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Abstract

Asymptotic and numerical analyses are presented for the travelling wave solution of the one-dimensional acoustic wave
associated with the sonic boom, subject to thermoviscous dissipation and two molecular relaxation processes. Examination
of how these relaxation processes affect the propagation of a weak shock is discussed in detail.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Acoustics is primarily concerned with small amplitude disturbances, so non-linear effects are typically of minor
significance. However, when considering the propagation of disturbances over long ranges, the cumulative effect
of weak non-linearity can lead to a significant distortion of the disturbftjc& he effect of non-linearity on finite
amplitude acoustic wave propagation was studied in detail by Ligh#illn particular, the competition between
non-linearity and other effects was described. For one-dimensional propagation, inclusion of thermoviscosity, in
addition to non-linearity leads to the well-known Burger’s equation, which can be solved exactly using the Cole—Hopf
linearising transformatiof8,4].

While most studies of finite amplitude acoustic wave propagation have considered the effect of thermoviscos-
ity in controlling the shock structure, in the atmosphere other physical effects may influence the shock profile.
One such mechanism is molecular relaxation associated with the internal vibration of polyatomic m¢icules
Analysis of linear propagation through a relaxing medium reveals that phase velocity increases monotonically with
signal frequency, fronag for frequencies much less than the characteristic frequency of the relaxation mode, and
tending to a limitc, for frequencies much greater than the relaxation frequency. Ligfighiljives general ex-
pressions for phase velocity and attenuation as a function of frequency. For propagation through the atmosphere,
the relaxation modes associated with oxygen and nitrogen are significant. In this paper we consider the combined
effect of these relaxation modes, thermoviscosity and non-linearity. The propagation of the disturbance can then
be modelled by the augmented Burger’s equaljntogether with a set of relaxation equations. Attention is re-
stricted to one-dimensional propagation, though for the propagation of sonic booms geometric effects must also be
considered.
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In cases where a single relaxation mode is believed to be dominant, BRjthend Ockendon and Spenf&
obtained travelling wave solutions, albeit in an implicit form. This analysis showed that for some range of parameter
values, a single relaxation mode alone is insufficient to support the shock and a narrow sub-shock arises controllec
by other mechanisms. The two cases are known as fully-dispersed and partly-dispersed, respectively. The importar
feature of a partly-dispersed shock is the appearance of a finer length scale within the shock. Since the subjective
annoyance associated with sonic booms is related to shock widths (or equivalently shock rise-times) the identification
of the transition between the two types of shock structure is obviously important.

Although there has been some numerical investiggfpooncerning the presence of two relaxation modes, there
has been no analysis on their effect on shock structure. In the presence of more than one relaxation mode, exac
travelling wave solutions are not available, and progress can only be made through a combination of asymptotic and
numerical schemes. Pierce and K4h@] presented numerical data for a travelling wave through a medium with
two relaxation modes and thermoviscosity, but only for one set of parameter values. Moreover, the structure of the
shock was not discussed. Hence, in this paper we discuss how the structure of the shock depends on the relaxatic
parameters.

In Section 2a non-dimensional equation is obtained governing one-dimensional non-linear propagation through a
medium with/N relaxation modes and with thermoviscous effects included. Each relaxation mode is characterised by
two parameterg; adimensionless relaxation time, angthe non-dimensional change inlinear sound speed between
low- and high-frequency signals. For propagation through air, two relaxation modes are present with relaxation times
differing by two orders of magnitude. Hence attention is restricted to travelling wave solutions controlled by two
relaxation modes together with viscous diffusionSkction 3an asymptotic analysis is presented based on the limit
§ < 12 K 11, Which is relevant to propagation through air. Héiie the coefficient of thermoviscous diffusion. It
is found that the shock structure can take three possible forms depending on the values of the relaxation parametel
Ajq andAs. In Section 4a numerical method is described using a fourth-order Runge—Kutta numerical scheme with
perturbation techniques used to obtain boundary conditions far away from the shock. Numerical results are then
compared with asymptotic results, with attention focused on the gase A, < 1/2, where asymptotic theory
predicts the most intricate shock structure.

2. Formulation

The main equations considered in this paper can be obtained from [e¢rdéhne dimensional equations are
known as the augmented Burger’s equation and the relaxation equations

ap  dp Bp\ dp i 0 - 0p .
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Here p is the acoustic pressure the low frequency linear sound speed, the air densitys the thermoviscous
coefficient angs = (y + 1)/2, wherey is the ratio of specific heats. The quantitigscan be considered as partial
pressures associated with each relaxation mode. Also associated with each relaxation mode are two parameter
(Ac);, the increment in sound speed due to the relevant relaxation process tredrelaxation times.

The set ofequations (1,)can be put into non-dimensional form using the following substitutions:
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whereref is some chosen reference time. This gives the following set of dimensionless equations:
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In the remainder of this paper, we restrict ourselves to the case of the travelling wave solution of this set of
equations (3)for a pressure pulsg,—~ Psp, asx — —oo, andp — 0, asx — oo, wherePghis the non-dimensional
shock overpressure.

Making the substitutio§ = x — Vt, and integrating onc€3) becomes

A-WVp+ % _ Sd + Z A; p; = constant (1 - V%,»d%) = -V Zé (4)
with boundary conditions governir(g):
43
h—2,pi—0 asé&— oo, ©)
dg
D — Psp, (;—;ﬁ,dd—?ﬁo asé —» —oo. (6)

The first set of boundary conditions imply the constarEq (4)is zero. The second set, when applied4} can
be used to derive an expression for the shock speed,

V= 3(Psp) + 1. (7)
The parameterg and Py can then be eliminated from the governing equations and boundary conditions by rescaling,
p A 8
:i, Ai:—l, ‘L',':V%i, 6= —. (8)
Psh Psh Psh

In the remainder of this paper, only two relaxation modes are considered, in whici{4asa be combined to
give
d P dp d?p
1- -1 -656—)=(MmnA Ap)— — A Ag)— 9
( Tldg__>< df)( (r—-1 dé) (mA1+ 1 2)d$ T172(A1 + 2)d$2 ©)
with boundary conditiongy — 1 as§ — —oo, andp — 0 asé — oo.

For a single relaxation mode, exact solutions (albeit implicit), can be obt§m8 For two modes, no such
solutions are available. Numerical solutions(8f, are discussed iSection 4 However, for acoustic propagation
through air, relaxation modes associated with nitrogen and oxygen are dominant, with relaxation times differing by
two orders of magnitude. Hence, an asymptotic analysis of the travelling wave solution is possible.

3. Asymptotic analysis

In this section we consider the caseg 72 < t1. By neglecting the small terms of(® and Qr2), EQ. (9)
becomes

’—Z’(p—1>=r1< 1+A1) g’; (10)
This solution has length scalgf3), hence, we define
X1 = §— 51’ (11)
71
where£1 will be determined later in the analysis. An exact, implicit solution#6kK 1) can be obtained,
X1=(1-2A4y)logp+ (14 2A41)log(1— p), (12)

which satisfies the boundary conditidgn,> —oco asp — 1. However, ap — 0,& — —ocosgnl — 2A;), so the
form of the solution depends on wheth#y is less than or greater than 1/2.
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Fig. 1. Diagram shows the leading order solut{@g). Solutions are shown for fully-dispersed relaxation madie,> 1/2 (the dotted lines),
and partly-dispersed; < 1/2.

31 A1 >1/2

If A1 > 1/2,thenthe implicitsolutiofl2)hasp — 0ast — oo, and hence, the waveform remains single-valued
in p. This is known as the fully-dispersed solution and represents a physically realistic solution for the pressure
p(X1). Thus, in this case, the viscosity and second relaxation mode have little effect on the shape of the waveform.
The dashed lines iRig. 1, represent fully-dispersed examples of solui{ba).

WhenA; = 1/2 the solution has a discontinuity in gradientga& 0. If A4 falls below the critical value, 1/2,
the boundary conditiorpy — 0, asé — oo is no longer satisfied angl(X1) is now multi-valued, as can be seen
in Fig. L Hence(12)is not a leading order solution @) for all £. So, forA; < 1/2, the first relaxation mode is
insufficient to support the shock and the waveform is known as partly-dispersed. To determine the waveform for all
&, the Q(6) and Qr2) correction terms must be considered.

32. A1 <1/2, A2 > (1/2— Ay)
WhenA; < 1/2 and the waveform is partly-dispersed, we expect the effect of the second relaxation mode to

become significant at some point in the waveform. Neglectifg) @rms, but now retaining @,) terms,Eq. (9)
becomes

C i mt -+ Lo-1=2 (1t B 4 (a1 + 1240) dp
12— - = —p—-1D=—|( T - = T T; -T2 |-
12d€2p 1 2= 5 5P dé 1+t |\ P35 141 + 1242 12d§
13)
ForA; < 1/2, we expect a relatively narrow inner region, widtkr®) to arise, and hence we define
Xp = §— 52’ (14)

T2
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whereé; will be determined later in the analysis, which gives

dp

d? 1
Tl_p <P+ A1+ Az — —) +12§(p— 1= ax,

it (p=2) + (rA1 + 1289) — 1P
dX% 2 T1 2 p 2 141 1242 T1 .

dx»

(15)
Making the expansiop = pg + 2p1 + O(r%), the leading order equation, after integration with respect1p
becomes

dpo po(po+241 -1

9 , 16
dx», 2(po+ A1+ A2 —1/2) (16)
using the boundary conditiornpg/dX2 — 0, aspg — 0. Eg. (16)has an exact, implicit solution of
2A5 24,

Note that as we have expanded the region of rapid pressure transition by our shockryyidte,can consider
the limits X2 — oo, for fully dispersed solutions, as being at the two ends of this shock. Here, the boundary
conditions arep - Pp=1— 243, asX2 - —oo, andp — 0, asX, — oo.

The inner relaxation shock governed by the second relaxation mode can be matched to the outer solution governed
by the first relaxation mode by considering the boundary conditionXfor—~ —oo. However, just as the first
relaxation shock can be fully-dispersed or partly-dispersed, depending on the valuetus inner shock can also
be fully or partly-dispersed.

Letting po — 0, X2 — —oosgn(1l — 243 — 2A5), and hence if

A1+ Ap > 3, (18)

the inner shock is fully-dispersed, and the entire waveform consists of a partly-dispersed shock governed by the
first relaxation mode, with a narrow, embedded fully-dispersed shock, governed by the second relaxation mode.
Viscosity has only a small effect on the solution. Diagrammatic evidence of this is discussed later using numerical
techniques from the next section.

However, ifA1 + A2 < 1/2, the second relaxation mode is insufficient to support the pressure transition from
p = Poto p =0, and hence, correction terms ofdpmust be considered.

33. A1+ Ap < 1/2

For A1+ Az < 1/2, the first relaxation mode is partly-dispersed, as is the inner solution controlled by the second
relaxation mode. Hence, we anticipate the appearance of a narrower inner region controlled by viscosity. We now
define
§—&3

8 9

where&sz will be determined in later analysis, af@) now becomes

X3 =

(19)

d?p

d d p dp\ dp
<3 - Tld_Xg) (3 - Tzd_X3> (E(P -1 - d_Xg) = 8(1141 + 1242) e 1172(A1 + A2) ax2 (20)

Making the expansiop = po + 8p1 + O(5%), the equation to leading order becomes

d2 Do . dp d?p
W<pO(PO_1)—LZ)=—(Al+A2)Kp§, (21)
3 3
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which can be integrated twice with respectig to give

dpo _ po, .

— = —(po— P1), P1=1-2(A1+ Ay, 22

dXa 5> (Po— P 1 (A1+ A2) (22)
where the constants of integration are zero from the boundary condiipr;y oo, po, dpo/dX3 — 0. This has
exact solution

2 . A
X3 = —Fl(|09 Po —log(P1 — po)), (23)

which can be re-arranged to give
. P §—§&3

= —|1- tanh( P . 24

o= > [ an ( 125 )} (24)

From this explicit solution, it can readily be seen that the width of this viscous sub-shock region(& & O

Thus, if A1+ A2 < 1/2, the waveform consists of a partly-dispersed shock governed by the first relaxation mode,
with a narrow embedded partly-dispersed shock governed by the second relaxation mode, and finally, a narrower
embedded, fully-dispersed sub-shock controlled by the viscosity parameter. A complete diagrammatic breakdown
of this waveform is provided, using numerical and asymptotic resulSeation 5

The values of the constargsandé, are determined in terms &% by matching. To centre the viscous sub-shock
region at the poing = 0, we takes3 = 0. As X3 — —o0, po — Pi1, and hence, the partly-dispersed inner solution
(17), controlled by the second relaxation mode, matches at leading order to the viscous solgtiagifen by

2A9 24,
= — 1-— log P 1 log(1—2A;— Py |. 2
& Tz[( 1—2A1) og 1+< +1—2A1) 0g( 1 1)] (25)

Similarly, for the inner solution governed by the second relaxation mod&pas —oo, po — Pp = 1 — 2A1,
and hence, matches to the partly-dispersed outer solution, governed by the first relaxation gasigjven by

& = —11[(1 — 241) log Py + (1 + 2A1) log(1 — Po)]. (26)

Forthe casel\; < 1/2, A1+ Az > 1/2, where the viscous sub-shock is absent, the fully-dispersed shock associated
with the second relaxation mod#7), is centred in amplitude &= 0 by choosing

g ([ 2A; Py 24, Po
n (o Yo - (1) (e 3) )

The first relaxation shocil2) then matches at leading order to this solution ugi®).

4, Numerics

The asymptotic structure of the travelling wave solution derive8ldation 3can be verified by comparison with
numerical solutions. To solve the third-order O¥8), numerically, three boundary conditions are required at one
end of the spatial range. To obtain these boundary conditions, we consider a perturbation anajy&ys &s
& — oo. Foré — oo, p(§) — 0, and hence we write and linearigg. (9) using

pE =0+g®). [g®I<KL &> 1, (28)
to give

8 dgg—a( + )+ <A Cao B EE L (Mt Apra—5)| B € o

Tlrzd_§3 11+ 712)+nn |l = 5(71 2) 171 272 — ) & t2”

(29)
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We look for solutions of the forng o« €7*¢, A > 0, whereh is given by

St A T1A A A 1
AT Y T T
Ast;A/(1+1;)) increases monotonically, forincreasing positivéhe left-hand side dB80)increases monotonically,
from 0 tooo, asa increases from O too. Therefore, we have only one real positive rogtsay, of the equation.
This positive root is found numerically by solvirty. (30)using a Newton—Raphson method.

Sincep ~ Ae *¥ ast — oo, we taket = Xo, Xo > 1, so the approximate boundary conditionspoand its
derivatives, at = Xg are

p(Xo) =€,  p'(Xo)=—r1e,  p'(Xo)=2r%, e<x1, (31)

(30)

where’ denotes differentiation with respect§oA fourth-order Runge—Kutta numerical technique is then used to
marché in the negative direction, frofo. The reason for considering the larfgéorm of p and then marching in
the negative direction is that §s— —oo, writing p ~ 1+ A €, gives two positive eigenvalues far and hence,
conditions onp, p/, p” are not uniquely determined &= —Xo.

Although this paper only addresses the case of two relaxation processes, a simple proof shows that similar
numerical techniques can be used 6 2 such processes. The setegjuations (4)with N relaxation processes
can be combined to give aw + 1)th order equation. Far from the shogk— 0, as¢ — oo, so we can linearise
the equation for large, positivg by approximatingp (&) ~ 0 + g(&).

By looking for solutionsg o« €74, this linear equation gives

NA 1
5A+XN:AN1+TNA_2. (32)

This equation had/ + 1 roots, but only one will be positive as, for increasing, positivthe left-hand side of the
equation is again positive and monotonically increasing.

As we have only one positive root, we can obtain 8he- 1 boundary conditions we require for large, positive
&, to solve the equation numerically.

5. Results

The numerical scheme described in the previous section is valid for the general dasglafation modes, and
for arbitrary values of the relaxation parametefsand A;, and the parameter of thermoviscous diffusi@irtiere
we consider numerical solutions only for the case of two relaxation modes$ withr> <« t1, and compare them
with asymptotic solutions derived iBection 3 From the asymptotic analysis, the most intricate shock structure
arises whem + A2 < 1/2. Hence the numerical solution was obtained for the parameter values

71 = 1.0, 75 = 0.01, §=5x 1075, Ay =0.1, Ay =0.2.

This is plotted as the solid line iRig. 2 For these parameter values, the asymptotic analysis predicts that the
travelling wave solution consists of three regions, each with different length scales.

5.1. Region A

Far upstream from the shock, the first relaxation mode dominates the waveform, and hence this region has width
of O(t1). This region can be seen Kig. 2a), where the solid line is the numerical solution and the dashed line
marks the asymptotic solutiqt2), corresponding to the partly-dispersed solution for the first relaxation mode. For
1> p> Py=1—-2A4,g00d agreementis seen between the two solutions. The numerical scheme has been fixed so
the centre of the viscous sub-shock i§ at 0. Moving downstream, the solutions begin to separajeagsproaches
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(b) 3

0.9 4

Fig. 2. Comparison of numerical and asymptotic solution®pffor the cased; = 0.1,71 = 1, A = 0.2, 7, = 0.01, ands = 5 x 107°.
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the valuePy = 0.8, marked inFig. 2(a) by a dotted line. This is the position at which the partly-dispersed first
relaxation mode matches onto the inner solution governed by the second relaxation m@&kc(Eee3.2.

5.2. RegionB

The middle part of the waveform is dominated by the second relaxation mode and has wigth)ofT@e region
governs the shape of the waveform betwégn= 1 — 241 and Py = 1 — 2(A1 + Ap) discussed irSections 3.2
and 3.3 respectivelyFig. 2(b) shows this region of the waveform, which is of scalewhere the partly-dispersed
inner solution(17), represented by the dashed line, is compared with the numerical soluf@nGbod agreement
is seen between the numerical and asymptotic solution&fer p > Pi1. As p approache®; (marked by a dotted
line in Fig. 2(b)), the partly-dispersed shock governed by the second relaxation mode matches a viscous sub-shock
of amplitudeP;.

5.3. RggionC

For the parameter values considered, asymptotic theory predicts that the head of the shock is dominated by the
small viscosity parameter, and has width a8 This region of viscous sub-shock can be seen cleaffygn2(c),
which is of scalé. Good agreement is seen between the numerical solution (solid line) and the asymptotic solution
(24)for the viscous shock (dotted line) féy > p > 0.

6. Summary

The asymptotic analysis presentediection 3shows that in the limi# <« 2 « 11, the structure of the travelling
shock can be divided into three classes depending on the values of the relaxation paramaterd,. Numerical
solutions corresponding to the three separate cases are illustrafggl B WhenA; > 1/2 (Case 1), the first
relaxation mode controls the shock everywhere. £pr< 1/2 andA; + A, > 1/2 (Case Il) a narrow sub-shock
of amplitude 1— 2A; and relative widthra/t1 controlled by the second relaxation mode is inserted in the first

1 T T T T T

0.9} 4
o Case |
8r / A,=0.6 )
0.7} i
0.6 4
p Os} Case Il / s
0.4}F A,=0.1 \Case {] i
A,=0.2 A,=0.31
0.3} A,=0.2 B
0.2} B
0.1 4
-4 -2 o 2 4 6 8
g

Fig. 3. Diagram shows how fully-dispersed solution is replaced with shock and sub-shadkssagdecreased below critical values. In this
numerical example, the valugs = 0.2, 73 = 1, 7, = 0.1 ands = 0.001.
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Fig. 4. Plot of shock widthyw, on a logarithmic scale as a function8f, for A = 0.25,71 = 1, 7, = 0.01 ands = 5 x 1075,

relaxation shock. Finally, i\ < 1/2 andA; + A, < 1/2 (Case lll) the shock consists of an outer partly-dispersed
solution controlled by the first relaxation mode, with an inserted partly-dispersed solution of amplitugd 1.

and relative widthr, /71 controlled by the second relaxation mode, and finally an inner viscous shock of amplitude
1—-2(A1+ Ap) and relative widtt/z1. This was the case discussed in detaéection 5 ThoughFig. 3shows the

general change in shock structureaschanges, namely an increase in shock slopaadecreases, the detailed
structure cannot be seen due to the change in the length scales. A better way of seeing the change in shock structu
is by considering a minimum length scale for the shock which may be defined by

dp -1
w(A1, A2, 11, T2, 8) (méax( de )) . (33)
Fig. 4 shows the variation o as a function ofA; for A, = 0.25 witht; = 1, 7, = 0.01 ands = 5 x 1078, The
solid line marks the numeric solution and the dashed lines the asymptotic results for the three separate regimes. Fo
A1 > 0.5 (Case |), the asymptotic results overlie the numeric resultsAAdecreases to less than 0.5 (Case II),
a sudden decrease in the minimum shock width is seen, followed by a similar decreasa wdeareases below
0.25(i.e.A1 + A2 < 1/2) corresponding to the appearance of the viscous inner shock (Case IlI).

The numeric and asymptotic methods described are now applied to parameter values relevant to sonic boom:
propagating through the atmosphere. For the particular case of aif @ &0Gstandard pressure

po=12kgm=3,  ¢=343ms!, Bg=12

Relaxation times are very sensitive to humidity. For a relative humidity of 50%, the relaxation parameters associated
with nitrogen (denoted by subscript 1), and oxygen (denoted by subscript 2) and the coefficient of thermoviscous
diffusion are given by

(Ao

71 =4.73x 107 %s, 7o =442 x 10 %5, =158x 10 10g =6.27x 107°,

| ot

(492 _ 337, 104,
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40 T T T T T

Fig. 5. Diagram shows the pressure profile in dimensional units, corresponding to the parameter values given by Kang and Pierce.

For convenience we choose the reference time introduced in the non-dimensiona(@ptmbetes = V71, SO
11 = 1. For shock over pressurgsy, less than 100 Pas,, < 0.0005 andV, the non-dimensional shock spe@q,
is close to 1. The relevant dimensionless parameters are then given by
0.0395 Pa 7.38Pa 395Pa
= —, Al = — , Ar = — .
Psh Psh Psh

T1=1, 2 = 0.0093 1)

Hence the structure of the shock can be classified as one of the three separate cases depending on the value of th
dimensional shock over pressusg,. For psp < 14.76 Pa we have Case |, a fully-dispersed shock of dimensional
width O(c71) which corresponds to O(16 cm).

For 1476 Pa < psn < 93.76 Pa, we have Case Il, with a sub-shock of width O(15 mm). Finallypfgr>
93.76 Pa we have Case Il with a very narrow viscous shock, the width of which dependsg.dhierce and Kang
[10] presented numerical data for the parameter values used aboygrard9.5 Pa, though without plotting the
resulting waveform. Ifirig. Swe plot the pressure profile in dimensional units, corresponding to the parameter values
given by Kang and Pierce. Asymptotic results suggest that this should correspond to Case I, with a partly-dispersed
solution controlled by the oxygen relaxation mode, together with a sub-shock of ampglitasd®A 1) psh = 24.7 Pa
controlled by the nitrogen relaxation mode. Numerical results using the method descriection 4are plotted
in Fig. 5, where the shock structure described above can be clearly seen.

The results presented by Pierce and K&h@] are within 5% of the results of the present paper. Using the
numerical method of Kang and Pierce, wheris treated as the independent varialjlas the dependent variable,
and the typographical errors in their governing equations have been corrected, excellent agreement is obtained with
the result using the method described®rction 4 No details were given by Kang and Pierce of the mesh size used
in their calculations so it is likely that discrepancies are due to numerical error.

Thus for sonic boom propagation, asymptotic methods can be used to identify shock scales without the need
for numerics. This is particularly useful when considering the more complicated problem of solving the governing
equations (1)as a PDE rather than just considering travelling wave solutions. Numerics could be impractical for this
problem, especially when considering very fine shock structures. It should be noted, however, that care must be taken
when considering propagation through a realistic atmosphere. The molecular relaxation times are very sensitive to
the amount of water vapour in the atmosphere, and hence, radically differ with altitude. Study is therefore needed
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to investigate the sonic boom waveform dependence on its own past history before comparisons can be made wit!
numerics.
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