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Abstract
Understanding how the emergence of the anthropogenic warming signal from the noise of internal
variability translates to changes in extreme event occurrence is of crucial societal importance. By
utilising simulations of cumulative carbon dioxide (CO2) emissions and temperature changes from
eleven earth systemmodels, we demonstrate that the inherently lower internal variability found at
tropical latitudes results in large increases in the frequency of extreme daily temperatures (exceedances
of the 99.9th percentile derived frompre-industrial climate simulations) occurringmuch earlier than
formid-to-high latitude regions.Most of theworld’s poorest people live at low latitudes, when
considering 2010GDP-PPP per capita; conversely thewealthiest population quintile disproportio-
nately inhabitmore variablemid-latitude climates. Consequently, the fraction of the global
population in the lowest socio-economic quintile is exposed to substantiallymore frequent daily
temperature extremes aftermuch lower increases in bothmean global warming and cumulative CO2

emissions.

1. Introduction

To understand how detectable anthropogenic influ-
ences on the climate system will proliferate with
time, a large body of literature has considered the
question of when the signal of climate change
emerges from the background noise of internal
variability. This ‘time of emergence’ concept has been
considered in both observational records and climate
model simulations, for a range of climate indices such
as temperature (Hawkins and Sutton 2009, Diffen-
baugh and Scherer 2011, Joshi et al 2011, Mahlstein
et al 2011, Hawkins and Sutton 2012, Hawkins
et al 2014), precipitation (Giorgi and Bi 2009,
Maraun 2013), the hydrological cycle (Sedláček and
Knutti 2014), sea level rise (Lyu et al 2014) and even
transitions between different ecosystem regimes
(Mahlstein et al 2013).

There has also been intense public and scientific
interest in recent years as whether and to what extent
the severity and frequency of extreme weather events
have increased in response to anthropogenic climate
warming (Peterson et al 2012, 2013, Herring
et al 2014). However, determining how the ‘time of
emergence’ concept can be applied in the context of
extreme events continues to be a developing area of
research. Recent work (Fischer and Knutti 2015) has
quantified the fraction of all moderate heat extremes
and precipitation extremes globally which could be
attributed to anthropogenic climate change in the pre-
sent-day as well as for future climate change scenarios,
while the emergence of statistically significant changes
to specific climate extreme indices have also been
demonstrated (King et al 2015).

A key interpretation of studies on the time of
emergence of climate change indicators suggests that,

OPEN ACCESS

RECEIVED

27March 2016

REVISED

1May 2016

ACCEPTED FOR PUBLICATION

4May 2016

PUBLISHED

17May 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd

http://dx.doi.org/10.1088/1748-9326/11/5/055007
mailto:luke.harrington@vuw.ac.nz
http://dx.doi.org/10.1088/1748-9326/11/5/055007
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/11/5/055007&domain=pdf&date_stamp=2016-05-17
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/11/5/055007&domain=pdf&date_stamp=2016-05-17
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


on seasonal timescales (Diffenbaugh and
Scherer 2011, Mahlstein et al 2011, Kirtman et al 2013,
Mora et al 2013), climate signals may emerge from the
‘noise’ of internal climate variability more quickly for
low latitude regions than elsewhere around the world.
This has been convincingly demonstrated for mean
climate indicators (Diffenbaugh and Scherer 2011,
Mahlstein et al 2011), but these implications have not
been explored when considering the exposure of dif-
ferent parts of the global population to the emergence
of extremes, particularly temperature extremes which
have been found to occur much earlier than precipita-
tion-related extremes (Fischer et al 2014, King
et al 2015).

When considering the regional-scale impacts
which may occur in response to a changing climate,
the majority of results are communicated with respect
to corresponding changes in global mean temperature
—this comparison is useful in the context of interna-
tional climate targets, which are also framed in rela-
tion to global mean temperature anomalies (Knutti
et al 2016). However, progress in recent years quanti-
fying the near-linear correlation between cumulative
carbon dioxide (CO2) emissions with corresponding
global temperature anomalies (Allen et al 2009, Mat-
thews et al 2009, Meinshausen et al 2009) have per-
mitted a more in-depth consideration of how the
regional impacts of climate change may respond
directly to the emission of long-lived greenhouse
gases, with potentially important policy implications
(Frame et al 2014).

In this study, we examine evidence for spatial het-
erogeneity in the time-evolution of extreme temper-
ature exceedances between different regions of the
world aggregated according to local population and
income characteristics, using for the first time, a direct
comparison with the accumulation of simulated CO2

emissions.

2.Data andmethods

Following the methodology of previous work by
Fischer and Knutti (2015), we employ the use of the
‘probability ratio’ (PR)metric, defined as PR=P1/P0
where P0 is the probability of exceeding a certain
quantile during the pre-industrial control period and
P1 is the likelihood of exceedance in a more recent
period, for example the last 30 years. PR can be
interpreted in a climate modelling framework as the
increased likelihood of an extreme temperature
threshold being exceeded, when comparing a more
recent time periodwith a representation of a climate in
the absence of human interference (Allen 2003, Stott
et al 2004).

Using models from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5, Taylor et al
2012), we concatenate ‘Historical’ simulations for the

period 1901–2005 with corresponding representative
concentration pathways (RCPs) for the period
2006–2100, and then consider time-varying PR values
using moving 30-year windows. In this analysis, we
choose to define P0 as the 99.9th percentile of daily
temperatures (corresponding to a 1-in-1000 day
temperature extreme) based on 200 years of pre-
industrial simulations. By focussing on changes to the
number of exceedances above a fixed, well-defined
percentile threshold over running 30-year intervals,
our analysis does not require any assumptions about
the shape and type of the underlying statistical dis-
tribution, and thus avoids recent concerns relating to
the use of parametric analysis when considering a non-
stationary time-series for the analysis of climate
extremes (Sardeshmukh et al 2015, Sippel et al 2015).

In order to improve confidence in temperature
projections by reducing model uncertainty associated
with carbon cycle feedbacks, the RCP scenarios have
been created with prescribed concentrations rather
than emissions (Moss et al 2010). Consequently, the
only previous studies considering the physical climate
impacts of cumulative emissions from RCP scenarios
have inferred cumulative CO2 based on a best-guess
linear scaling of global mean temperature anomalies
(Seneviratne et al 2016). Here, we instead utilise esti-
mated RCP emissions calculated by Jones and collea-
gues (2013), whereby the time-evolution of
atmospheric carbon and corresponding simulated
exchange of carbon with land and ocean sinks for a
smaller subset of earth system models (table S1) have
been used to infer anthropogenic emissions that are
compatible with each prescribed concentration path-
way. Thus, all subsequent calculations of cumulative
emissions corresponding to extreme climate impacts
include the uncertainty in translating global warming
anomalies to cumulative emissions as well as the
uncertainty in linking global temperatures to PRs
(figure S1).

Previous work has considered the temporal evol-
ution of PR (or similarly, risk ratios) averaged either
globally or over large regions (figure 1(a)). Here, we
choose to focus instead on when specific PR thresh-
olds are exceeded at a single grid scale. Framing the
emergence of temperature extremes in this manner
also enables a consistent method of comparison
between individual locations, as well as between differ-
ent RCP scenarios. We define the cumulative emis-
sions of probability ratio emergence (CEPREX) as the
simulated accumulation of CO2 emissions (since
1870) corresponding to the central year of the 30-year
period over which a specific PR threshold (X) is excee-
ded at a specific grid cell—we note that a PR threshold
is only considered to be exceeded when all subsequent
values remain above the same threshold for the
remainder of the time series available (2100). For
example, figures 2(a), (c) and (e) show, respectively,
the CEPRE corresponding to when the PR exceeds 2,
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10 and 50 for each grid point globally. Hawkins et al
(2014) highlighted possible endpoint effects with this
type of analysis, but sensitivity tests (figure S8) have
shown this is negligible in this study, due to the low
variability in PR.

To consider how these emergent changes in PR
are experienced by the populated regions of the world,
we overlay global population and gross domestic pro-
duct data, accounting for purchasing power parity
(GDP-PPP), prepared for the year 2010 by the Global
Carbon Project (http://www.cger.nies.go.jp/gcp/
population-and-gdp.html) at a spatial resolution of
0.5°×0.5° (figure S5). Future changes to population
and economic growth will have clear influences on
these results—we have chosen to focus on fixed data of
the present-day to ascertain emergent risks for present
populations, and consider future projections of popu-
lation and economic data in the supplementary mat-
erial. While internal variability in temperature is
greater over smaller spatial scales, the aggregation of
grid cells over areas comparable in size to populated
regions of the world have previously demonstrated
discernible shifts in the probability distributions of
temperature and precipitation extremes (Fischer
et al 2013, 2014), and thus will be suitable for analysing
the emergence of high-temperature PRs.

3. Results

Figure 2 illustrates the cumulative emissions required
for PR thresholds of 2, 10 and 50 to be exceeded in
different regions of the world. The maps show the
median model CEPRE for each PR threshold using
RCP8.5 simulations, while the corresponding timing
of exposure of the poorest and wealthiest quantiles of
the global population are also presented. Considering
the spatial distribution of CEPRE for each PR thresh-
old, it is clear that fewer cumulative emissions are
required for the continual exceedance of these PR
thresholds to occur for lower latitudes, compared with
higher latitudes, while oceanic regions also generally
appear to experience a more rapid time of emergence
than corresponding land surfaces nearby. These
results are consistent with previous research (Diffen-
baugh and Scherer 2011, Fischer and Knutti 2015) and
suggests that although land and high latitude regions
experience larger warming signals than the global
mean, the variability in daily temperatures over ocean
and low latitude regions are significantly lower,
thereby resulting in the earlier emergence of more
frequent high-temperature extremes.

Considering the differences over quintiles inGDP-
PPP per capita, we find increasingly large differences
in CEPRE between the wealthiest and poorest

Figure 1. Schematic illustrating how the time-evolution of high-temperature probability ratios are converted to theCEPREmetric. (a)
Time-evolution of PR for an individual grid point, presented at the central year of the 30-year period (dashed red line given as
example) over which each PR valuewas calculated. (b)Corresponding globalmean temperature anomalies (relative to 1861–1880)
over the period 1901–2100. (c)Compatible cumulative CO2 emissions over the same period,measured as a total since 1870. The black
asterisk corresponds to the year when a PR threshold of 10 (grey dashed line) isfirst exceeded, and continues to remain so, with the
corresponding blue asterisk indicating theCEPRE10 value for that particular grid box.
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populations, as the PR threshold increases. For exam-
ple, comparing the panels in figure 2 for a PR of 2
(figure 2(b)) shows minor differences in the evolution
of population exposure with warming between the
two economic groupings, but considering the cumula-
tive emissions required for population exposure to a
much higher PR threshold of 50 reveals a much wider
gap in the time of emergence between the two sub-
populations, albeit with large variability between
models. It is also noted that CEPRE2 is less than
400 PgC for nearly 100% of both sub-populations,
which corresponds to present-day estimates of global

cumulative emissions (Peters et al 2015). Interestingly,
when considering the CEPRE for RCP4.5 and RCP2.6
simulations instead (figures S10 and S11), the differ-
ences in the timing of PR exposure for the lower lati-
tude locations are negligible. Instead, it is exceedances
of the higher PR thresholds which are not reached for
mid-to-high latitudes by the end of the century.

It is important to note that the wealthiest quintile
of the global population is dispersed over a land area
seven times greater than that of the poorest quintile—
however, even considering regions of equal land area,
an equivalent fraction of the poorest populations

Figure 2. Left-hand panels show the global distribution of themedianmodel estimate of the cumulative emissions of probability ratio
emergence (CEPRE). This is defined at the simulated cumulative emissions of carbon dioxide (in Petagrams of carbon, with respect to
1870) at the central year of the 30-year periodwhen the probability ratio for one-day temperature extremes permanently exceeds a
threshold of (a) 2; (c) 10 and (e) 50 at each individual grid point.White regions indicate where themedianmodel response shows no
exceedance of the respective PR threshold by the end of 2100. Corresponding right-hand panels show the cumulative fraction of the
poorest (red) andwealthiest (blue) quintiles of the global population (based on 2010GDP-PPP per capita)which are exposed to the
specified PR threshold exceedances, also as a function of cumulative carbon emissions, for elevenCMIP5models over the period
1901–2100, using ‘Historical’ and ‘RCP8.5’ simulations.
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continues to experience earlier emergence of all three
PR thresholds than their wealthier counterparts
(figure S6).

Comparing, for each individual model, the differ-
ence in cumulative emissions required for 50% of the
poorest population quintile to exceed each PR thresh-
old versus the equivalent to occur for 50% of the
wealthiest quintile, figure 3 reveals that nearly all mod-
els across all RCP scenarios show high-temperature
PRs occurring earlier for the poorest populations than
for their wealthier socio-economic counterparts.
Under an RCP8.5 scenario for example, models sug-
gest that between −10 and 560 PgC of additional car-
bon would be emitted between the time when 50% of
the poorest members of society continually experience
a 50-fold increase in 1-in-1000 day hot extremes and
the timewhen exposure occurs for an equal number of
citizens within the wealthiest population quintile,
thereby emphasising the contrasting time horizons
available for adaptation measures. Supplementary
analysis reveals that models which exhibit the largest
differences in the timing of exposure between the two
sub-populations are actually those with a relatively
modest transient climate response to cumulative car-
bon emissions (TCRE, Gillett et al 2013), and
vice versa (figure S2). Rapid increases in PRs occur in
tropical latitudes for all models, while corresponding
PR increases in higher latitudes only occur quickly for
the high-TCRE models (figure S4), subsequently
resulting in smaller differences in CEPRE between the
two sub-populations.

Further interrogating the differences in the cumu-
lative distribution of CEPRE between the wealthiest
and poorest socio-economic quintiles, figure 4 shows

the differences in the fractions of each population
quintile which have experienced emergence of each
PR threshold, as a function of global cumulative CO2

emissions. This figure demonstrates that (1) after a
given level of cumulative emissions, up to an addi-
tional 60% of the poorest members of society cross
each of these PR thresholds than corresponding weal-
thy populations; and (2) these patterns of unequal
population exposure in response to accumulating CO2

emissions occur consistently across all three RCP sce-
narios. This shows that the differences in the timing of
emergence of temperature extremes between low lati-
tude and high latitude regions are insensitive to the
rate of temperature change over the twenty-first
century.

In 2013, the United Nations Framework Conven-
tion on Climate Change established theWarsaw Inter-
national Mechanism to address the potential loss and
damage from climate change impacts for developing
countries (James et al 2014). The policy-relevance of
our result lies in the disparity between richer and
poorer people in terms of their exposure to the timing
of emergence of temperature extremes. Whilst expo-
sure to higher PRs does not result in higher vulner-
ability, the adaptive capacity of a region can generally
be considered to scale with (1) climate variability and
(2) income—certainly across the range implied by
considering the richest and poorest quintiles
(Grambsch and Menne 2003, Hayden et al 2011).
These results do therefore suggest, ceteris paribus, ear-
lier and more significant relative vulnerability to
temperature extremes among the world’s poor and are
thus of potential importance to policymakers.

Figure 3.The difference in cumulative emissions between the central year (of the 30-year period)when 50%of the poorest population
quintile experiences the continuous exceedance of a given PR threshold, and the corresponding central year when 50%of the
wealthiest population quintile exceeds that same threshold. Onlymodel values are shownwhere greater than 50% cumulative
exposure occurs for both sub-populations by 2100. Blue, black and red circles correspond to eachmodel usingRCP2.6, RCP4.5 and
RCP8.5 simulations, respectively.
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4.Discussion

In this study, we have for the first time simulated the
direct influence of cumulative carbon emissions on the
time of emergence of daily extreme temperatures, by
considering the CEPRE metric at specific PR thresh-
olds. In considering only the persistent emergence of
given PR thresholds in the context of fractional
population exposure, our results are less sensitive to
internal variability, despite the smaller spatial scales
considered. Moreover, previous research has found
the emergence of more frequent heat extremes aver-
aged over a longer time period (such as 5-day or 30-day
anomalies) occurs even earlier when compared with
1-day extremes (Fischer andKnutti 2015).

By assessing emergent PR increases as a function of
cumulative CO2 emissions, this approach serves well

to evaluate the relative changes in heat extremes
between different regions in the world, as well as
across scenarios, and could therefore be of use to those
working in vulnerability, impacts and adaptation, and
to integrated assessment modellers, with the caveat
that the continuing exceedance of specific PR thresh-
olds could be interpreted as a proxy for heat-related
damages (Dunne et al 2013, Burke et al 2015, Hansen
and Sato 2016).

While the compatible emissions profiles used in
this study have shown to accurately replicate the origi-
nal Integrated Assessment Models used in developing
the RCPs (Jones et al 2013), it has been demonstrated
that emission-driven simulations overestimate warm-
ing projections when compared with concentration-
driven simulations (Friedlingstein et al 2014). We
therefore choose to avoid specifying absolute

Figure 4.Difference in the fraction of population exposure to specified PR thresholds (colours) between the poorest 20% and the
wealthiest 20%of the global population, as a function of CEPRE. Positive values indicate that a greater fraction of the poorest
population quintile is experiencing permanent exceedances of each specified PR threshold, comparedwith thewealthiest quintile,
after a given quantity of cumulative carbon emissions.
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cumulative emission targets for preventing the emer-
gence of specific PR thresholds. However, even with
the added uncertainty of considering the end-to-end
link between cumulative emissions and extreme tem-
peratures, the key differences in fractional exposure of
emergent high-temperature PRs between the wealth-
iest and poorest global population quintiles remain
clear, as evidenced by the equivalent results found
when considering the link with rises in global mean
temperatures directly (figures S12–S14).

Even if emissions are towards the low end of the
range considered by the RCP scenarios, this analysis
shows that the pattern of changes in frequency of daily
temperature extremes remains robust: daily temper-
ature extremes emerge to more frequently affect the
poorest 20% of the global population, when compared
with the wealthiest 20%of the global population for all
RCP scenarios, for a range of PRs. This result can be
explained primarily due to the fact that the poorest
people in the world densely populate lower latitude
regions, where the low variability in temperature
enhances the pace of emergence of a given signal-to-
noise ratio when compared with higher latitude
regions (Hawkins and Sutton 2009, Diffenbaugh and
Scherer 2011,Mahlstein et al 2011, Hawkins et al 2014,
Hansen and Sato 2016).

As global cumulative carbon dioxide emissions
continue to increase, the fractional gap in population
exposure between the poorer and wealthier members
of society will only widen for exponentially higher PR
thresholds (figure 4). While all populated regions
around the globe will enter a new regime of temper-
ature extremes with no observed historical precedence
if cumulative emissions continue to increase at current
rates, the impacts, in terms of frequency of heat
extremes, will become significantly worse for poorer
nations when compared with their wealthier counter-
parts.We therefore argue that, even though our results
show the emergence of more severe temperature
extremes will always occur for poorer populations
first, the potential prevention of crossing extreme PR
thresholdsmeans that the poorestmembers of the glo-
bal community will always be the greatest beneficiaries
of action towards a low-carbon pathway.
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