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Abstract

Asymptotic and numerical analyses are presented for the travelling wave solution of the one-dimensional acoustic wave
associated with the sonic boom, subject to thermoviscous dissipation and two molecular relaxation processes. Examination
of how these relaxation processes affect the propagation of a weak shock is discussed in detail.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Acoustics is primarily concerned with small amplitude disturbances, so non-linear effects are typically of minor
significance. However, when considering the propagation of disturbances over long ranges, the cumulative effect
of weak non-linearity can lead to a significant distortion of the disturbance[1]. The effect of non-linearity on finite
amplitude acoustic wave propagation was studied in detail by Lighthill[2]. In particular, the competition between
non-linearity and other effects was described. For one-dimensional propagation, inclusion of thermoviscosity, in
addition to non-linearity leads to the well-known Burger’s equation, which can be solved exactly using the Cole–Hopf
linearising transformation[3,4].

While most studies of finite amplitude acoustic wave propagation have considered the effect of thermoviscos-
ity in controlling the shock structure, in the atmosphere other physical effects may influence the shock profile.
One such mechanism is molecular relaxation associated with the internal vibration of polyatomic molecules[5].
Analysis of linear propagation through a relaxing medium reveals that phase velocity increases monotonically with
signal frequency, fromc0 for frequencies much less than the characteristic frequency of the relaxation mode, and
tending to a limitc∞ for frequencies much greater than the relaxation frequency. Lighthill[2] gives general ex-
pressions for phase velocity and attenuation as a function of frequency. For propagation through the atmosphere,
the relaxation modes associated with oxygen and nitrogen are significant. In this paper we consider the combined
effect of these relaxation modes, thermoviscosity and non-linearity. The propagation of the disturbance can then
be modelled by the augmented Burger’s equation[6], together with a set of relaxation equations. Attention is re-
stricted to one-dimensional propagation, though for the propagation of sonic booms geometric effects must also be
considered.
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In cases where a single relaxation mode is believed to be dominant, Blythe[7], and Ockendon and Spence[8]
obtained travelling wave solutions, albeit in an implicit form. This analysis showed that for some range of parameter
values, a single relaxation mode alone is insufficient to support the shock and a narrow sub-shock arises controlled
by other mechanisms. The two cases are known as fully-dispersed and partly-dispersed, respectively. The important
feature of a partly-dispersed shock is the appearance of a finer length scale within the shock. Since the subjective
annoyance associated with sonic booms is related to shock widths (or equivalently shock rise-times) the identification
of the transition between the two types of shock structure is obviously important.

Although there has been some numerical investigation[9] concerning the presence of two relaxation modes, there
has been no analysis on their effect on shock structure. In the presence of more than one relaxation mode, exact
travelling wave solutions are not available, and progress can only be made through a combination of asymptotic and
numerical schemes. Pierce and Kang[10] presented numerical data for a travelling wave through a medium with
two relaxation modes and thermoviscosity, but only for one set of parameter values. Moreover, the structure of the
shock was not discussed. Hence, in this paper we discuss how the structure of the shock depends on the relaxation
parameters.

In Section 2a non-dimensional equation is obtained governing one-dimensional non-linear propagation through a
medium withN relaxation modes and with thermoviscous effects included. Each relaxation mode is characterised by
two parameters,τi a dimensionless relaxation time, and∆i the non-dimensional change in linear sound speed between
low- and high-frequency signals. For propagation through air, two relaxation modes are present with relaxation times
differing by two orders of magnitude. Hence attention is restricted to travelling wave solutions controlled by two
relaxation modes together with viscous diffusion. InSection 3, an asymptotic analysis is presented based on the limit
δ � τ2 � τ1, which is relevant to propagation through air. Hereδ is the coefficient of thermoviscous diffusion. It
is found that the shock structure can take three possible forms depending on the values of the relaxation parameters
∆1 and∆2. In Section 4a numerical method is described using a fourth-order Runge–Kutta numerical scheme with
perturbation techniques used to obtain boundary conditions far away from the shock. Numerical results are then
compared with asymptotic results, with attention focused on the case∆1 + ∆2 < 1/2, where asymptotic theory
predicts the most intricate shock structure.

2. Formulation

The main equations considered in this paper can be obtained from Pierce[6]. The dimensional equations are
known as the augmented Burger’s equation and the relaxation equations
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Here p̃ is the acoustic pressure,c the low frequency linear sound speed,ρ0 the air density,̃δ the thermoviscous
coefficient andβ = (γ + 1)/2, whereγ is the ratio of specific heats. The quantitiesp̃i, can be considered as partial
pressures associated with each relaxation mode. Also associated with each relaxation mode are two parameters,
(∆̃c)i, the increment in sound speed due to the relevant relaxation process andτ̃i, the relaxation times.

The set ofequations (1), can be put into non-dimensional form using the following substitutions:
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wheretref is some chosen reference time. This gives the following set of dimensionless equations:
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In the remainder of this paper, we restrict ourselves to the case of the travelling wave solution of this set of
equations (3), for a pressure pulse,p̂ → Psh, asx → −∞, andp̂ → 0, asx → ∞, wherePsh is the non-dimensional
shock overpressure.

Making the substitutionξ = x − Vt, and integrating once,(3) becomes
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with boundary conditions governing(4):
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The first set of boundary conditions imply the constant inEq. (4)is zero. The second set, when applied to(4), can
be used to derive an expression for the shock speed,

V = 1
2(Psh) + 1. (7)

The parametersV andPshcan then be eliminated from the governing equations and boundary conditions by rescaling,
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In the remainder of this paper, only two relaxation modes are considered, in which case,(4) can be combined to
give (
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with boundary conditions,p → 1 asξ → −∞, andp → 0 asξ → ∞.
For a single relaxation mode, exact solutions (albeit implicit), can be obtained[7,8]. For two modes, no such

solutions are available. Numerical solutions of(9), are discussed inSection 4. However, for acoustic propagation
through air, relaxation modes associated with nitrogen and oxygen are dominant, with relaxation times differing by
two orders of magnitude. Hence, an asymptotic analysis of the travelling wave solution is possible.

3. Asymptotic analysis

In this section we consider the caseδ � τ2 � τ1. By neglecting the small terms of O(δ) and O(τ2), Eq. (9)
becomes

p
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This solution has length scale O(τ1), hence, we define

X1 = ξ − ξ1

τ1
, (11)

whereξ1 will be determined later in the analysis. An exact, implicit solution forp(X1) can be obtained,

X1 = (1 − 2∆1) logp + (1 + 2∆1) log(1 − p), (12)

which satisfies the boundary condition,ξ → −∞ asp → 1. However, asp → 0, ξ → −∞ sgn(1 − 2∆1), so the
form of the solution depends on whether∆1 is less than or greater than 1/2.
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Fig. 1. Diagram shows the leading order solution(12). Solutions are shown for fully-dispersed relaxation mode,∆1 ≥ 1/2 (the dotted lines),
and partly-dispersed∆1 < 1/2.

3.1. ∆1 > 1/2

If ∆1 > 1/2, then the implicit solution(12)hasp → 0 asξ → ∞, and hence, the waveform remains single-valued
in p. This is known as the fully-dispersed solution and represents a physically realistic solution for the pressure
p(X1). Thus, in this case, the viscosity and second relaxation mode have little effect on the shape of the waveform.
The dashed lines inFig. 1, represent fully-dispersed examples of solution(12).

When∆1 = 1/2 the solution has a discontinuity in gradient atp = 0. If ∆1 falls below the critical value, 1/2,
the boundary condition,p → 0, asξ → ∞ is no longer satisfied andp(X1) is now multi-valued, as can be seen
in Fig. 1. Hence(12) is not a leading order solution of(9) for all ξ. So, for∆1 < 1/2, the first relaxation mode is
insufficient to support the shock and the waveform is known as partly-dispersed. To determine the waveform for all
ξ, the O(δ) and O(τ2) correction terms must be considered.

3.2. ∆1 < 1/2, ∆2 > (1/2 − ∆1)

When∆1 < 1/2 and the waveform is partly-dispersed, we expect the effect of the second relaxation mode to
become significant at some point in the waveform. Neglecting O(δ) terms, but now retaining O(τ2) terms,Eq. (9)
becomes
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For∆1 < 1/2, we expect a relatively narrow inner region, width O(τ2) to arise, and hence we define

X2 = ξ − ξ2

τ2
, (14)
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whereξ2 will be determined later in the analysis, which gives
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Making the expansionp = p0 + τ2p1 + O(τ2
2), the leading order equation, after integration with respect toX2,

becomes

dp0

dX2
= p0(p0 + 2∆1 − 1)
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, (16)

using the boundary condition dp0/dX2 → 0, asp0 → 0. Eq. (16)has an exact, implicit solution of
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Note that as we have expanded the region of rapid pressure transition by our shock width,τ2, we can consider
the limits X2 → ±∞, for fully dispersed solutions, as being at the two ends of this shock. Here, the boundary
conditions arep → P0 = 1 − 2∆1, asX2 → −∞, andp → 0, asX2 → ∞.

The inner relaxation shock governed by the second relaxation mode can be matched to the outer solution governed
by the first relaxation mode by considering the boundary condition forX2 → −∞. However, just as the first
relaxation shock can be fully-dispersed or partly-dispersed, depending on the value of∆1, this inner shock can also
be fully or partly-dispersed.

Lettingp0 → 0, X2 → −∞ sgn(1 − 2∆1 − 2∆2), and hence if

∆1 + ∆2 > 1
2, (18)

the inner shock is fully-dispersed, and the entire waveform consists of a partly-dispersed shock governed by the
first relaxation mode, with a narrow, embedded fully-dispersed shock, governed by the second relaxation mode.
Viscosity has only a small effect on the solution. Diagrammatic evidence of this is discussed later using numerical
techniques from the next section.

However, if∆1 + ∆2 < 1/2, the second relaxation mode is insufficient to support the pressure transition from
p = P0 to p = 0, and hence, correction terms of O(δ) must be considered.

3.3. ∆1 + ∆2 < 1/2

For∆1 +∆2 < 1/2, the first relaxation mode is partly-dispersed, as is the inner solution controlled by the second
relaxation mode. Hence, we anticipate the appearance of a narrower inner region controlled by viscosity. We now
define
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δ
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Making the expansionp = p̂0 + δp̂1 + O(δ2), the equation to leading order becomes
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which can be integrated twice with respect toX3 to give
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2
(p̂0 − P1), P1 = 1 − 2(∆1 + ∆2), (22)

where the constants of integration are zero from the boundary condition,X3 → ∞, p̂0, dp̂0/dX3 → 0. This has
exact solution
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From this explicit solution, it can readily be seen that the width of this viscous sub-shock region is of O(δ/P1).
Thus, if∆1+∆2 < 1/2, the waveform consists of a partly-dispersed shock governed by the first relaxation mode,

with a narrow embedded partly-dispersed shock governed by the second relaxation mode, and finally, a narrower,
embedded, fully-dispersed sub-shock controlled by the viscosity parameter. A complete diagrammatic breakdown
of this waveform is provided, using numerical and asymptotic results, inSection 5.

The values of the constantsξ1 andξ2 are determined in terms ofξ3 by matching. To centre the viscous sub-shock
region at the pointξ = 0, we takeξ3 = 0. AsX3 → −∞, p̂0 → P1, and hence, the partly-dispersed inner solution
(17), controlled by the second relaxation mode, matches at leading order to the viscous solution, ifξ2 is given by
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Similarly, for the inner solution governed by the second relaxation mode, asX2 → −∞, p0 → P0 = 1 − 2∆1,
and hence, matches to the partly-dispersed outer solution, governed by the first relaxation mode, ifξ1 is given by

ξ1 = −τ1[(1 − 2∆1) logP0 + (1 + 2∆1) log(1 − P0)]. (26)

For the case∆1 < 1/2,∆1+∆2 > 1/2, where the viscous sub-shock is absent, the fully-dispersed shock associated
with the second relaxation mode(17), is centred in amplitude atξ = 0 by choosing
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The first relaxation shock(12) then matches at leading order to this solution using(26).

4. Numerics

The asymptotic structure of the travelling wave solution derived inSection 3can be verified by comparison with
numerical solutions. To solve the third-order ODE,(9), numerically, three boundary conditions are required at one
end of the spatial range. To obtain these boundary conditions, we consider a perturbation analysis forp(ξ), as
ξ → ∞. Forξ → ∞, p(ξ) → 0, and hence we write and lineariseEq. (9), using

p(ξ) = 0 + g(ξ), |g(ξ)| � 1, ξ 
 1, (28)

to give
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We look for solutions of the formg ∝ e−λξ, λ > 0, whereλ is given by

δλ + ∆1
τ1λ

1 + τ1λ
+ ∆2

τ2λ

1 + τ2λ
= 1

2
. (30)

Asτiλ/(1+τiλ) increases monotonically, for increasing positiveλ, the left-hand side of(30)increases monotonically,
from 0 to∞, asλ increases from 0 to∞. Therefore, we have only one real positive root,λ1 say, of the equation.
This positive root is found numerically by solvingEq. (30)using a Newton–Raphson method.

Sincep ∼ A e−λ1ξ, asξ → ∞, we takeξ = X0, X0 
 1, so the approximate boundary conditions onp and its
derivatives, atξ = X0 are

p(X0) = ε, p′(X0) = −λ1ε, p′′(X0) = λ2
1ε, ε � 1, (31)

where′ denotes differentiation with respect toξ. A fourth-order Runge–Kutta numerical technique is then used to
marchξ in the negative direction, fromX0. The reason for considering the largeξ form of p and then marching in
the negative direction is that asξ → −∞, writing p ∼ 1 + A eλξ, gives two positive eigenvalues forλ, and hence,
conditions onp, p′, p′′ are not uniquely determined atξ = −X0.

Although this paper only addresses the case of two relaxation processes, a simple proof shows that similar
numerical techniques can be used forN > 2 such processes. The set ofequations (4), with N relaxation processes
can be combined to give an(N + 1)th order equation. Far from the shockp → 0, asξ → ∞, so we can linearise
the equation for large, positiveξ, by approximatingp(ξ) ≈ 0 + g(ξ).

By looking for solutionsg ∝ e−λξ, this linear equation gives

δλ +
∑
N

∆N

τNλ

1 + τNλ
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2
. (32)

This equation hasN + 1 roots, but only one will be positive as, for increasing, positiveλ, the left-hand side of the
equation is again positive and monotonically increasing.

As we have only one positive root, we can obtain theN + 1 boundary conditions we require for large, positive
ξ, to solve the equation numerically.

5. Results

The numerical scheme described in the previous section is valid for the general case ofN relaxation modes, and
for arbitrary values of the relaxation parameters,τi and∆i, and the parameter of thermoviscous diffusion,δ. Here
we consider numerical solutions only for the case of two relaxation modes, withδ � τ2 � τ1, and compare them
with asymptotic solutions derived inSection 3. From the asymptotic analysis, the most intricate shock structure
arises when∆1 + ∆2 < 1/2. Hence the numerical solution was obtained for the parameter values

τ1 = 1.0, τ2 = 0.01, δ = 5 × 10−5, ∆1 = 0.1, ∆2 = 0.2.

This is plotted as the solid line inFig. 2. For these parameter values, the asymptotic analysis predicts that the
travelling wave solution consists of three regions, each with different length scales.

5.1. Region A

Far upstream from the shock, the first relaxation mode dominates the waveform, and hence this region has width
of O(τ1). This region can be seen inFig. 2(a), where the solid line is the numerical solution and the dashed line
marks the asymptotic solution(12), corresponding to the partly-dispersed solution for the first relaxation mode. For
1 > p > P0 = 1−2∆1, good agreement is seen between the two solutions. The numerical scheme has been fixed so
the centre of the viscous sub-shock is atξ = 0. Moving downstream, the solutions begin to separate asp approaches
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Fig. 2. Comparison of numerical and asymptotic solutions of(9), for the case∆1 = 0.1, τ1 = 1, ∆2 = 0.2, τ2 = 0.01, andδ = 5 × 10−5.
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the valueP0 = 0.8, marked inFig. 2(a) by a dotted line. This is the position at which the partly-dispersed first
relaxation mode matches onto the inner solution governed by the second relaxation mode (seeSection 3.2).

5.2. Region B

The middle part of the waveform is dominated by the second relaxation mode and has width of O(τ2). The region
governs the shape of the waveform betweenP0 = 1 − 2∆1 andP1 = 1 − 2(∆1 + ∆2) discussed inSections 3.2
and 3.3, respectively.Fig. 2(b) shows this region of the waveform, which is of scaleτ2, where the partly-dispersed
inner solution(17), represented by the dashed line, is compared with the numerical solution of(9). Good agreement
is seen between the numerical and asymptotic solutions forP0 > p > P1. Asp approachesP1 (marked by a dotted
line in Fig. 2(b)), the partly-dispersed shock governed by the second relaxation mode matches a viscous sub-shock
of amplitudeP1.

5.3. Region C

For the parameter values considered, asymptotic theory predicts that the head of the shock is dominated by the
small viscosity parameter, and has width of O(δ). This region of viscous sub-shock can be seen clearly inFig. 2(c),
which is of scaleδ. Good agreement is seen between the numerical solution (solid line) and the asymptotic solution
(24) for the viscous shock (dotted line) forP1 > p > 0.

6. Summary

The asymptotic analysis presented inSection 3shows that in the limitδ � τ2 � τ1, the structure of the travelling
shock can be divided into three classes depending on the values of the relaxation parameters∆1 and∆2. Numerical
solutions corresponding to the three separate cases are illustrated inFig. 3. When∆1 > 1/2 (Case I), the first
relaxation mode controls the shock everywhere. For∆1 < 1/2 and∆1 + ∆2 > 1/2 (Case II) a narrow sub-shock
of amplitude 1− 2∆1 and relative widthτ2/τ1 controlled by the second relaxation mode is inserted in the first

Fig. 3. Diagram shows how fully-dispersed solution is replaced with shock and sub-shocks as∆1 is decreased below critical values. In this
numerical example, the values∆2 = 0.2, τ1 = 1, τ2 = 0.1 andδ = 0.001.
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Fig. 4. Plot of shock width,w, on a logarithmic scale as a function of∆1, for ∆2 = 0.25,τ1 = 1, τ2 = 0.01 andδ = 5 × 10−6.

relaxation shock. Finally, if∆1 < 1/2 and∆1+∆2 < 1/2 (Case III) the shock consists of an outer partly-dispersed
solution controlled by the first relaxation mode, with an inserted partly-dispersed solution of amplitude 1− 2∆1
and relative widthτ2/τ1 controlled by the second relaxation mode, and finally an inner viscous shock of amplitude
1−2(∆1 +∆2) and relative widthδ/τ1. This was the case discussed in detail inSection 5. ThoughFig. 3shows the
general change in shock structure as∆1 changes, namely an increase in shock slope as∆1 decreases, the detailed
structure cannot be seen due to the change in the length scales. A better way of seeing the change in shock structure
is by considering a minimum length scale for the shock which may be defined by

w(∆1, ∆2, τ1, τ2, δ) =
(

max
ξ

(
dp

dξ

))−1

. (33)

Fig. 4shows the variation ofw as a function of∆1 for ∆2 = 0.25 with τ1 = 1, τ2 = 0.01 andδ = 5 × 10−6. The
solid line marks the numeric solution and the dashed lines the asymptotic results for the three separate regimes. For
∆1 > 0.5 (Case I), the asymptotic results overlie the numeric results. As∆1 decreases to less than 0.5 (Case II),
a sudden decrease in the minimum shock width is seen, followed by a similar decrease when∆1 decreases below
0.25 (i.e.∆1 + ∆2 < 1/2) corresponding to the appearance of the viscous inner shock (Case III).

The numeric and asymptotic methods described are now applied to parameter values relevant to sonic booms
propagating through the atmosphere. For the particular case of air at 20◦C at standard pressure

ρ0 = 1.2 kg m−3, c = 343 m s−1, β = 1.2.

Relaxation times are very sensitive to humidity. For a relative humidity of 50%, the relaxation parameters associated
with nitrogen (denoted by subscript 1), and oxygen (denoted by subscript 2) and the coefficient of thermoviscous
diffusion are given by

τ̃1 = 4.73× 10−4 s, τ̃2 = 4.42× 10−6 s,
δ̃

c2
= 1.58× 10−10 s,

(∆̃c)1

c
= 6.27× 10−5,

(∆̃c)2

c
= 3.37× 10−4.
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Fig. 5. Diagram shows the pressure profile in dimensional units, corresponding to the parameter values given by Kang and Pierce.

For convenience we choose the reference time introduced in the non-dimensionalisation(3) to betref = V τ̃1, so
τ1 = 1. For shock over pressuresp̃sh less than 100 Pa,Psh < 0.0005 andV , the non-dimensional shock speed(7),
is close to 1. The relevant dimensionless parameters are then given by

τ1 = 1, τ2 = 0.0093, δ = 0.0395 Pa

p̃sh
, ∆1 = 7.38 Pa

p̃sh
, ∆2 = 39.5 Pa

p̃sh
.

Hence the structure of the shock can be classified as one of the three separate cases depending on the value of the
dimensional shock over pressurep̃sh. For p̃sh < 14.76 Pa we have Case I, a fully-dispersed shock of dimensional
width O(cτ̃1) which corresponds to O(16 cm).

For 14.76 Pa< p̃sh < 93.76 Pa, we have Case II, with a sub-shock of width O(15 mm). Finally, forp̃sh >

93.76 Pa we have Case III with a very narrow viscous shock, the width of which depends onp̃sh. Pierce and Kang
[10] presented numerical data for the parameter values used above andp̃sh = 39.5 Pa, though without plotting the
resulting waveform. InFig. 5we plot the pressure profile in dimensional units, corresponding to the parameter values
given by Kang and Pierce. Asymptotic results suggest that this should correspond to Case II, with a partly-dispersed
solution controlled by the oxygen relaxation mode, together with a sub-shock of amplitude(1−2∆1)p̃sh = 24.7 Pa
controlled by the nitrogen relaxation mode. Numerical results using the method described inSection 4are plotted
in Fig. 5, where the shock structure described above can be clearly seen.

The results presented by Pierce and Kang[10] are within 5% of the results of the present paper. Using the
numerical method of Kang and Pierce, wherep is treated as the independent variable,ξ as the dependent variable,
and the typographical errors in their governing equations have been corrected, excellent agreement is obtained with
the result using the method described inSection 4. No details were given by Kang and Pierce of the mesh size used
in their calculations so it is likely that discrepancies are due to numerical error.

Thus for sonic boom propagation, asymptotic methods can be used to identify shock scales without the need
for numerics. This is particularly useful when considering the more complicated problem of solving the governing
equations (1), as a PDE rather than just considering travelling wave solutions. Numerics could be impractical for this
problem, especially when considering very fine shock structures. It should be noted, however, that care must be taken
when considering propagation through a realistic atmosphere. The molecular relaxation times are very sensitive to
the amount of water vapour in the atmosphere, and hence, radically differ with altitude. Study is therefore needed
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to investigate the sonic boom waveform dependence on its own past history before comparisons can be made with
numerics.
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