features to be included in θ, for example formant frequencies,

if required.
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From a set of training data, along with reference annotations in terms of

voicing class, three vector pools, Υv, Υuv and Υns, are created that contain

voiced speech, unvoiced speech and non-speech vectors respectively. Applying

expectation-maximisation (EM) training to each vector pool creates Gaussian

mixture models (GMMs), Φz
v, Φz

uv and Φz
ns, that model the joint density of

intermediate feature and acoustic speech feature for voiced, unvoiced and

non-speech respectively. To simplify notation the GMMs are expressed as

Φz
vc where vc ∈ {v, uv, ns}. Each GMM comprises a mixture of Gaussian

probability density functions, φzk,vc

p(z|Φz
vc) =

K∑
k=1

αk,vc φ
z
k,vc(z) =

K∑
k=1

αk,vc N (z;µzk,vc,Σ
zz
k,vc) (3)

The kth mixture component has mean vector µzk,vc and covariance matrix

Σzz
k,vc, which are defined

µzk,vc =

 µxk,vc
µθk,vc

 and Σzz
k,vc =

 Σxx
k,vc Σxθ

k,vc

Σθx
k,vc Σθθ

k,vc

 (4)

where the mean vector contains means of the intermediate feature, µxk,vc, and

acoustic speech feature, µθk,vc. The covariance matrix comprises covariances

of the intermediate feature, Σxx
k,vc, the acoustic speech feature, Σθθ

k,vc, and

their cross-covariances, Σxθ
k,vc and Σθx

k,vc. Prior probabilities, αk,vc, reflect the

proportion of training data in each cluster.

Acoustic feature estimation begins by extracting intermediate feature

vectors, x, from the speech. The first acoustic feature to be estimated is the

voicing as this determines which other acoustic features need to be estimated

from that frame of speech - i.e. fundamental frequency if voiced and spectral
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envelope if speech. The voicing, v̂, is estimated by identifying the GMM with

the highest probability for x,

v̂ = arg max
vc∈{v,uv,ns}

p(x|Φx
vc) (5)

where Φx
vc is the GMM marginalised to the intermediate vector.

2.1.1. Fundamental frequency estimation

For frames classified as voiced (i.e. v̂ = v) an estimate of fundamental

frequency is made from the voiced GMM marginalised to intermediate vector

and fundamental frequency components to give Φxf0
v . The fundamental

frequency estimate, f̂0, given the intermediate vector, x, is computed from

the conditional mean of each component of the GMM, combined by weighting

by the posterior probability,

f̂0 =
K∑
k=1

hxk,v(x)
[
µf0k,v + Σf0,x

k,v

(
Σxx
k,v

)−1
(x− µxk,v)T

]
(6)

where the posterior probability, hxk,v(x), of the intermediate vector, x, is

computed from marginalised distributions φxk,v taken from each cluster k of

the voiced GMM

hxk,v(x) =
αk,v p

(
x|φxk,v

)∑J
j=1 αj,v p

(
x|φxj,v

) (7)

2.1.2. Spectral envelope estimation

For frames classified as speech (i.e. v̂ ∈ {v, uv}) the estimate of spectral

envelope, χ̂, is made from the voiced or unvoiced GMM marginalised to

intermediate vector and spectral envelope components, Φxχ
v̂ . Given the

intermediate vector, x, a weighted conditional mean estimate of spectral
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envelope is calculated,

χ̂ =
K∑
k=1

hxk,v̂(x)
[
µχk,v̂ + Σχ,xk,v̂

(
Σχχk,v̂

)−1
(x− µxk,v̂)T

]
(8)

where posterior probability, hxk,v̂(x), is as defined in Eq. (7).

2.2. Intermediate feature extraction

Many candidates exist for the intermediate feature and include spectral

features, filterbank, cepstrum, MFCCs, LPC, line spectral pairs and per-

ceptual linear prediction (Davis and Mermelstein, 1980; Hermansky, 1990;

Milner, 2002; Soong, 1984). Studies analysing their correlation to acoustic

speech features have found varying levels of correlation to exist (Darch, 2008;

Harding, 2013; Hirahara, 1988; Syrdal and Steele, 1985). Of the features

investigated, MFCCs were found to have highest correlation to acoustic speech

features, particularly when extracted with a large number of channels in the

filterbank. This gives fine spectral detail at low frequencies which was found

to be important for fundamental frequency estimation (Harding, 2013). Our

previous work on acoustic feature estimation (Milner and Darch, 2011) was

constrained to the Aurora Distributed Speech Recognition (DSR) standard

and limited to 13-D MFCC vectors computed from a 23 channel filterbank

(ETSI, 2003). That restriction is now removed which allows larger filterbanks

and more MFCCs to be considered as the intermediate feature.

MFCC extraction follows broadly the method proposed in the Aurora

DSR standard (ETSI, 2003) and begins by computing the power spectrum of

20ms Hamming windowed frames of audio. These are input into an M channel

mel filterbank and a log and discrete cosine transform (DCT) applied. The

resulting vectors are not truncated as this was found to give higher accuracy
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which results in M -dimensional MFCC vectors. Investigations into the size

of M are presented in Section V.

2.3. Effects of noise and speaker variation

Estimation of acoustic features is accurate in noise-free conditions and

when the speaker matches the speaker used in training. However, in practice

the input speech will likely be noisy and speakers not used in training will

be encountered. The input speech will now be mismatched to the acoustic

models and estimation accuracy will reduce.

This problem is encountered in automatic speech recognition where noise

and speaker mismatches increase word error rates (WERs) (Vaseghi and

Milner, 1997; Chung and Hansen, 2013). Matched training and testing gives

substantial reductions in WER but is not practical in changing conditions. A

more effective solution employed in speech recognition is to adapt the acoustic

models to the current noise and speaker where significant reductions in WER

have been reported (Gales and Young, 1996; Hu and Huo, 2006; Moreno et al.,

1996; Gauvain and Lee, 1994; Woodland, 2001). Given the similarity between

speech recognition and the proposed acoustic feature estimation, the statistics

of the clean trained GMMs, Φxθ
vc of Eq. (3), will be adapted to the current

speaker and noise to create a matched GMM, Φŷθ̂
vc . The next two sections

describe the speaker and noise adaptation methods.

3. ADAPTATION TO SPEAKER

To adapt the acoustic models to better represent a new speaker, MAP

adaptation is used due to its effectiveness in speech recognition applications

(Gauvain and Lee, 1994; Woodland, 2001). In speech recognition, adaptation is
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applied to the many hundreds or thousands of HMM/GMMs used in acoustic

modelling, while in this work adaptation is applied to only the voiced and

unvoiced GMMs. Furthermore, in speech recognition the feature is typically

an MFCC vector, while in this work both the intermediate and acoustic

features require adaptation.

3.1. MAP speaker adaptation

Adaptation is applied to the means, covariances and prior probabilities of

the voiced and unvoiced GMMs. From a new speaker a sequence of adaptation

vectors, A = {a1,a2, . . . ,aN}, is extracted that take the same form as the

joint feature vector in Eq. (1). For each vector, ai, the probability, γk,v(i), of

each mixture component, φzv, in the GMM, Φz
v, is computed (adaptation is

shown for the voiced GMM but is identical for the unvoiced GMM)

γk,v(i) =
αk,vp(ai|φzk,v)∑K
j=1 αj,vp(ai|φzj,v)

(9)

The estimate of the adapted mean, µẑk,v, for the kth cluster in the GMM is

calculated as a weighted combination of the prior mean from the speaker-

independent model, µzk,v, and the estimated mean from the adaptation data

in the kth cluster (Gauvain and Lee, 1994)

µẑk,v =
τµzk,v +

∑N
i=1 γk,v(i)ai

τ +
∑N

i=1 γk,v(i)
(10)

where τ determines the bias between the prior mean and mean of the adap-

tation data. Similarly the covariance, Σẑz
k,v, and mixture weights, α̂k,v, are

updated by the adaptation vectors

Σẑz
k,v =

Σzz
k,v +

∑N
i=1 γk(i)(ai − µẑk)(ai − µẑk)T + Ψ

ωk − (M +Mθ) +
∑N

i=1 γk(i)
(11)

where Ψ = τ(µzk − µẑk)(µzk − µẑk)T
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α̂k,v =
αk,v − 1 +

∑N
i=1 γk,v(i)∑K

j=1

(
αj,v − 1 +

∑N
i=1 γj,v(i)

) (12)

ωk,v relates to the summed probability of adaptation vectors for the kth

mixture and is defined in (Gauvain and Lee, 1994). The means and covariances

can be calculated using equal or different values of τ , with 2 ≤ τ ≤ 20

commonly used (Woodland, 2001). Experiments in Section 4 use τ = 12 as

this was found to give best performance.

3.2. Implementation

Adaptation should adjust the intermediate feature and acoustic feature

components to model the characteristics of the new speaker. Extracting inter-

mediate features from the new speaker is straightforward, however extracting

acoustic features can be more erroneous. This leads to two approaches that

have been considered: i) adapt both the intermediate and acoustic feature

components, and ii) adapt only the intermediate feature component.

To adapt only the intermediate feature, Eq. (9) is marginalised so

only the intermediate feature determines the contribution of each mixture

component in the GMM, and subsequently Eqs. (10)–(12) adapt only the

statistics of the intermediate feature. Tests comparing both approaches found

full adaptation gave lower estimation errors and so is the method chosen

for subsequent testing. The adaptation process for fundamental frequency

estimation is illustrated in Fig. 1(a) which shows (with the dashed line) the

original, speaker independent, distribution of f0 obtained by marginalising

Φz
v. This is learnt from the speaker independent dataset introduced in Section

5 and is bimodal corresponding to male and female speakers. The histogram

of a set of adaptation data taken from a single female speaker is shown in Fig.
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(a)

(b)

Figure 1: Fundamental frequency adaptation showing: a) speaker independent (dotted)

and adapted (solid) distributions, b) histogram of adaptation data.

1(b) and is used to adapt the speaker independent distribution. The adapted

distribution is shown in Fig. 1(a) as the solid line and is seen to model more

closely the distribution of the female speaker. Varying τ allows the adaptation

data to have more or less influence on the adapted distribution. Interestingly,

although fundamental frequency errors are present in the adaptation data

(around 90Hz) they have very little effect in the adapted distribution due to

the averaging.

Some preliminary tests were carried out to examine the effect that

different amounts of adaptation data have on performance. As an example,

Fig. 2 shows the accuracy of spectral envelope estimation, as measured using

the log likelihood ratio (LLR) (see Section 5.3 for further details), as the
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amount of adaptation data is varied. To serve as bounds on performance,

the LLR attained with speaker independent models is shown as the dashed

line and represents the unadapted case and the starting point for adaptation.

These models were trained from a set of 111 different speakers - see Section

5 for details. The LLR attained when using speaker dependent models that

were trained solely on the speaker under test is shown as the dotted line and

represents best performance and the target for adaptation. In this situation

the models are trained on 13 minutes of data from the single speaker. The

LLR of the adapted models (solid line) improves rapidly with small amounts of

adaptation data and then levels off as more adaptation data becomes available.

Specifically, using 5 seconds of adaptation data the performance gain reaches

32% of that obtained with speaker dependent models and with 20 seconds

of data reaches 69%. Beyond 20 seconds of adaptation data the rate of gain

reduces with gradual convergence towards the speaker-dependent model. A

similar trade-off between the amount of adaptation data and performance

gain was also observed for the voicing and fundamental frequency acoustic

features. Consequently, in this work, 20 seconds of adaptation data is used

for each new speaker which is applied statically. If desired, the estimation

framework would also allow adaptation to be applied dynamically and the

models updated continuously as more data is processed during the utterance

(Geiger et al., 2010).

4. ADAPTATION TO NOISE

Noise adaptation is a very effective method for improving the noise

robustness of HMM-based speech recognisers and adjusts the clean speech
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Figure 2: Effect of increasing amount of speaker adaptation data for spectral envelope

estimation.

statistics within each state of the HMM to model noisy speech. Methods

such as parallel model combination (PMC), vector Taylor series (VTS) and

the unscented transform are all effective (Gales and Young, 1996; Hu and

Huo, 2006; Moreno et al., 1996). The adaptation required for acoustic feature

estimation is slightly different as the joint feature vector, z, comprises an

intermediate vector component, x, which must be adapted to model noisy

intermediate features, y, and an acoustic feature component, θ, that needs no

adaptation – i.e. transforming the GMM Φxθ into Φŷθ. We use the unscented

transform for adaptation, based on the results of preliminary investigations,

although in practice any of the three should be effective (Harding, 2013).

Adaptation is a two stage process that requires first a mismatch function to

model the effect of noise on the intermediate feature and secondly application

of the unscented transform to adapt the GMM to noise.
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4.1. Derivation of mismatch function

To adapt a GMM to noise it is necessary to examine how noise affects

the intermediate feature, which in this work is an MFCC vector. In the

time-domain, speech and noise are additive and remain so in the frequency

domain

Y (f) = X(f) +D(f) 0 ≤ f ≤ F − 1 (13)

where Y (f), X(f) and D(f) are the complex spectra of the noisy speech,

clean speech and noise respectively and f is the spectral bin. Transforming

to power spectrum gives

|Y (f)|2 = |X(f)|2 + |D(f)|2 + 2|X(f)||D(f)|cos(ϕ(f)) (14)

where ϕ(f) is the phase difference between the noise and clean speech in the

fth spectral bin. In many noise compensation methods this phase-related

mismatch is assumed zero and ignored. However, recent studies have shown

that retaining the phase component improves the modelling of noisy speech

(Faubel et al., 2008). Transforming the power spectrum into an M-channel

mel filterbank by multiplying by an M × F matrix, W , (where each row

is a filterbank basis function) gives filterbank features, yfb(m), xfb(m) and

dfb(m), where m denotes the channel

yfb(m) = xfb(m) + dfb(m) + 2β(m)
√
xfb(m)dfb(m) (15)

β(m) relates to the phase difference between the clean speech and noise in

the mth channel and is defined

β(m) =

∑F−1
f=0 W (m, f)cos(ϕ(f))|X(f)||D(f)|√

xfb(m)dfb(m)
(16)
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Taking the log of the phase sensitive mismatch function and defining yl, xl

and dl as log filterbank vectors, the noisy log mel features can be obtained

from a function, g(.), of the clean speech and noise log mel features

yl = g(xl,dl,β)

= xl + log(1 + expd
l−xl +2β

√
expdl−xl) (17)

Finally, in the MFCC domain, following multiplication by an M ×M DCT

matrix, C (where each row is a cosine basis function), the same mismatch

function, g(.), gives noisy MFCC vector, y, from clean speech and noise

MFCC vectors, x and d, and phase term, β,

y = Cyl = Cg(C−1x,C−1d,β) (18)

β is obtained using the method in (Faubel et al., 2008) where a look-up table

is trained offline. Then, for a given x and d the look-up table provides a

phase averaged estimate of β that is used in Eq. (18).

4.2. Updating model parameters

The voiced, unvoiced and non-speech GMMs that model the joint density

of clean intermediate feature and acoustic speech feature are now adapted

to model the joint density of noisy intermediate feature and acoustic speech

feature. The unscented transform is an effective method for estimating the

statistics of a distribution that has undergone a non-linear transformation as

is the case of speech and noise addition in the intermediate feature domain

(Hu and Huo, 2006). As noise affects only the intermediate feature and not

the acoustic feature, the unscented transform adapts only the intermediate

feature statistics.
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For each GMM and each mixture component, k, a set of 2(M + Mθ)

sigma points, Szk,vc = {sz1,k,vc, sz2,k,vc, . . . , sz2(M+Mθ),k,vc
}, are sampled from the

distribution, φzk,vc, and comprise intermediate and acoustic feature components

szi,k,vc =
[
sxi,k,vc s

θ
i,k,vc

]
(19)

where Mθ is the dimensionality of the acoustic feature vector. The sigma

points are sampled so that their mean and covariance equal the mean and

covariance of the kth mixture component in the GMM, i.e. µzk,vc and Σzz
k,vc,

as described in (Hu and Huo, 2006).

A single Gaussian is also trained on intermediate features extracted from

noise-only data and has mean and covariance µd and Σdd. An augmented

mean and covariance, µ̃d and Σ̃dd, are created using zero padding to give the

same dimensionality as the joint vector, i.e. M +Mθ

µ̃d =

 µd(M)

0(Mθ)

 and Σ̃dd =

 Σdd
(M×M) 0(M×Mθ)

0(Mθ×M) 0(Mθ×Mθ)

 (20)

A further set of 2(M +Mθ) sigma points, Sd̃ = {sd̃1, sd̃2, . . . , sd̃2(M+Mθ)
}, repre-

senting noise are generated from the noise distribution and sampled to have

the same mean and covariance as in Eq. (20). These take the form

sd̃i =
[
sdi 0(Mθ)

]
(21)

Using the mismatch function, g(.), in Eq. (18) the clean intermediate feature

sigma points, sxi,k,vc, and noise sigma points, sdi , are combined to give noisy

sigma points, sŷi,k,vc. Augmenting these with the acoustic feature sigma points,

sθi,k,vc, gives noise adapted sigma points, sẑi,k,vc

sẑi,k,vc =
[
sŷi,k,vc s

θ
i,k,vc

]
=
[
g(sxi,k,vc, s

d
i , β) sθi,k,vc

]
(22)
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Finally, for each set of adapted sigma points, S ẑk,vc, their mean and covariance

are computed and provide the updated statistics for each component, φŷθk,vc,

of the GMM to model the joint density of noisy intermediate feature and

acoustic feature.

4.3. Implementation

To investigate the effect that the amount of noise adaptation data has on

estimation accuracy, preliminary tests were performed that examined acoustic

feature estimation accuracy as the amount of noise adaptation data increased

from 0 to 30 seconds. For illustration, Fig. 3 shows fundamental frequency

estimation error, Ef0 (defined in Eq. (23)), in white, babble and destroyer

noises at an SNR of 0dB when using from 0 to 30 seconds of noise. The

destroyer noise is taken from the operations room and comprises a fairly

constant mechanical noise, people talking and a tannoy sounding at irregular

intervals. Adaptation to the stationary white noise is rapid, with just 1 second

sufficient to estimate the noise statistics. In babble and destroyer noises, their

less stationary nature results in adaptation requiring more data to capture

the characteristics, although error is minimised with 5 seconds of data and

is still effective with only 1 second. Tests on estimating spectral envelope

and voicing features were also made and were found to have similar rates of

convergence.

Based on this analysis, the remainder of tests reported in this work use

0.5 seconds of noise adaptation data which is taken from the beginning of each

utterance and is before the start of the speech. In a practical scenario the

noise statistics would need to be computed using, for example, voice activity

detection, minimum statistics or recursive averaging techniques (Martin, 2001;
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Figure 3: Speaker dependent Ef0 for varying amounts of noise adaptation data at an SNR

of 0dB in white noise, babble noise and destroyer noise. Note - for clarity the ordinate is

limited to 30%.

Rangachari and Loizou, 2006; Taghia et al., 2011). We chose to use a simple

method as the noise estimate is reliable which means subsequent analysis of

acoustic feature estimation is not subject to variations in noise estimation

accuracy. For completeness we did perform some tests using the more practical

noise estimation methods and found no significant difference in performance.

5. EXPERIMENTAL RESULTS

This section presents experiments that examine acoustic feature estima-

tion in noisy conditions and under speaker variability. Experiments use first a

speaker dependent database to examine specifically the effectiveness of noise

adaptation. This database contains 579 phonetically balanced sentences for

training and 246 for testing (130,000 test vectors) spoken by a female US

English speaker, each with a duration of between 5 and 9 seconds. Along with

the audio, laryngograph recordings were also made so the reference fundamen-
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tal frequency and voicing are very accurate. The reference spectral envelope

was estimated using filterbank analysis on the clean speech. Approximately

65% of frames were voiced, 20% unvoiced and 15% non-speech. A second set

of experiments uses speaker independent data and now examines both noise

and speaker adaptation. These use 22 hours of the WSJCAM0 database for

training, taken from 48 female and 63 male speakers, and a further hour for

testing, spoken by a different set of 5 female and 5 male speakers containing

360,000 test vectors (Robinson et al., 1995). No laryngograph recordings

were available and instead the PRAAT tool was applied to clean speech to

give reference fundamental frequency and voicing that were checked manually

for voicing errors and halving and doubling errors (Boersma and Weenik,

2001). Approximately 50% of frames were voiced, 30% unvoiced and 20%

non-speech.

The audio was sampled at 8kHz and tests carried out in white noise, bab-

ble noise and destroyer operations room noise, added at SNRs between -5dB

and +15dB as an aim of the work is robustness in high noise levels (Varga and

Steeneken, 1993). White noise was chosen because of its stationary character

and babble and destroyer noises because of their non-stationary character.

Together these give varied test conditions across a range of potential environ-

ments and provide useful analysis. This section now considers fundamental

frequency estimation, voicing classification and spectral envelope estima-

tion, and within each, first speaker-dependent and then speaker-independent

performance.
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5.1. Fundamental frequency estimation

Fundamental frequency error, Ef0 , is measured as

Ef0 =
1

NV

N∑
i=1

(
|f̂0i − f0i|

f0i

)
× 100% ∀f0i > 0 (23)

f̂0i and f0i are the estimated and reference fundamental frequencies for the

ith voiced frame and NV is the number of voiced frames. To avoid analysis

being affected by voicing errors, Ef0 is measured on only frames classified as

voiced.

5.1.1. Speaker dependent

Speaker dependent tests first examine the effect of the number of filter-

bank channels and number of mixture components in the GMM. Filterbanks

from 16 to 128 channels and mixture components from 1 to 512 were tested

across a range of SNRs from -5dB to clean conditions. As an example, Fig. 4

shows Ef0 in white noise at an SNR of 10dB. Increasing the number of mixture

components reduces estimation error considerably until approximately 128

after which gains become minimal. Increasing the filterbank from 16 to 32

channels reduces error but beyond that no further reduction is observed.

Similar patterns of results were obtained at other SNRs and noises. Taken

across all test conditions, lowest errors were with a 32 channel filterbank and

256 mixture components and this configuration is used for the remainder of

fundamental frequency estimation.

Noise adaptation is now examined and no speaker adaptation applied as

the tests use speaker dependent data. Fig. 5 shows Ef0 in white, babble and

destroyer noises at SNRs from -5dB to +15dB for clean trained models, models

23



Figure 4: Speaker dependent Ef0 for 16 to 128 filterbank channels and 1 to 512 mixture

components in white noise at an SNR of 10dB.

trained and tested under the same noise conditions and models adapted to

noise. Ef0 was 2.1% in clean conditions. For comparison, the performance

of the ETSI XAFE (ETSI, 2003), YIN (de Cheveigné and Kawahara, 2002),

PEFAC (Gonzalez and Brookes, 2014) and parametric fast NLS (Nielsen

et al., 2016) methods are also shown. These had Ef0 of 2.5%, 3.2%, 3.8%

and 2.2%, respectively in clean conditions. (Note - the NLS method assumes

white noise, so for testing in babble and destroyer noises pre-whitening is

applied). Estimates from the clean trained model (CLEAN), whilst accurate

in clean conditions, deteriorate rapidly as SNRs fall as the input speech

statistics become unmatched to those in training. Matching the statistics of

the model (MATCH) to the noisy speech by training and testing in the same

noise conditions gives a substantial reduction in error. Using noise adaptation

(N-ADAPT) to adjust the clean trained model to the noise characteristics is

highly effective with Ef0 almost identical to matched models. For example,

at an SNR of -5dB in white noise the adapted models had Ef0 of 5.3%

which is an increase of just 3.2% over that obtained in clean conditions. In

comparison, Ef0 for YIN, XAFE, PEFAC and NLS are 17.6%, 30.3%, 9.2%
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and 6.5%, respectively. In fact, estimates from these comparative methods

were consistently worse than the proposed method. We did examine whether

accuracy could be improved by applying speech enhancement (both log MMSE

and Wiener filtering (Ephraim and Malah, 1985; Scalart and Vieira-Filho,

1996)) prior to f0 estimation but found this to reduce performance which we

attribute to distortion introduced, particularly at lower SNRs.

5.1.2. Speaker independent

For speaker independent estimation, noise adaptation is identical to that

for speaker-dependent models, and speaker adaptation is also used to adjust

the statistics of the model to the speaker under test. Fig. 6 shows Ef0 for

clean trained models, models adapted to noise and then models adapted to

speaker and noise. Ef0 in clean conditions was 3.8%. Accuracy using XAFE,

YIN, PEFAC and NLS are also shown and these had Ef0 of 8.4%, 3.6%, 3.8%

and 3.7%, respectively, in clean conditions. Adapting the speech models to

noise (N-ADAPT) again gives substantial improvement over clean trained

models. Errors are further reduced when the models are adapted to both

speaker and noise (NS-ADAPT) and this gives best performance of all the

methods tested and was almost identical to that of matched conditions (not

shown to improve clarity of plots).

In comparison, YIN and PEFAC are effective in white noise, with errors

just higher than adapted models, but less so in the non-stationary noises.

NLS is even more effective in white noise, achieving lower errors than YIN and

PEFAC, but slightly higher than adapted models, and is also less accurate in

babble and destroyer noises. XAFE deteriorates rapidly in both noise types

as SNRs fall below 15dB. For example, at an SNR of -5dB in white noise, Ef0
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Figure 5: Speaker dependent Ef0 in a) white noise, b) babble noise and c) destroyer

operations room noise, at SNRs from -5dB to +15dB for clean trained models (CLEAN),

matched models (MATCH), noise adapted models (N-ADAPT), XAFE, YIN, PEFAC and

NLS. Note - to improve clarity at lower Ef0 values the ordinate is limited to 60%.
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using adaptation is 10.2%, while for YIN Ef0 is 17.9%, for PEFAC is 14.9%

and for NLS is 12.0%. Again, we found that applying speech enhancement

increased Ef0 .

5.2. Voicing classification

Voicing classification error, EV , is measured as

EV =
NV |V +NUV |UV +NNS|NS

NT

× 100% (24)

NV |V , NUV |UV and NNS|NS are the number of voiced, unvoiced and non-speech

frames classified incorrectly and NT is the total number of frames under test.

5.2.1. Speaker dependent

An initial test, similar to that for fundamental frequency estimation in

Section 5.1.1, investigated the effect of the size of filterbank and number of

mixture components. EV was minimised with 8 channels and 16 mixture

components and beyond these values the error remained unchanged. This

is considerably fewer channels than minimised Ef0 and is attributed to less

fine spectral detail needed to discriminate between voicing classes. Similarly,

the GMM requires fewer mixture components than needed to minimise Ef0.

Section 5.1 determined that fundamental frequency error was minimised with

32 filterbank channels and 256 mixture components. Given that no reduction

in voicing classification error was observed beyond 8 channels and 16 mixture

components the same GMMs used for fundamental frequency estimation can

also be used for voicing classification which gives a single statistical framework

for both acoustic features.

Fig. 7 shows speaker-dependent voicing error in white, babble and

destroyer noises at SNRs from -5dB to +15dB for clean trained models,
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Figure 6: Speaker independent Ef0 in a) white noise, b) babble noise and c) destroyer

operations room noise, at SNRs from -5dB to +15dB for clean trained models (CLEAN),

noise adapted models (N-ADAPT), noise and speaker adapted models (NS-ADAPT),

XAFE, YIN, PEFAC and NLS. Note - to improve clarity at lower Ef0 values the ordinate

is limited to 60%.
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matched models and models adapted to noise. Voicing error in clean conditions

is 4.5%. For comparison, voicing error is shown for XAFE and PEFAC which

have EV of 6.1% and 10.8% in clean conditions. Using clean trained models

(CLEAN), voicing errors increase rapidly as SNRs reduce. The majority of

these errors are non-speech and unvoiced frames being incorrectly classified

as speech due to their increased energy matching better to the higher energy

of the voiced model. Adapting the clean models to noise (N-ADAPT) reduces

error substantially and performance is now indistinguishable from models

trained under matched noise conditions (MATCH). EV deteriorates rapidly

for XAFE whilst PEFAC remains much more robust and has EV about 10%

higher than the adapted models.

5.2.2. Speaker independent

Fig. 8 shows EV for speaker-independent testing in white, babble and

destroyer noises using clean trained models, noise adapted models and noise

and speaker adapted models. In clean conditions, EV is 7.1% with clean

speaker independent models which reduces to 6.3% when adapted to the

speaker under test. Results using XAFE and PEFAC are also shown which

have EV of 10.8% and 11.0%. Compared to clean models (CLEAN), noise

adaptation (N-ADAPT) gives a substantial reduction in error and a further

reduction when also applying speaker adaptation (NS-ADAPT). However,

the reduction in error with speaker adaptation is much less than observed in

fundamental frequency estimation. PEFAC and XAFE introduce significantly

more errors as SNRs fall – for example at -5dB in white noise, EV for PEFAC

is 19.2% compared to 12.5% for adapted models.
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Figure 7: Speaker dependent EV in a) white noise, b) babble noise and c) destroyer noise

at SNRs from -5dB to +15dB for clean trained models, noise adapted models, matched

models, XAFE and PEFAC. 30
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Figure 8: Speaker independent EV in a) white noise, b) babble noise and c) destroyer noise

at SNRs from -5dB to +15dB for clean trained models, noise adapted models, noise and

speaker adapted models, XAFE and PEFAC.31



5.3. Spectral envelope estimation

The log likelihood ratio (LLR) is used to evaluate spectral envelope

estimation as it is relatively insensitive to fine spectral detail from harmonic

structure and more sensitive to spectral envelope. A low LLR indicates a

closer spectral match and is defined (Loizou, 2007)

LLR =
1

N

N∑
i=1

log

(
b̂Tx (i)Rxx(i)b̂x(i)

bTx (i)Rxx(i)bx(i)

)
(25)

where Rxx(i) and bx(i) are the autocorrelation matrix and LPC coefficient

vector computed from the ith frame of the the original clean speech signal.

b̂x(i) is the LPC coefficient vector found by inverting the estimated filterbank

vector, χ̂i, into a smoothed power spectrum using cubic spline interpolation

and taking a inverse Fourier transform. Initial tests examined the effect of

filterbank and mixture components with best performance obtained using 32

channels and 256 mixture components. This is the same as the best config-

uration for fundamental frequency estimation and allows all three acoustic

features to be estimated from the same filterbank/GMM configuration.

5.3.1. Speaker dependent

Fig. 9 shows LLRs for clean trained models, matched models and

models adapted to noise in white, babble and destroyer noises at SNRs from

-5dB to 15dB. For comparison LLRs were also computed from noisy speech

that had been enhanced by spectral subtraction, Wiener filtering and log

MMSE methods of speech enhancement (Berouti et al., 1979; Ephraim and

Malah, 1985; Loizou, 2007; Scalart and Vieira-Filho, 1996). In each case the

noisy signal was input into the enhancement method and LLRs computed
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from the enhanced speech. LLRs using clean trained models (CLEAN)

increased rapidly as SNRs fell but adapting the models to noise reduced LLRs

substantially. In comparison to matched models (MATCH), which attained

lowest LLRs, adapted models perform almost identically. Adaptation (N-

ADAPT) performed much better than the three enhancement methods, which

had a ranking of LLRs equal to that reported when measuring their respective

speech quality (Loizou, 2007). Similar to Fig. 3, further tests varied the

amount of noise adaptation data and found LLRs to converge after 1.5 seconds

for white noise and 2.5 seconds for babble and destroyer noises.

5.3.2. Speaker independent

Fig. 10 shows LLRs for speaker-independent testing using clean models,

noise adaptation, speaker and noise adaptation, spectral subtraction, Wiener

filtering and log MMSE. Speaker independent results follow a similar trend

to speaker-dependent testing where adapting the clean models to noise (N-

ADAPT) gives a large reduction in LLR, and a further, but smaller, reduction

when applying noise and speaker adaptation (NS-ADAPT). This is substan-

tially lower than spectral subtraction, Wiener or log MMSE. For example,

at an SNR of -5dB in white noise, the LLR for noise adapted models is 0.89

which is further reduced to 0.83 when adapting to both speaker and noise

which compares to 1.40 for log MMSE.

6. Discussion

In noise-free conditions the clean trained models provide accurate esti-

mates of acoustic features and outperform the comparative methods tested.

As noise increases the statistics of the clean models become mismatched to
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Figure 9: Speaker dependent LLRs in a) white noise, b) babble noise and c) destroyer

noise, at SNRs from -5dB to 15dB for clean trained models, matched models, noise adapted

models, spectral subtraction, Wiener filtering and log MMSE.
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Figure 10: Speaker independent LLRs in a) white noise, b) babble noise and c) destroyer

noise at SNRs from -5dB to 15dB for clean trained models, noise adapted models, noise

and speaker adapted models, spectral subtraction, Wiener filtering and log MMSE.
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the noisy speech and performance deteriorates rapidly. Training in the same

noise conditions, whilst unrealistic practically, gives substantial improvements

and is considered the target for performance.

Across all noises, and for speaker dependent and speaker independent

systems, adapting the clean models to the noise conditions reduces the

mismatch and gives large reductions in error that are close, and in some cases

equal, to those of matched condition training. Applying speaker adaptation

to the speaker independent models further reduces errors for fundamental

frequency estimation but has less effect on voicing classification and spectral

envelope estimation. This is attributed to the speaker independent distribution

of fundamental frequency being broad while that of a single speaker is much

more localised – this is illustrated in Fig. 1. Adapting the speaker independent

acoustic models to the fundamental frequency range of the speaker under test

is localises the estimation and improves accuracy. Conversely, for spectral

envelope features, there is less speaker-specific variation and therefore adapting

the speaker independent distribution to a new speaker has less effect which is

reflected in the lower improvement in estimation accuracy.

7. Conclusion

This work has shown that the statistical framework proposed for estimat-

ing acoustic speech features is effective in clean conditions but deteriorates

rapidly as SNRs fall and the models become mismatched to the test condi-

tions. Analysis has shown that using models that have been prior trained to

match the testing conditions gives best performance but is impractical from

a practical perspective as noise and speaker characteristics change. Instead,
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the proposed method of adapting the models to the current noise and speaker

conditions has been shown effective and able to attain error rates close to, and

in some cases equal to, that of the models trained under matched conditions.

In comparison to a range of existing methods for estimating acoustic features

the proposed method achieved lowest errors across both the stationary and

non stationary noise conditions and the range of SNRs tested from -5dB to

+15dB.
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