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Summary

Emissions of biogenic volatile organic compounds

(bVOCs), are an important element in the global carbon

cycle, accounting for a significant proportion of fixed

carbon. They contribute directly and indirectly to global

warming and climate change and have a major effect on

atmospheric chemistry. Plants emit isoprene to

the atmosphere in similar quantities to emissions of

methane from all sources and each accounts for

approximately one third of total VOCs. Although metha-

notrophs, capable of growth on methane, have been

intensively studied, we know little of isoprene biodegra-

dation. Here, we report the isolation of two isoprene-

degrading strains from the terrestrial environment and

describe the design and testing of polymerase chain

reaction (PCR) primers targeting isoA, the gene encod-

ing the active-site component of the conserved isoprene

monooxygenase, which are capable of retrieving isoA

sequences from isoprene-enriched environmental

samples. Stable isotope probing experiments, using bio-

synthesized 13C-labelled isoprene, identified the active

isoprene-degrading bacteria in soil. This study identifies

novel isoprene-degrading strains using both culture-

dependent and, for the first time, culture-independent

methods and provides the tools and foundations for con-

tinued investigation of the biogeography and molecular

ecology of isoprene-degrading bacteria.

Introduction

Isoprene accounts for approximately one third of the total

flux of volatile organic compounds to the atmosphere, an

amount that is similar to the methane flux (Guenther et al.,

2012; Kirschke et al., 2013). In the atmosphere, isoprene

is rapidly photochemically oxidized resulting in a short life-

time (of the order of hours) and consequent low

concentrations. Attack by hydroxyl or nitrate radicals or

ozone leads to a variety of products depending on temper-

ature and pollutant (nitrogen oxides, NOx) levels (Atkinson

and Arey, 2003). Overall, isoprene has a significant effect

on atmospheric chemistry and hence climate change, due

both to the production of greenhouse gases (principally

ozone) and by reducing the hydroxyl radical-mediated oxi-

dizing capacity of the atmosphere, which increases the

lifetime of methane (Pacifico et al., 2009). In addition, iso-

prene oxidation-products form secondary organic aerosols

and cloud condensation nuclei, with implications for air

quality and climate (Fiore et al., 2012).

About 600 Tg y21 isoprene is emitted to the atmosphere

by terrestrial plants, although not all plant species produce

isoprene (Sharkey, 2013; Loreto and Fineschi, 2015). Iso-

prene synthesis occurs in the chloroplast, via the enzyme

isoprene synthase, which converts dimethylallyl pyrophos-

phate to isoprene (Logan et al., 2000). Isoprene protects

plants against heat stress by reducing heat-induced cell-

membrane damage, enhances tolerance of reactive oxy-

gen species and may affect plant-insect interactions

(Loivam€aki et al., 2008; Sharkey et al., 2008; Vickers

et al., 2009; Sharkey, 2013). In the marine environment

isoprene is released by phytoplankton and macroalgae

(Broadgate et al., 2004; Exton et al., 2015). Some bacte-

ria, including soil-dwelling species such as Bacillus

subtilis, release isoprene, as do some fungi (Kuzma et al.,

1995; Julsing et al., 2007; B€ack et al., 2010), although we

lack a clear understanding of why these organisms
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produce isoprene. A non-enzymatic reaction resulting in

isoprene was reported in humans and other animals,

associated with the mevalonate pathway of cholesterol

synthesis (Gelmont et al., 1981).

Although atmospheric isoprene concentrations are low [<

1–4 ppbv in one wide-ranging study (Greenberg et al.,

1999)], in the vicinity of isoprene sources (around or below

tree canopy level) concentrations are significantly higher.

For example, Wiedinmyer et al. measured ground level iso-

prene concentrations of 11 and 36 ppbv at sites in Texas

and Missouri respectively (Wiedinmyer et al., 2001; Wie-

dinmyer et al., 2005). Soils can act as a biological sink for

isoprene, at or below these concentrations. In field cham-

bers set up in temperate forest soils, isoprene was rapidly

depleted to below the 5 ppbv limit of detection (Cleveland

and Yavitt, 1997; Cleveland and Yavitt, 1998). In continuous

flow experiments conducted by Gray et al. (2015), soils sup-

plied with isoprene at concentrations of 2–200 ppbv

consumed isoprene at all concentrations, with a rate of 62

pmol g21 h21 at 20 ppbv. These data demonstrate both the

potential of soils to consume isoprene released locally in

soils and also to take up atmospheric isoprene, conclusions

also reached in mesocosm experiments by Pegoraro et al.

(2005). Several bacterial strains, tentatively assigned to the

genera Nocardia, Rhodococcus (Actinobacteria) and Alcali-

genes (Betaproteobacteria), were isolated from isoprene

enrichment cultures and shown to grow on isoprene as sole

growth substrate, (van Ginkel et al., 1987a,b; Ewers et al.,

1990; Cleveland and Yavitt, 1997) and, more recently, Pseu-

domonas, Alcaligenes and Klebsiella isoprene-degrading

strains were isolated from rubber-contaminated soil (Sri-

vastva et al., 2015). Strains were also obtained from the

marine environment, including representatives of Actinobac-

teria, Bacteroidetes and Alpha- and Gammaproteobacteria

(Acu~na Alvarez et al., 2009). None of these terrestrial iso-

lates was extensively characterized and the best

documented isoprene degrader to date is Rhodococcus sp.

AD45, a Gram-positive actinobacterium isolated nearly 20

years ago from freshwater sediment by the group of Dick

Janssen (van Hylckama Vlieg et al., 1998).

In Rhodococcus sp. AD45, isoprene is oxidized to epoxyiso-

prene (1,2-epoxy-2-methyl-3-butene) by a four-component

soluble diiron centre monooxygenase (SDIMO) with homology

to enzymes including the soluble methane monooxygenase

(sMMO) and alkene/aromatic monooxygenases (van

Hylckama Vlieg et al., 2000; Leahy et al., 2003). The epoxide

is then conjugated with glutathione, catalysed by glutathione-

S-transferase (GST) (IsoI) and oxidized in two steps by a

dehydrogenase (IsoH) resulting in 2-glutathionyl-2-methyl-

butenoic acid (Fig. 1) (van Hylckama Vlieg et al., 1998; van

Hylckama Vlieg et al., 1999). Interestingly, conjugation with

glutathione in Rhodococcus sp. AD45 contrasts with other

alkene utilizers, which often overcome the toxicity of epoxides

by forming coenzyme M conjugates or by hydrolysis (Ensign,

2001; Kottegoda et al., 2015). The genes encoding the mono-

oxygenase (isoABCDEF) and two subsequent enzymes,

together with two additional genes of unknown function, were

cloned and sequenced (van Hylckama Vlieg et al., 2000).

Recently, we sequenced the genome of Rhodococcus sp.

AD45 and showed, by mutagenesis, that isoprene monooxy-

genase (IsoMO) was essential for isoprene metabolism.

Using RNAseq, a cluster of 22 genes was identified, all of

which were induced by isoprene or the immediate product of

isoprene oxidation, epoxyisoprene (Crombie et al., 2015).

DNA stable isotope probing (DNA-SIP) is a cultivation-

independent technique with the ability to identify active

substrate-consuming organisms in environmental samples

(Radajewski et al., 2000; Dumont and Murrell, 2005). The

method relies on incubation of samples with stable-

isotope-labelled growth substrate. The incorporation of iso-

tope (typically 13C or 15N) into biomass (including DNA),

enables the identification of active microorganisms follow-

ing separation of labelled and unlabelled DNA by isopycnic

(density gradient) centrifugation.

Despite its abundance and climatic importance, our

knowledge of isoprene in the environment is heavily

skewed towards production in plants and atmospheric oxi-

dation, with only a few studies investigating isoprene bio-

degradation. Isoprene is an abundant plant secondary

metabolite, also produced in soils, and would provide a

good source of carbon and energy for bacteria. Strains

capable of growth on isoprene have frequently been iso-

lated from diverse environments, albeit generally not

characterized at the molecular level. Our hypothesis was

Fig. 1. Isoprene metabolism in Rhodococcus sp. AD45. Enzymes: IsoABCDEF, isoprene monooxygenase; IsoI, glutathione-S-transferase;
IsoH, dehydrogenase. HGMB, 1-hydroxy-2-glutathionyl-2-methyl-3-butene; GMB, 2-glutathionyl-2-methyl-3-butenal; GMBA, 2-glutathionyl-2-
methyl-3-butenoic acid; SG, glutathione; GSH, reduced glutathione.
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that isoprene degraders are widely distributed and may

play an important role in the biogeochemistry of this envi-

ronmentally important trace gas. Our aim was to isolate

and sequence isoprene degraders, and identify putative

isoprene metabolic genes. We aimed to develop gene

probes to target key diagnostic markers of isoprene degra-

dation and to identify the active isoprene-assimilating

organisms in soil enrichments, using DNA-SIP.

Results and discussion

Enrichment and isolation of two novel terrestrial
isoprene-utilizing bacteria

Our initial aim was to isolate isoprene degraders from con-

trasting environments in order to provide sequence data

for later cultivation-independent approaches. As isoprene

consumption has previously been observed in soils and

since isoprene is emitted from tree leaves, we used these

as source material. Separate enrichments were set up,

using either garden soil or Horse Chestnut (Aesculus hip-

pocastanum) leaves, in minimal medium and incubated

with isoprene. Both enrichments consumed isoprene and

two isolates (designated SC4 and LB1), capable of grow-

ing on isoprene as sole source of carbon and energy, were

obtained from soil and leaf samples respectively. The

nearly complete (1521 nucleotides) 16S rRNA gene

sequences of both strains SC4 and LB1 were identical to

strains of both Rhodococcus opacus and R. wratislaviensis

(Supporting Information Fig. S1). Strains SC4 and LB1

also grew on acetate, succinate, glucose, fructose, pro-

pane and butane as sole source of carbon and energy

(Supporting Information Table S1), in contrast to Rhodo-

coccus sp. AD45, which does not grow on propane or

butane (Crombie et al., 2015).

Genome sequencing

To identify isoprene-related gene sequences, we sequenced

the genomes of strains SC4 and LB1. Their genomes, 10.6

and 10.7 Mbp, are considerably larger than that of Rhodo-

coccus sp. AD45 (6.9 Mbp) and closer to that of R. jostii

RHA1 (9.7 Mbp) (McLeod et al., 2006; Crombie et al., 2015),

whereas the GC contents (66.7% and 66.6% respectively)

are typical of the genus (Supporting Information Table S2).

Identification of isoprene related genes in isolates

Our previous work (Crombie et al., 2015) detected a cluster

of 22 genes induced by isoprene, which appeared to be the

complete inventory of isoprene-responsive genes. In addition

to isoABCDEF, encoding the monooxygenase, and isoGHIJ

that encode a protein of unknown function, a dehydrogenase

and two glutathione-S-transferases previously described (van

Hylckama Vlieg et al., 2000), the cluster includes glutathione

biosynthesis genes, predicted aldehyde dehydrogenases and

a coenzyme-A disulfide reductase (Crombie et al., 2015). We

therefore searched for homologous sequences in the

genomes of strains SC4 and LB1, which are highly similar to

each other in this region (over 99% nucleotide identity). Using

the isoprene-responsive gene products previously identified

in Rhodococcus sp. AD45 as query sequences in tBLASTn

searches, we identified homologues of all of these 22 genes,

with amino acid sequence identity ranging from 50% to 96%

(Supporting Information Table S3). The most highly con-

served were isoABCDEF encoding the multicomponent

IsoMO (81–96%), whereas a predicted protein of unknown

function (SZ00_06083), highly induced by isoprene in Rhodo-

coccus sp. AD45, shared 50% amino acid identity with

sequences from these strains. We observed the same dupli-

cation of isoGHIJ (Fig. 2, 77–88% amino acid identity

between copies) as is present in Rhodococcus sp. AD45.

Between isoA and isoJ, both of the new strains contain a sec-

ond copy (81% amino acid identity between copies), not

present in Rhodococcus sp. AD45, of an aldehyde dehydro-

genase (aldh1) which is located approximately 10 000

nucleotides (nt) upstream of the monooxygenase in Rhodo-

coccus sp. AD45. A gene encoding a predicted coenzyme-A

disulfide reductase is also present in two copies (69% amino

acid identity between copies), although in strain LB1 (but not

in strain SC4) one copy has a nucleotide insertion approxi-

mately 255 nt from the end, resulting in a frameshift mutation,

suggesting this may not encode a functional protein. In com-

parison with Rhodococcus sp. AD45, five additional genes

are present, in both strains, in the middle of the cluster. These

are predicted to encode two hypothetical proteins and an

alpha/beta hydrolase domain-containing protein of unknown

function, an acetyl-CoA acetyltransferase and a 3-

hydroxyacyl-CoA dehydrogenase. Interestingly, in strain LB1,

another insertion in the acetyl-CoA acetyltransferase has

resulted in a frameshift mutation. None of these five genes

are present in this region of the Rhodococcus sp. AD45

genome, nor were remotely located homologous sequences

induced by isoprene (Crombie et al., 2015), implying that

they are not essential for isoprene metabolism. In comparison

with Rhodococcus sp. AD45, strains LB1 and SC4 are more

similar in this region of the genome, in terms of both

sequence identity and gene layout, with R. opacus PD630

(also included in Fig. 2). Previously, using sequence data, we

predicted, and confirmed, that R. opacus PD630 could grow

on isoprene (Crombie et al., 2015), although, beyond this, we

have no direct experimental data regarding isoprene-related

gene function in this strain.

Development and validation of functional gene markers
targeting isoA

Using the sequence data from these isoprene-degrading

strains, we designed probes to detect isoprene-related
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genes in environmental samples. isoA codes for the alpha-

subunit of the hydroxylase of IsoMO and contains the diiron

centre active site and was shown to be essential for iso-

prene degradation in Rhodococcus sp. AD45 (Crombie

et al., 2015). We, therefore, selected isoA as target for a

functional gene probe. To expand the diversity of isoA

sequences, we also retrieved isoA genes from draft

sequences of a Gordonia strain and a Mycobacterium strain

previously isolated from surface sediment from the Colne

estuary (Essex, UK), identified as Gordonia i37 and Myco-

bacterium AT1 (Acu~na Alvarez et al., 2009; Johnston,

2014). The isoA sequences of strains SC4, LB1, i37 and

AT1, together with those of Rhodococcus sp. AD45

(SZ00_06091) and R. opacus PD630 (Pd630_LPD03572),

were aligned at the amino acid level, and conserved regions

were used to design primers targeting isoA. To exclude

other non-isoprene-degrading members of the SDIMO fam-

ily, sequences of mmoX and xamoA, encoding the alpha

subunit of sMMO from Methylosinus trichosporium OB3b

(Cardy et al., 1991), and alkene monooxygenase from Xan-

thobacter autotrophicus Py2 (Zhou et al., 1996),

respectively, were also included in the alignment.

The isoA primers were validated by PCR amplification of

template DNA from contrasting sources (Supporting

Information Table S4): (i) genomic DNA from 15 isoprene-

degrading isolates, (ii) DNA extracted from three isoprene-

enriched soils and four isoprene enrichments of marine

and estuarine water and sediment and (iii) control DNA

extracted from eight non-isoprene-degrading isolates able

to grow on alkanes, alkenes or aromatic compounds. We

obtained PCR products of the expected size using DNA

extracted from all the isoprene-degrading isolates and

enrichments, but not from any of the non-isoprene

degraders. PCR products from enrichments were cloned

and analysed by restriction fragment length polymorphism

(RFLP) (Supporting Information Table S5). Representa-

tives of each operational taxonomic unit (OTU) were

sequenced, (all of which appeared to be isoA sequences)

and aligned at the amino acid level with IsoA sequences

obtained from the sequenced genomes. A phylogenetic

tree of the isoA nucleotide sequences (1011 nt) was con-

structed from the alignment (Fig. 3). All the sequences,

although from diverse phylogenetic groups including both

Gram-positive and Gram-negative strains, were relatively

similar (> 86% amino acid identity between sequences),

but could be broadly separated into two groups in which

the terrestrial sequences and those from the low-salinity

environment of Hythe, on the Colne estuary, were distinct

from marine and other estuarine sequences similar to IsoA

of Gordonia i37.

Active isoprene-assimilating bacteria identified by DNA-

stable isotope probing

As all four of our sequenced terrestrial isolates were rhodo-

cocci and all isoA sequences retrieved were relatively

similar, we used cultivation-independent methods to test

whether a greater diversity of isoprene degraders existed in

soils in a DNA-stable isotope experiment (DNA-SIP) using
13C-labelled isoprene, biosynthesized as described in

Fig. 2. The isoprene metabolic gene cluster from Rhodococcus sp. AD45 (Crombie et al., 2015), together with similar regions from R. opacus
PD630 and strains SC4 and LB1. The contigs containing the genes are identified by horizontal lines and numbers below. The monooxygenase
genes are shown in red, and other colours indicate genes of the corresponding predicted function between strains. Locus tags and gene
names are indicated with angled text. Locus tag prefixes: R. sp. AD45, SZ00_; R. opacus PD630, Pd630_LPD; R. sp. SC4, AXA44_; R. sp.
LB1, AZG88_.
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Experimental Procedures. Soil microcosms (in triplicate for

labelled substrate and duplicate for unlabelled-substrate

controls) were incubated with 0.5% (v/v) isoprene, without

any other amendments. Isoprene was consumed without an

appreciable lag phase, and incubations were terminated

after consumption of 10 lmol substrate g21 soil (15 days).

DNA was extracted from 13C- and control 12C-isoprene incu-

bations and separated into heavy and light fractions and

used for 454 pyrosequencing of 16S rRNA genes. The

unenriched soil at timepoint zero displayed a typically

diverse community, comprising 50% Proteobacteria, with

Planctomycetes, Actinobacteria, Bacteroidetes, Chloroflexi

and Firmicutes contributing an additional 40% (Fig. 4). The

major effect of the incubations was to greatly increase the

relative abundance of Actinobacteria, while having a rela-

tively minor effect on the remaining phyla (Fig. 4).

Multivariate analysis (Supporting Information Fig. S2) shows

that the unlabelled bacterial community of the 13C-isoprene

incubations (i.e. light DNA fraction) was extremely similar to

that of the timepoint zero community, suggesting that the

change in community profile during the incubations was due

to an enrichment of isoprene degraders. As expected, the

community represented by the light fraction of the 12C-iso-

prene incubations, derived from both isoprene-consumers

and non-consumers, was extremely similar to the total

(unfractionated) DNA from 13C-incubations. The heavy frac-

tion of 12C-isoprene incubations, which contained only a

very small fraction of the total DNA of 12C-incubations, was

less similar. This DNA results mainly from incomplete sepa-

ration, with minor effects due to factors such as GC content

of DNA. In contrast to all of these, the active isoprene

degraders represented by the heavy fractions of the 13C

incubations formed a distinct community (Supporting Infor-

mation Fig. S2) and displayed a dramatically altered

taxonomic profile (Fig. 5), becoming dominated by Rhodo-

coccus sequences, which comprised 88% 6 5%

(mean 6 s.d.) of the heavy fraction of 13C incubations.

These sequences were predominantly those of Rhodococ-

cus wratislaviensis, R. koreensis and R. globerulus (Fig. 5)

and were 147- to 161-fold more abundant in the heavy

Fig. 3. Phylogenetic tree of isoA genes from isolates and
environmental clones, constructed using the Maximum Likelihood
method in MEGA6 (Tamura et al., 2013). All positions containing
gaps and missing data were eliminated and there were 1011
nucleotide positions in the final dataset. The scale bar shows
nucleotide substitutions per site. Bootstrap values (500 replications)
greater than 50% are shown at the nodes. Isoprene-degrading
isolates are shown in bold. Cloned isoA sequences (Supporting
Information Tables S4 and S5) are labelled with the sample site
followed by clone identification number. WCO_L4, Western Channel
Observatory station L4; FW, freshwater.

Fig. 4. Soil bacterial community (based on 16S rRNA gene
amplicons) of labelled isoprene DNA-SIP microcosms. The pie
charts show (left) the unenriched soil community from timepoint
zero and (right) the 13C- isoprene-enriched total community (prior
to isopycnic centrifugation and DNA fractionation). For the right
hand chart, DNA from triplicate enrichments was pooled prior to
analysis.
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fractions compared to light fractions of 13C incubations, but

without any corresponding enrichment in the heavy fraction

of 12C-incubations (Supporting Information Fig. S3). Also

enriched in the heavy fractions of 13C-incubations were

members of the Betaproteobacteria, Comamonas spp. and

Variovorax spp., which together comprised 6.5% 6 1.2% of

the 13C heavy fractions (but were not detected in the 13C

light fractions), and were also enriched during the incuba-

tions, increasing from 0.3% to 0.7% of the total community.

These data clearly demonstrate that Rhodococcus and, to a

lesser extent, Comamonas and Variovorax spp. had assimi-

lated carbon, directly or indirectly, from labelled isoprene.

Searches of the publicly available databases did not identify

high-similarity putative isoprene-related genes in the family

Comamonadaceae (which encompasses both Comamonas

and Variovorax) (see Experimental Procedures). Compari-

son with the PCR-based isoA analysis, which generated

similar sequences from diverse phylogenetic groups,

Fig. 5. Bacterial communities derived from labelled isoprene DNA-SIP enrichments and fractionation. The bar chart shows 16S rRNA gene-
based composition of the unenriched soil community (timepoint zero), the isoprene-enriched total community (unfractionated) and labelled
(heavy) and unlabelled (light) components separated by isopycnic centrifugation and fractionation. The symbols on the x-axis correspond with
those shown in Supporting Information Fig. S2. The isoprene-assimilating community is represented by the heavy fractions of the three
replicate 13C incubations (solid red diamonds). T-0, timepoint zero; U-F, unfractionated; H, heavy fraction; L, light fraction. The inset (b) shows
the species composition of the rhodococci in the heavy fractions (mean of three replicates)
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suggests that the isoprene-degrading members of the

Comamonadaceae implicated in the SIP experiment are not

represented in the NCBI databases, or that they use genes

or possibly pathways dissimilar to those of the characterized

strains.

Previous studies of terrestrial environments have iso-

lated Alcaligenes, Klebsiella and Pseudomonas isoprene-

degrading strains in addition to the Actinobacteria

Nocardia and Rhodococcus, although some of these iden-

tifications were not based on molecular data and most

strains were not extensively characterized (van Ginkel

et al., 1987a,b; Ewers et al., 1990; Cleveland and Yavitt,

1997; van Hylckama Vlieg et al., 1998; Srivastva et al.,

2015). In our SIP incubations, 16S rRNA gene sequences

of Alcaligenaceae spp. were slightly enriched during the

incubations, increasing from 0.3% to 0.6% of the total com-

munity, but were concentrated (14:1) in the non-labelled

light DNA fractions. Pseudomonas spp., present at 0.9%

of the initial community, decreased to 0.1% following iso-

prene incubations and were also not labelled, whereas

Klebsiella were not detected at any point. These data indi-

cate that these taxa had not assimilated carbon from

isoprene under our experimental conditions.

Conclusions

The isoprene concentrations used here are considerably in

excess of those normally encountered in the environment

and the aim was not to replicate environmental conditions,

but rather to expand the diversity of known isoprene

degraders. Draft genome sequences showed that isoprene

monooxygenase was present in all our isoprene-degrading

isolates, which enabled the development of isoA primers to

effectively target this enzyme with high specificity. While

we cannot exclude the possibility that some sequences

may be missed, or that other isoprene-degrading enzymes

or pathways exist, these primers constitute an effective

tool to identify isoprene-related gene sequences in envi-

ronmental samples. DNA-SIP, to our knowledge the first

time this technique has been used to identify isoprene

assimilators, showed that the major isoprene utilisers in

the microcosms were Rhodococcus strains and that mem-

bers of the Comamonadaceae were also active in

isoprene degradation. The fact that we did not obtain iso-

lates from this family suggests that they may be resistant

to cultivation under our laboratory conditions, emphasizing

the importance of cultivation-independent techniques. This

study confirms that soils readily consume isoprene and

harbor a diverse community of isoprene degraders. Investi-

gation of their diversity, abundance and mechanisms of

isoprene degradation is essential to assess the environ-

mental relevance of the global biological isoprene sink and

the extent to which biodegradation moderates the effect on

the atmosphere of this abundant and climate-active trace

gas. This study provides the tools and foundations to fur-

ther investigate these topics. Future experiments should

search for novel genes and pathways involved in isoprene

degradation, perhaps using SIP coupled with metagenom-

ics. The isoprene-degrading community in the

phyllosphere is also worthy of investigation, as our isolation

of a strain from this environment, to our knowledge the first

published example, suggests that isoprene degraders may

be present or abundant on leaves, close to the major

source of isoprene to the atmosphere.

Experimental procedures

Cultivation of bacterial strains

The terrestrial isoprene-degrading strains were routinely

grown in minimal medium (CBS medium) which contained

(per 1 l): 0.1 g MgSO4.7H2O, 0.8 g NH4Cl, 1.5 g KH2PO4,

6.3 g Na2HPO4 and 10 ml of trace element solution (Tuovinen

and Kelly, 1973) (pH 7.0). Marine isoprene degrading-bacteria

were grown in mineral salts medium prepared according to

Schaefer et al. (2002), except that it contained 20 g l21 NaCl

and was supplemented with Na3VO4 and Na2SeO3 (5 ng L21

each). Cultures were set up in serum vials (120 ml) sealed

with grey butyl rubber seals or in Quickfit flasks (250 ml or 2 l)

fitted with SubaSeal stoppers (Sigma-Aldrich) and isoprene

was added (as gas) to a final concentration of 0.6–1% (v/v) by

injection through the septum. The cultures were incubated at

308C, shaking at 150 r.p.m.

For growth tests on other gaseous substrates, 25 ml of

CBS medium in serum vials (120 ml) was inoculated with

isoprene-grown culture (5% inoculum) and incubated with

10% (v/v) substrate. Cultures with succinate, glucose, fructose

or acetate (10 mM) as growth substrates were prepared in uni-

versal bottles (20 ml) containing 5 ml CBS medium inoculated

with 5% of isoprene-grown culture. Isoprene (catalogue no.

I19551) was obtained from Sigma Aldrich.

Isolation of isoprene-degrading strains

Isoprene enrichment cultures were set up using garden soil

from Leamington Spa (UK) or leaves of a Horse Chestnut tree

from the campus of the University of Warwick (Coventry, UK).

Isoprene (0.6% v/v) was added to 50 ml CBS minimal medium

in flasks (250 ml) and inoculated with either 0.3 g soil or one

leaf, cut into small pieces. The optical density of enrichment

cultures was followed spectrophotometrically at 540 nm and

isoprene uptake was monitored with a gas chromatograph fit-

ted with a flame ionization detector (GC-FID) as described

previously (Crombie et al., 2015). Enrichment cultures were

streaked on CBS agar plates and incubated at 308C in a des-

iccator with isoprene vapour (approximately 5% v/v). Colonies

were subcultured until pure, confirmed by phase contrast

microscopy (Zeiss Axioscop). Marine strains for primer design

and validation were isolated as described previously (Acu~na

Alvarez et al., 2009; Johnston, 2014).
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DNA extraction, amplification and sequencing of 16S

rRNA genes

DNA was extracted from isolates and enrichment cultures

using the FastDNA Spin Kit for Soil (MP Biomedicals), follow-

ing the manufacturer’s instructions. For identification of

strains, 16S rRNA genes were amplified using 27f/1492R pri-

mers (Lane, 1991). Amplicons were purified, cloned into

pGEMT-easy vector (Promega) and sequenced with M13 pri-

mers (Invitrogen).

Genome sequencing, annotation and mining

High molecular-mass genomic DNA was extracted from

500 ml mid-late exponential cultures of isoprene-degrading

strains following the Marmur extraction method (Marmur,

1961) except that the sodium dodecyl sulfate (SDS) concen-

tration was increased to 2% (w/v) and the incubation period at

558C in sucrose/ethylenediaminetetraacetic acid/Tris buffer

and SDS extended to 5 h to achieve better cell lysis.

The genome of Gordonia i37 was sequenced at Oregon

State University (USA) using a Roche 454 pyrosequencing

platform. The genomes of Mycobacterium AT1, Rhodococcus

SC4 and Rhodococcus LB1 were sequenced using Illumina

GAIIx at the University of Warwick Genomics Facility (Coven-

try, UK). Reads were assembled into contigs using CLC

Genomics Workbench for de novo assembly (CLC bio, Aar-

hus, Denmark). The genome sequences were uploaded to

RAST (Rapid Annotation using Subsystem Technology) for

annotation. Local nucleotide databases were constructed

using NCBI BLAST in BioEdit. The database was mined using

tBLASTn with the amino acid sequences of genes shown to

be important in isoprene metabolism in Rhodococcus sp.

AD45 as query sequences. These Whole Genome Shotgun

projects have been deposited at DDBJ/EMBL/GenBank under

the accession numbers LTCZ00000000 (SC4) and

LSBM00000000 (LB1). Versions described in this paper are

LTCZ01000000 and LSBM01000000. Cloned isoA sequences

and isoA gene sequences of Mycobacterium AT1 and Gordo-

nia i37 have been deposited under accession numbers

KU870702 – KU870744 and KU870745 and KU870746

respectively.

isoA Primer design and PCR

Deduced amino acid sequences of isoA and other related

enzymes were aligned using ClustalW in Mega6 (Tamura

et al., 2013). The alignment was visually inspected for con-

served regions specific to isoprene degraders, which were not

conserved among homologous sequences from related

SDIMO enzymes. Primers for isoA amplification, containing a

maximum of three degenerate bases, were designed based

on these regions (50-TGCATGGTCGARCAYATG-30 and 50-

GRTCYTGYTCGAAGCACCACTT-30), yielding a predicted

amplicon of 1015 bp (Rhodococcus sp. AD45 template).

These primers were used with a touchdown PCR protocol: an

initial step at 948C for 3 min was followed by 19 cycles of

denaturation at 948C for 30 s, annealing at variable tempera-

tures for 45 s, and extension at 728C for 60 s. The annealing

temperature, initially 728C, was decreased by 18C per cycle

until 548C and maintained at this temperature for a further 25

cycles, followed by a final extension at 728C for 5 min.

Clone libraries

Clone libraries were constructed from isoA amplicons using

DNA extracted from isoprene enrichments of soil, sediment or

water. The purified isoA amplicons were cloned into pGEMT

Easy vector (Promega) prior to transformation into Esche-

richia coli TOP10 cells (Invitrogen) following the

manufacturers’ instructions. Clones were screened by PCR

using M13 primers and RFLP using EcoRI and MspI restric-

tion enzymes (Fermentas). Clones yielding identical restriction

fragment profiles on agarose gels were designated OTUs and

representatives of each OTU were sequenced using M13

primers.

Search for iso genes in the Comamonadaceae

Tblastn (Altschul et al., 1990) was used to search the NCBI nr

and genome databases and 153 whole genome shotgun proj-

ects deposited in NCBI, for isoprene-degrading gene

sequences among the Comamonadaceae. Using IsoA from

Rhodococcus sp. AD45 as query, genes with 46–48% amino

acid identity were identified in the genomes of Hydrogeno-

phaga sp. T4, Comamonas badia DSM 17552 and Variovorax

paradoxus ZNC0006. Genes encoding the other subunits of

the monooxygenase were identified in the Hydrogenophaga

and Comamonas genomes, but no identifiable additional iso-

prene metabolic genes were found nearby, and no hits to IsoI

were found in any of the genomes in any location (evalue

0.0001). The isoA homologues were more similar to charac-

terized toluene monooxygenase genes, such as touA from

Pseudomonas stutzeri OX1 (67–73% amino acid identity)

(Bertoni et al., 1998), suggesting that isoprene may not be

their natural substrate.

Biosynthesis of [1,2,3,4,5-13C]-2-methyl-1,3-butadiene

([U-13C]-isoprene) from D-[U-13C]-glucose

Uniformly labelled 13C-isoprene was prepared utilizing an

isoprene-producing engineered variant of E. coli BL21,

expressing a functional mevalonate pathway and an isoprene

synthase, as biocatalyst. Specifically, the genes encoding thio-

lase, mevalonate synthase and 3-hydroxy-3-methyl-glutaryl-

(HMG-) CoA reductase (mvaE, mvaS) were derived from

Enterococcus faecalis, the gene encoding mevalonate kinase

was derived from Methanosarcina mazei, and the genes

encoding phosphomevalonate kinase, mevalonate pyrophos-

phate decarboxylase and isopentyl-PP isomerase were from

Saccharomyces cerevisiae. This recombinant pathway serves

to channel carbon from glucose to the isoprene precursor

dimethylallyl pyrophosphate (DMAPP). The final intracellular

enzymatic step to convert DMAPP to isoprene was catalyzed

by recombinant isoprene synthase from Populus alba. This

strain was designated E. coli CMP1082 and has been

described in detail elsewhere (McAuliffe et al., 2015). Details

of fermentation and isoprene recovery and its 1H NMR spec-

trum are included in Supporting Information.

8 M. El Khawand et al.

VC 2016 The Authors Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd,
Environmental Microbiology, 00, 00–00



DNA stable isotope probing experiments

For SIP incubations, 5 g soil (pH 7.4), collected from the upper

5 cm (after removal of vegetation and leaf litter), in the vicinity

of Willow (Salix fragilis) trees on the University of East Anglia

campus, was incubated in serum vials (120 ml volume) with

0.5% (v/v) isoprene in triplicate (labelled substrate) or dupli-

cate (unlabelled substrate). Vials were incubated at room

temperature (228C) in the dark. Headspace isoprene concen-

tration was monitored by GC-FID. When substrate was

depleted, additional isoprene was injected through the septum

to the original concentration. Incubations were terminated and

DNA extracted from the soil when 10 mmol g21 had been con-

sumed. Control incubations with autoclaved soil were also

conducted. DNA extracted from samples was separated into

heavy (13C-labelled) and light (unlabelled) fractions as previ-

ously described (Neufeld et al., 2007). Briefly, 1–2 mg DNA

was added to caesium chloride solution (final density of

1.725 g ml21) and subjected to density gradient ultracentrifu-

gation (177 000 3 g, 40 h, 208C, Beckman Vti 65.2 rotor). The

contents of each tube were separated into 12–15 fractions

and the density of each fraction measured by refractometry

(AR200 digital refractometer, Reichert, Buffalo, USA). DNA

from each fraction was precipitated, resuspended in nuclease-

free water and characterized by 16S rRNA gene analysis

using denaturing gradient gel electrophoresis (DGGE). DGGE

showed unique profiles in heavy, compared to light, fractions

of 13C-incubations while the 12C incubations exhibited similar

profiles between fractions, indicating that heavy fractions from
13C incubations contained the DNA of isoprene degraders

(data not shown). Based on fraction density and DGGE pro-

files, fractions 7 and 11 were identified as containing labelled

and unlabelled DNA, respectively, designated ‘heavy’ and

‘light’ and used for downstream analysis. DNA was obtained

from six different treatments: extracted from timepoint zero

(one sample); extracted following 13C-isoprene incubation but

prior to fractionation (unfractionated); and after separation into

heavy and light fractions for both 13C- and 12C-isoprene incu-

bations. For 13C heavy fractions triplicate samples were

analysed individually, but for the other treatments the DNA

was pooled prior to analysis.

Denaturing gradient gel electrophoresis

Bacterial 16S rRNA genes were amplified using primers

341F-GC (Muyzer et al., 1993) and 907R (Muyzer et al.,

1998). The PCR products were run on an 8% (w/v) polyacryl-

amide gel with a 30–70% linear denaturant gradient.

Electrophoresis was carried out for 16 h, at 80 V, 608C using

the DCodeTM Universal Mutation Detection System (Bio-Rad),

stained with SYBRVR Gold Nucleic Acid Gel Stain (Invitrogen)

and imaged using a BioRad GelDoc system.

Bacterial 16S rRNA gene analysis by 454
pyrosequencing

Labelled (heavy) and unlabelled (light) DNA from SIP incuba-

tions was characterized by sequencing of 16S rRNA gene

amplicons generated by PCR using the primers 27Fmod (50-
AGRGTTTGATCMTGGCTCAG-30) and 519Rmodbio (50-
GTNTTACNGCGGCKGCTG-30) using a Roche 454 FLX tita-

nium instrument at MRDNA (Molecular Research LP),

Shallowater, USA. Sequence data were processed at MRDNA

using a published pipeline (Dowd et al., 2008; Capone et al.,

2011). Briefly, the Q25 reads were stripped of barcodes and

primers. Short sequences (< 200 bp), sequences with ambig-

uous base calls and those with>6 bp homopolymer runs

were removed. Remaining sequences were denoised using a

custom pipeline, OTUs clustered at 97% sequence identity,

chimeric sequences were removed using Uchime (Edgar

et al., 2011) and taxonomy was assigned using BLASTn

against the RDPII/NCBI database (v 11.1) (Cole et al., 2014).

An average of 3320 sequences per sample were used for

analysis.

Statistical analysis

The Bray-Curtis distance measure was applied to log-

transformed relative abundance and used to generate non-

metric multidimensional scaling (NMDS) plots using

Primer 6 (Primer-E, Plymouth, UK).
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13C heavy fraction n 5 3; other fractions, pooled DNA from

duplicate (12C) or triplicate (13C) incubations. The bar chart
shows that Rhodococcus sequences were not enriched in
the heavy fraction of 12C-isoprene incubations, but were
highly enriched (over 100-fold) in the heavy fractions, com-

pared to light fractions, of 13C-isoprene incubations.
Fig. S4. 1H-NMR spectrum of U-13C-isoprene biosynthe-
sized by recombinant E. coli strain CMP1082.
Supplementary Methods.
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