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Abstract. This paper introduces Hk -medoids, a modified version of the standard k -
medoids algorithm. The modification extends the algorithm for the problem of cluster-
ing complex heterogeneous objects that are described by a diversity of data types, e.g.
text, images, structured data and time series. We first proposed an intermediary fusion
approach to calculate fused similarities between objects, SMF, taking into account the
similarities between the component elements of the objects using appropriate similarity
measures. The fused approach entails uncertainty for incomplete objects or for objects
which have diverging distances according to the different component. Our implemen-
tation of Hk -medoids proposed here works with the fused distances and deals with the
uncertainty in the fusion process. We experimentally evaluate the potential of our pro-
posed algorithm using five datasets with different combinations of data types that define
the objects. Our results show the feasibility of the our algorithm and also they show
a performance enhancement when comparing to the application of the original SMF
approach in combination with a standard k -medoids that does not take uncertainty
into account. In addition, from a theoretical point of view, our proposed algorithm has
lower computation complexity than the popular PAM implementation.
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1. Introduction

Big data is defined in the context of velocity, volume and variety (Laney, 2001).
Variety is often associated with heterogeneous data, i.e. data that represents
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some complexity, for example where objects are defined by several data types
such as structured data, images, free text, and time series. In such scenarios,
each data type may describe distinct perspective of the objects. For example, a
patient’s condition may be defined by its structure data such as demographics,
treatment records etc., some time series to represent the results of blood samples
over time, some images from radiography examinations and some textual reports
recording the doctor’s observations. To apply cluster analysis to this kind of data
in a meaningful way, say to understand which patients experience similar disease
progression over time, it may be necessary to include all of the descriptors of
the patient’s condition, i.e. all the data types. This is an area under addressed
in current data mining research.

In previous work (Mojahed and De La Iglesia, 2014) we have proposed an
intermediary fusion approach called SMF. The idea is to represent a heteroge-
neous object as a collection of its component elements. For each element, e.g.
a text descriptor or an image, similarities to the same element in other objects
are calculated independently. This produces a number of similarity or distance
matrices, DMs, one per element, which are then fused to produce an individual
similarity matrix for objects. Hence we produce a matrix of fused distances, FM,
between heterogeneous objects that can be used to produce a configuration using
a standard clustering algorithm. In this context, SMF also computes two uncer-
tainty expressions: UFM and DFM. UFM reflects the uncertainty arising from
assessing incomplete objects and DFM expresses the uncertainty in the final FM
arising from the degree of disagreement between DMs.

For the clustering analysis, we can use any clustering algorithms that take
as input a distance matrix, for example the standard k -medoids (Kaufman and
Rousseeuw, 1987) which is one of the most popular techniques for clustering.
Several versions of this algorithm have been proposed in the literature. For ex-
ample: PAM (Partitioning Around Medoids) (Kaufman and Rousseeuw, 1987),
CLARA (Clustering LARge Applications) (Kaufman. and Rousseeuw, 1990) and
CLARANS (Clustering Large Applications based upon RANdomized Search)
(Ng and Han, 1994). However, its application to our heterogeneous data with
its inherent uncertainty may require some adaptation. Thus, in this paper we
present Hk -medoids, an adapted version of k -medoids that is better suited to
dealing with the type of heterogeneous objects we present and that incorporates
the uncertainty of fusing the element distances into the algorithm. The main
contributions of the paper are: a new Hk -medoids algorithm for clustering het-
erogeneous data that uses uncertainty in the fusion process to produce better
clustering configurations; a comparison of intermediate data fusion approaches
for clustering heterogeneous data; the compilation of a number of heterogeneous
datasets that are made available for other researchers in this area; extensive
experimental results on the clustering of heterogeneous data including multiple
validation measures and statistical significance tests as well as empirical evidence
of the efficiency of our algorithm in comparison with other clustering algorithms.

The rest of the paper is structured as follows: Section 2 presents a brief dis-
cussion of the related research. In Section 3 we give a definition of our problem
and in Section 4 we summarise the SMF approach. This is followed by a de-
scription of the new Hk -medoids in Section 5 and its computation complexity in
Section 6. Descriptions of the experimented data sets and the experimental set
up are given in Sections 7 and 8. Then, Section 9 evaluates the performance of
Hk -medoids, followed by Section 10 that concludes the paper and presents our
future research intentions.
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2. RELATED WORK

In the community of data mining and machine learning, clustering homogeneous
data has been studied a great deal; comparatively, clustering of heterogeneous
data is not a well-developed area of research (Gao et al., 2006). Few researchers
have ventured into this field, as the basic assumption is that only homogeneous
data objects can be successfully clustered; nothing substantial has been achieved
yet. Two recent surveys have appeared on mining multimedia data (i.e. data
containing mixed data types) (Manjunath et al., 2010; Akeem et al., 2012). They
discuss various data mining approaches and techniques, including clustering.
However, as survey papers, detailed procedures are not provided; instead, they
focus only on defining the problem including the nature of this challenging data.

Clustering two data types simultaneously, documents and terms, is tackled
in two similar studies: Dhillon (2001) and Zha et al. (2001). In both studies, re-
searchers clustered documents and terms as vertices in a bipartite graph with the
edges of the graph indicating their co-occurrence, using edge weights to indicate
the frequency of this co-occurrence. There was a restriction in these papers: each
word cluster was associated with a document cluster. The underlying assump-
tion here was that words that typically appear together should be associated
with same/similar concept which means similar documents. Considering this as-
sumption as a limitation, Dhillon et al. (2003) worked on the same problem but
they did not impose such a restriction in their study.

In addition to simultaneously clustering data types as above, a reinforce-
ment approach was suggested by other researchers (Wang et al., 2003). The idea
is to cluster multiple data types separately with inter-type links used to itera-
tively project the clustering results from one type onto another. The researchers
applied their scheme on multi-type interrelated web objects, and they noted
that their experimental results proved the effectiveness of this approach. Signifi-
cant improvements in clustering accuracy were delivered compared to the result
obtained by a standard “flat” clustering scheme. Their idea might have been
inspired by a former study conducted by Zeng et al. (2002), which attempted
to develop a unified framework for clustering heterogeneous web objects. Both
studies represent relationships between objects as additional attributes of data
that are used in the clustering. Thus, so far much of the work in this area relates
to the clustering of multi-class interrelated objects, that is, objects defined by
multiple data types and belonging to different classes that are connected to one
another.

On the other hand, fusion approaches (Boström et al., 2007; Acar et al., 2013)
are often used to deal with this mix of data as they can combine diverse data
sources even when they differ in terms of representation. Generally speaking,
fusion approaches focus on the analysis of multiple matrices and formulate data
fusion as a collective factorisation of matrices. For example, Long et al. (2006)
proposed a spectral clustering algorithm that uses the collective factorisation of
related matrices to cluster multi-type interrelated objects. The algorithm discov-
ers the hidden structures of multi-class/multi-type objects based on both feature
information and relation information. Ma et al. (2008) also used fusion in the
context of a collaborative filtering problem. They propose a new algorithm that
fuses a user’s social network graph with a user-item rating matrix using factor
analysis based on probabilistic matrix factorisation in order to find more accu-
rate recommendations. Some recent work on data fusion (Acar et al., 2013) has
sought to understand when data fusion is useful and when the analysis of in-



4 A. Mojahed and B. Iglesia

dividual data sources may be more advantageous. Data fusion approaches have
become popular for heterogeneous data as they handle the process of integration
of multiple data and knowledge from the same real-world object into a consistent,
accurate, and useful representation. In practice, data fusion has been evolving
for a long time in multi-sensor research (Hall and Llinas, 1997; Khaleghi et al.,
2013) and other areas such as robotics and machine learning (Abidi and Gon-
zalez, 1992; Faouzi et al., 2011). However, there has been little interaction with
data mining research until recently (Dasarathy, 2003).

According to the stage at which the fusion procedure takes place in the mod-
elling process, data fusion approaches are classified into three categories (Mara-
gos et al., 2008; Pavlidis et al., 2002; Greene and Cunningham, 2009): early
integration, late integration and intermediate integration. In early integration,
data from different modalities are concatenated to form a single dataset. Ac-
cording to Žitnik and Zupan (2014), this fusion method is theoretically the most
powerful approach but it neglects the modular structure of the data and relies
on procedures for feature construction. Intermediate integration is the newest
method. It retains the structure of the data and concatenates different modali-
ties at the level of a predictive model. In other words, it addresses multiplicity
and merges the data through the inference of a joint model. The negative as-
pect of intermediate integration is the requirement to develop a new inference
algorithm for every given model type. However, according to some researchers
(Žitnik and Zupan, 2014; van Vliet et al., 2012; Pavlidis et al., 2002; Lanckriet
et al., 2004a) the intermediate data fusion approach is very accurate for predic-
tion problems and may be very promising for clustering. In late integration, each
data modality gives rise to a distinct model and models are fused using different
weightings.

Though many studies (e.g. (Lanckriet et al., 2004b; Bie et al., 2007; Shi
et al., 2010)) have examined data fusion in classification there is less work in the
clustering domain. However, work on intermediate fusion for data clustering was
conducted by Yu et al. (2009) and found to be promising. Yu et al. formulated
data fusion by fusing similarity matrices and reported better results than using
a clustering ensemble approach. On the other hand, Greene and Cunningham
(2009) presented an approach to clustering with late integration using matrix
factorisation. Others have also derived clustering using various ensemble methods
(Dimitriadou et al., 2002; Strehl and Ghosh, 2003; Wang et al., 2003; Gao et al.,
2006) to arrive at a consensus clustering.

Despite some researchers working on related studies as presented above, they
either have a different definition of data heterogeneity (e.g. relaying on the inter-
linking of data types), work on other data mining tasks (e.g. collaborative fil-
tering), or their approaches are not fully explained. Thus, a comparison against
other state-of-art intermediary fusion approaches on the same problem was not
possible. Instead, we provide a comprehensive comparison including experiments
of our two proposed intermediate fusion techniques as well as on applying cluster
analysis separately to individual data types. Our future work includes compar-
isons with late fusion techniques.

In our previous work, we have proposed an intermediary fusion approach,
SMF, similar to that of Yu et al. (2009) as we fuse dis/similarity matrices. We
calculated individual dis/similarity measures for each element that defines the
object and fused them to find the FM. Clustering was then obtained using a
standard clustering algorithm on the FM. However, we needed to incorporate
the uncertainty that arises in the fusion mechanism. For this, we now present
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notation description
H a heterogeneous dataset
Oi the ith object ∈ H
N the total number of objects ∈ H

EjOi
the jth element of the ith object

M the total number of elements of Oi

UFM matrix expressing the degree of uncertainty from missing elements
DM matrix expressing the standard deviation of similarity values in the DMs
FM a fusion matrix reporting fused distances
CV a certainty vector
SD a structured data element
TS a time-series element
TE a free text element
IE an image element

Table 1. Notation used

a modified k -medoids algorithm that can take advantage of it. We evaluate our
algorithm on a number of datasets that we have compiled for this purpose and
which include time series, text and image elements. We investigate whether our
approach can help us to discover the most relevant or informative elements in
terms of clustering performance, and also whether the FM can perform as well
as the best elements. We leave the comparison to late fusion as our next step.

3. PROBLEM STATEMENT

Important notation used in this paper from this point is summarised in Table 1.
A definition of our problem has been given in (Mojahed and De La Iglesia,

2014; Mojahed et al., 2015) but we reproduce it here to aid the reader in following
the discussion. The formal definition of a heterogeneous dataset, H, is a set of
objects such that H = {O1, O2, . . . , Oi, . . . , ON}, where N is the total number
of objects in H and Oi is the ith object in H. Each object, Oi, is defined by a
unique Object Identifier, Oi.ID. We use the dot notation to access the identifier
and other component parts of an object. In our heterogeneous dataset objects are
also defined by a number of components or elements Oi = {E1Oi

, . . . , EjOi
, . . . , EMOi

},
where M represents the total number of elements and EjOi

represents the data

relating to Ej for Oi. Each full element, Ej , for 1 ≤ j ≤ M , may be considered
as representing and storing a different data type. Hence, we can view H from
two different perspectives: as a set of objects containing data for each element or
as a set of elements containing data for each object. Either representation will
allow us to extract the required information. We begin by considering a number
of data types:

SD A heterogeneous dataset may contain a (generally only one) SD element, ESD.
In this case, there is a set of attributes ESD = {A1, A2, . . . , Ap} defined over
p domains with the expectation that every object, Oi, contains a set of values
for some or all of the attributes in ESD. Hence, ESD is a N ×p matrix in which
the columns represent the different attributes in ESD and the rows represent
the values of each object, Oi, for the set of attributes in ESD. The domains for
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SD are those considered in relational databases, e.g. primitive domains, date
or partial date domains, time domain, etc.

TS The heterogeneous dataset may also contain one or more time-series elements:
ETS1, . . . , ETSg, . . . , ETSq. A TS is a temporally ordered set of r values which
are typically collected in successive (possibly fixed) intervals of time: ETSg =
{(t1, v1), . . . , (tl, vl), . . . , (tr, vr)} such that v1 is the first recorded value at time
t1 , vl is the lth recorded value at time tl, etc., ∀l, vl ∈ <. Any TS element,
ETSg, can be represented as a vector of r time/value pairs. Note, however, that
r is not fixed, and thus the length of the same time-series element can vary
among different objects.

TE A heterogeneous object may be described using one or more distinct text el-
ements. A text element is referred to an unstructured or a semi-structured
segment of text forming a document and modeled as a vector of t values that
belongs to the term-frequency-matrix, TFM. A term is a word(s) or set of
words or a phrase (a word in our case) that exists in a document and is ex-
tracted using one of the string matching algorithms. TFM is a mathematical
d x t matrix that represents the frequency of a list of t terms in a set of d
documents. Rows correspond to documents and columns correspond to terms.
Term frequency-inverse document frequency (tf-idf) (Huang, 2008) is a weight-
ing scheme that was used to determine the value of each entry in TFM. This
scheme uses a statistic weighting factor that reflects how important a word is
to a particular document that belongs to a set of documents. Note that, in the
case of having more than one TE for the same object, they might be viewed
as distinct elements or they could be merged and viewed as one element when
that makes sense.

IE A heterogeneous object may be described by one or more m×n 24-bit RGB
images, sometimes known as a true color images. An RGB image is stored as
a 3-dimensional matrix which is m×n×3 such as IMG = {img1,1,1, img1,1,2,
img1,1,3, img1,2,1, img1,2,2, . . ., img1,n,3, . . ., img2,1,1, . . ., imgm,n,3}. The first
two dimensions of the matrix, m and n, are the image dimensions, that is, m×n
is the number of pixels. The third dimension of the matrix, 3, is used to define
red, green, and blue color components for each individual pixel. The color of
each pixel is determined by the combination of the three color intensities. For
a particular pixel, color intensities are stored in each of the three color planes
at the pixel’s position as a number between 0 and 1. The color components
for a black pixel are 0, 0, and 0 for the red, green and blue plane, while a
pixel whose color components are 1, 1, and 1 is displayed as white. The three
color components for each pixel are stored along the third dimension of the
RGB matrix. For example, the red, green, and blue color components of the
pixel (6,15) are stored in the following position of the RGB matrix: (6,15,1),
(6,15,2), and (6,15,3), respectively. In a 24-bit RGB images, every color plane
is 8 bits which produces up to 16 million different colors, 224 combinations.

As a general comment, this definition of an object is extensible and allows
for the introduction of further data types such as video, sounds, etc. Moreover,
it can be concluded from the above definition that any object Oi ∈ H might
contain more than one element drawn from the same data category. In other
words, a particular object Oi may be composed of a number of SDs and/or TSs
and/or images. Moreover, incomplete objects are permitted, where one or more
of their elements are absent.

For a heterogeneous dataset, H, comprising N objects as defined above, then
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the target is to cluster the N objects into k groups where k ≤ N. Normally, to
achieve the clustering goal, the number of clusters has to be k � N. The par-
tition of H into k clusters is denoted as Ĉ = {C1,C2, . . . ,Ck} where each Ci is
formed by grouping similar heterogeneous objects based on similarity measures.

4. SIMILARITY MATRIX FUSION

Our proposed SMF approach (Mojahed and De La Iglesia, 2014) requires us
to calculate the FM before we consider the clustering algorithm. This involves
calculating the individual DMs for each element and then using a weighted ap-
proach to produce the FM. Uncertainty expressions are also calculated at this
time, including UFM, DFM and the certainty vector, CV. We provide in this
section a summary of those calculations for clarity.

We begin by computing distance matrices for each given data element, Ez,
associated with a particular data type:

DME
z

Oi,Oj
= dist(Oi.Ez,Oj .Ez), (1)

where Oi and Oj are two heterogeneous objects and in each case dist repre-
sents an appropriate distance measure for the given data type. This might need
some knowledge about data manipulation, in particular distance measures, for
different data types. However, there are widely-known methods that can work
effectively for each data type and those are the ones we apply and recommend
here. An in-depth study of distance measures is outside the scope of this paper.

We then scale DME
z

Oi,Oj
as follows:

DME
z

Oi,Oj
=
dist(Oi.Ez,Oj .Ez)−min

{
DME

z}
max {DMEz} −min {DMEz}

, (2)

To generate FM, assuming all weights equal, i.e. ∀z, wz=1:

FMOi,Oj
=

M∑
z=1

wz × dist(Oi.Ez,Oj .Ez)

M∑
z=1

wz

(3)

Uncertainty expressions, UFM and DFM, are also calculated for each pair of
objects and can be considered as companion matrices for the FM that express
the degree of uncertainty in the fused calculations. UFM computes the proportion
of missing similarity values in the DMs associated with the elements, while DFM,
calculates the standard deviation of similarity values in the DMs associated with
the elements:

UFMOi,Oj
=

1

M

M∑
z=1

{
1, DME

z

Oi,Oj
6= null

0, otherwise
(4)

DFMOi,Oj
=

(
1

M

M∑
z=1

(DME
z

Oi,Oj
−DMOi,Oj

)
2

) 1
2

, (5)
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where,

DMOi,Oj
=

1

M

M∑
z=1

DME
z

Oi,Oj

We then define certainty criteria by setting threshold(s) for one or both of
the UFM and DFM expressions, for example, UFM ≥ φ1 and/or DFM ≥ φ2.
Accordingly, we can determine pairs of objects for which FM calculations are
uncertain, given defined thresholds:

Certain(Oi, Oj) = 1 ∀Oi, Oj | UFMOi,Oj
≥ φ1 and/or DFMOi,Oj

≥ φ2 (6)

For a given object, Oi, the certainty is defined in relation to all the other
objects:

Certainty(Oi) =
∑

1≤j≤N

Certain(Oi, Oj) (7)

We can then produce a certainty vector, CV , such that:
CV = {CV O1

, CV O2
, . . . , CV ON

} where

CVOi
=

{
0, Certainty(Oi) ≥ N

2

1, otherwise
In other words, CV is a N binary vector indicating which of the N objects

have uncertain fused calculations according to the UFM and/or DFM thresholds,
φ1 and φ2. CV Oi

is created for Oi by analysing the uncertainty calculations that
are defined for Oi in relation to all the other objects. When the number of objects
that hold uncertain calculations with Oi is greater than half of the total number
of objects in the dataset, CV considers it as an object with uncertain calculations
and vice versa.

5. THE PROPOSED HK -MEDOIDS

Similar to the standard k -medoids, the proposed Hk -medoids makes multiple
iterative passes through the dataset and allows object membership to change
based on distance from medoids. It seeks to minimize the total variance of the
clusters, i.e., the sum of the distances from each object to its assigned cluster
medoid. In both algorithms, we need to update the objects assignments and the
medoids allocations.

For the update stage, some k -medoids implementations work in a similar way
to k-means, that is, they have two update phases iteratively applied over all k
clusters. The literature often describes the two update phases as batch update
and PAM-like online update. For example, the implementation that we have
used in this paper called ‘small’ employs a variant of the Lloyd’s iterations based
on the work of Park and Jun (2009). During the batch update, each iteration
consists of reassigning objects to their closest medoid, all at once, followed by
recalculation of cluster medoids. During the PAM-like online update, for each
cluster, a small subset of data objects that are normally the furthest from and
nearest to the medoid are chosen. For each chosen data object, the algorithm
reassigns the clustering of the whole dataset and checks if doing so will reduce
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the sum of distances. This approach is similar to what PAM does, however, the
swap considerations are limited to the points near the medoids and far from
the medoids. The operation of both update phases tends to improve the quality
of solutions generated. Individually, the online update seems to produce better
solution than those found by the full batch update (Liang and Klein, 2009).

Thus, in Hk -medoids, we exploit the difference between batch and PAM-like
online update phases; however, we use a different subset selection condition. We
restrict the PAM-like swap step to certain objects only, then reallocate all the
objects to the new medoids. The rationale for this is that the certain objects play
a bigger role in establishing the clustering solution initially, while the uncertain
objects are discounted. However, the second phase allows the clustering to be
influenced by the uncertain objects as well, hopefully producing a good clustering
solution for all objects. The pseudo code of Hk -medoids is presented below in
Figure 1. Our proposed algorithm therefore takes account of the uncertainty
inherent in the fusion process to drive the clustering process.

6. THE COMPUTATIONAL COMPLEXITY OF THE
PROPOSED HK -MEDOIDS

A time consuming part of any standard k -medoids implementation is the calcula-
tion of the distances between objects. However, our algorithm takes the pairwise
fused distance matrix as an input, thus this becomes a preliminary step. It uses
O(M ×N2) steps to calculate FM, where M is the number of elements and N is
the number of heterogeneous objects. To compare the efficiency of our proposed
algorithm to the most popular k -medoids implementation, PAM, we can discuss
their computational complexity. We are interested in comparing our work to
PAM because our algorithm has a main iterative step that works similarly to
PAM. Also, we have analysed the complexity of ‘small’ for the same reason. The
complexity of PAM is O(k(N − k)2), where k is number of clusters. However,
other k -means like implementations, e.g. ‘small’, are O(kN). By analysing the
pseudo code of Hk -medoids in Figure 1 we can observe that the iterative parts
of the algorithm are in step 3 (similar to ‘small’) and step 4 (similar to PAM).
The computational complexity of step 3 is O(k(N − n)) where n is the number
of uncertain objects, while the complexity of Step 4 is O(k(N − n− k)2). Thus,
the cost of step 3 is less than the cost of ‘small’ and the cost of step 4 is less
than the cost of PAM given large n. That is, the differences become more no-
ticeable when we use specific uncertainty thresholds that control the number of
certain/uncertain objects. In other words, if we come to a point where n = 0 or
n is a very small number, so that most objects are certain, the cost of step 3 will
be equivalent to the cost of ‘small’ and step 4 will not be executed at all, hence
the behaviour of our algorithm will approximate that of ‘small’. On the other
hand, with a reasonable number of uncertain objects n (as in our experimental
Section 8), Hk -medoids will be more efficient in term of execution time compared
to the standard PAM as the number of swaps in step 4 will be n and not N .
Thus, we overcome a main drawback of PAM which works inefficiently for large
datasets due to its swap complexity. In summary, Hk -medoids consists of two
different iterative steps, but it is still less expensive than PAM +‘small’. This is
true even in worse scenario, i.e. when n = N .
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Input: FM: N ×N pairwise distance fusion matrix for N objects, O1, O2, . . . , ON

k : number of clusters

CV:certainty vector for N objects, CV = {CVOi
}Ni=1

Output: a set of k clusters’ medoids, M = {Mj}kj=1

label assignments ∀Oi, L = {LOi}
N
i=1

Method:
1: Choose k initial objects as medoids, M1,M2, . . . ,Mk randomly
2: Assign the remaining N − k objects to the closest medoids using the FM:

foreach Oi ∈ the remaining N − k objects
LOi
← arg minjFM(Oi,Mj), j ∈ {1 . . . k}

end
3: Begin the batch-updating phase using certain objects only:

repeat
%% calculate medoids using certain objects

foreach Mp ∈M do

x← arg min1≤j≤N
N∑
i=1

FM(Oi, Oj),∀ certainOi, certainOj ∈Mp, i.e. CV Oi
= 1, CV Oj

= 1

if (Ox 6= Mp) then
Mp = Ox

%% assign certain objects to the nearest medoids
foreach Oi, i ∈ {1 . . . N}

if CV Oi = 1 then
LOi ← arg minjFM(Oi,Mj), j ∈ {1 . . . k}
if (LOi

6= LOi
) then

LOi
← LOi

end
end

end
until none of the LOi change

4: Begin the PAM-like online-updating phase to deal with uncertain objects:
%% assign uncertain objects to the nearest medoids
foreach Oi, i ∈ {1 . . . N}

if CV Oi
= 0 then

LOi
← arg minjFM(Oi,Mj), j ∈ {1 . . . k}

if (LOi 6= LOi) then
LOi ← LOi

end
end

end
%% operate PAM-like swap step using uncertain objects only
do

foreach Mp ∈M do

x← arg min1≤j≤N
N∑
i=1

FM(Oi, Oj),∀ Oi, uncertainOj ∈Mp, i.e. CV Oi
= 0||1, CV Oj

= 0

if (Ox 6= Mp) then
Mp ← Ox

end
end

%% if any Mj change, assign all objects to the nearest medoids
foreach Oi, i ∈ {1 . . . N}

LOi
← arg minjFM(Oi,Mj), j ∈ {1 . . . k}

if (LOi 6= LOi) then
LOi ← LOi

end
end

until none of the Mj change
5: return M and L

Fig. 1. Hk -medoids clustering algorithm

7. THE EXPERIMENTAL DATA SETS

This section gives descriptions of the heterogeneous datasets that we have com-
piled for these experiments. As unfortunately, there are no readily available large
datasets that we could find containing data heterogeneity as we define it, we have
started compiling our own collection. It is not easy to construct these datasets
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dataset no. of objects no. of elements type of elements no. of groupings no. of FMs

Cancer 1,598 24 1 SD, 23 TSs 4 1
Plants 100 3 1 SD, 1 TE, 1 IE 1 4
Journals 135 3 1 SD, 2 TSs 3 1
Papers 300 3 1 SD, 1 TS, 1 TE 1 2
Celebrities 100 3 1 SD, 2 TSs 1 1

Table 2. Main characteristics of our heterogeneous datasets

as it is a semi manual process. Hence, although the number of objects we have
gathered is limited in our datasets, they are complex as they are composed of
several different elements. Moreover, the number of objects in the cancer dataset
is large compared to the other datasets and the data comes from a real world
problem. Note also that it was not possible to gain access to the datasets that
were examined by other researchers who studied similar problems.

The datasets we have compiled are publicly available at (Mojahed, 2015).
They comprise different mixtures of elements, e.g. multiple TSs and SD, text
and SD, etc. We start by proposing five heterogeneous datasets: the prostate
cancer dataset, the plants dataset, the papers dataset, the journals dataset and
the celebrities dataset. Table 2 summarises the main characteristics of these
datasets and we follow with some additional descriptions.

The cancer dataset (Bettencourt-Silva et al., 2011) was the one that origi-
nally motivated our work and was donated to us. It contains data for a total
of 1,904 patients diagnosed with prostate cancer at the Norwich and Norfolk
University Hospital (NNUH), UK. Each patient’s journey from diagnosis to end
of study period is represented by a number of attributes. The structured data
that describe each patient includes: demographics data (e.g. age at diagnosis,
death indicator), disease state at diagnosis (e.g. Gleason score, tumor staging)
and the types of treatments that the patient received (e.g. Hormone Therapy,
radiology, surgery). In addition, 23 different blood test results (e.g. Vitamin D,
MCV, Urea) are recorded over time and represented as 23 distinct TSs. After the
data preparation stage, we ended up with 1,598 patients that had 100% complete
SD elements. There are different natural groupings that can be drawn from the
data, for example by risk score at diagnosis or by mortality outcome at the end
of the study period (Mojahed et al., 2015). The natural grouping systems for
patients were suggested by the data donors. They are as follows:

– NICE system for risk stratification
There are a number of approaches used to classify risk groups for prostate
cancer patients. A widely used system is a composite risk score. It uses three
data variables: Prostate-Specific Antigen (PSA), Gleason Grade, and Clinical
Stage (Tumour Stage). Risk assessment is conducted at the time of diagnosis
or as soon as possible thereafter. This stratification reflects the clinicians’
belief that patients with the same risk have a similar clinical outcome and
may follow a similar trajectory through the disease pathway. The National
Institute for Health and Care Excellence (NICE) (NICE, 2014) provides the
following guidance, presented in Table 3 for the risk stratification of men with
localised prostate cancer.
Our dataset requires some adaptation to apply this guidance, and advice on
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level of risk PSA ng/ml Gleason score clinical stage

Low risk <10 and ≤6 and T1-T2a
Medium risk 10 -20 or 7 or T2b
High risk >20 or 8-10 or ≥T2c

Table 3. NICE risk group classification system for localised prostate cancer (NICE, 2014)

this was obtained from the data creators. PSA is recorded as a TS. What we
have done is consider the value at diagnosis, and if there is nothing recorded
at time = 0, then the closest value before any type of treatments. Gleason
score is divided into two values; primary and secondary, thus we use the sum
of both scores. The clinical stage is reported using numbers. We considered the
following: clinical stage <2 as low, clinical stage = 2 as medium and clinical
stage > 2 as high risk.

– Gleason score risk classification system
Another well-known risk classification can be obtained by using Gleason grade
alone to classify patients diagnosed with prostate cancer. Gleason grade shows
the level of differentiation of the cancer cells under the microscope. High differ-
entiation is associated with worst prognosis which indicates more aggressive
tumors (Chan et al., 2000). Gleason grade is computed as a sum of two or
sometimes three scores: primary, secondary and tertiary (if applicable). Pri-
mary is the most commonly seen level of differentiation under the microscope,
secondary is second most common and so on. The level of differentiation for
these three scores is given from 1 to 5 and then summed together. The totals
of Gleason scores in our dataset are all > 5 as all the cases are definite cancer
patients. We have defined two ways of groupings patients according to their
Gleason score:Gleason-score-1 and Gleason-score-2. The first way of grouping,
Gleason-score-1, has 3 groups: low, medium and high risk. Gleason-score-2,
classifies patients into 4 groups: low, medium-1, medium-2 and high risk. The
difference between the two groupings is in the medium risk group. In Gleason-
score-2 the medium group is divided into two subgroups depending on the
exact values of the primary and secondary scores and not only their sum.

– Mortality grouping
This labeling procedure classifies patients according to the outcome at the end
of the study period, rather than looking at the potential risk of patients at
diagnosis. For this grouping we used death indicators after conducting some
changes on the values of the corresponding attribute in the data preparation
stage (for details see Mojahed et al. (2015)).

The plants dataset was derived from the website of the Royal Horticultural
Society (RHS) (Society, 2014). We constructed the dataset by choosing 100 plant
objects belonging to 3 distinct groups: 42 kinds of fruits, 22 different roses and
36 types of grass. Each plant has a description in the form of SD and another
in the form of free text, TE, in addition to an image representation, IE. The
structured data element includes data for 8 attributes, e.g. the plant’s height,
rate of growth, color, flowering period etc. The text element is a general free
text description about the plant. The image element is a picture of the plant in
Joint Photographic Experts Group, JPEG, image format. Hence each element
contributes a complementary description of the objects. In the preparation stage
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for TE, the tf-idf weighting scheme was used to construct a 100 × 1189 term
matrix. The 1189 list of terms was created after removing punctuations, discard-
ing duplications, eliminating stop words and applying a stemming algorithm. In
addition, if we apply a basic frequency based term selection method to remove
rare terms the list is cut down to 631 terms.

The journals dataset was obtained from the Journal Citation Reports (JCR)
in the ISI Web of Knowledge website (Reuters, 2015a). We have developed the
dataset by choosing 135 journals from two related fields of research: computer
science and information systems. Each journal has a description in the form of SD
and another in the form of two distinct TSs. The structured data element includes
data for 11 attributes, e.g. number of citations, number of issues published by the
journals per year, language of scripts, number of articles, etc. The two time-series
elements report the annual number of citations for a 10 year period from 2004 to
2013. One TS element defines the number of citations to articles published in the
journal, TStoJ, and the other TS reports the number of citations from articles
published in the journals, TSfromJ. We have defined 3 grouping systems for our
135 journals. All the grouping systems use citation data to assess and track the
influence of a journal in relation to other journals. They are as follows:

– The Impact Factor score (IF)
The journal impact factor is calculated by dividing the number of citations in
the JCR year by the total number of articles published in the two previous
years. An Impact Factor of 1.0 means that, on average, the articles published
one or two year ago have been cited one time. An Impact Factor of 2.5 means
that, on average, the articles published one or two year ago have been cited
two and a half times. The citing works may be articles published in the same
journal. However, most citing works are from different journals, proceedings,
or books indexed by Web of Science. The journals in our dataset are divided
into 5 categories, presented in Table 4.

– The Eigenfactor Score (ES)
This score is based on the number of times articles from the journal published
in the past five years have been cited in the JCR year, but it also considers
which journals have contributed these citations so that highly cited journals
will influence the network more than lesser cited journals. References from one
article in a journal to another article from the same journal are removed, so
that Eigenfactor Scores are not influenced by journal self-citation. Our objects
are divided into 3 categories, presented in Table 4.

– The Article Influence score (AI)
This score determines the average influence of a journal’s articles over the first
five years after publication. It is calculated by dividing a journal’s Eigenfactor
Score by the number of articles in the journal, normalized as a fraction of all
articles in all publications. This measure is roughly analogous to the 5-Year
Journal Impact Factor in that it is a ratio of a journal’s citation influence
to the size of the journal’s article contribution over a period of five years.
The mean Article Influence Score is 1.00. A score greater than 1.00 indicates
that each article in the journal has above-average influence. A score less than
1.00 indicates that each article in the journal has below-average influence. The
journals in our dataset are divided into 3 categories, presented in Table 4.

We also constructed a dataset, the papers dataset, containing research papers
published in year 2002. The dataset is obtained from the Web of Science (Reuters,
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grouping group definition number of objects

IF IF≤0.5 28
0.5<IF≤1.0 36
1.0<IF≤1.5 29
1.5<IF≤2.0 22

IF>2.0 20
ES ES≤0.0025 84

0.0025<ES≤0.0 30
ES>0.0 21

AI AI≤0.4 62
0.4<AI≤0.8 41

AI>0.8 32

Table 4. The grouping systems for the journals dataset with the definitions of clusters and
the number of objects that belong to each cluster

2015b), Thomson Scientific, by selecting 300 papers from 3 different research
fields. These were: computing sciences, business and healthcare services, for each
field we chose 100 papers. Each research paper has a description in the form of
SD and another in the form of a TS, in addition to a TE element. SD includes
data for 7 attributes, e.g. number of pages, total number of citations, number of
authors, month of publication, etc. The time-series, TS, is supplementary data
for the paper’s citations spanning 16 years. It reports the annual number of
citations to the paper per year, from 2000 to year 2015. The text element, TE,
is basically the paper’s abstract. There are 5 papers that have some missing
values within their SD element. In the data preparation stage, the TE element
was processed according to standard text mining operations, similarly to how
we dealt with the text element of the plant dataset. As a result, the terms list
includes 4,351 words and 1,080 words after removing rare terms.

The celebrities dataset was obtained from multiple web sources: Forbes (Inc.,
2015), Wikipedia (Wikipedia, 2015) and Google Trends (Google, 2015). We have
developed the dataset by collecting data about the 100 celebrities that we have
in our list. They are divided into 3 groups of professions: actors/actresses (30),
musicians (24) and other celebrity personalities including athletes, directors, pro-
ducers and authors (46). Each celebrity has a description in the form of SD and
another in the form of two distinct TSs that report the weekly normalized number
of searches about the celebrity. Structured data includes data for 12 attributes,
e.g. age, gender, number of awards, the year of activation, etc. The two time-
series elements, TSs, report the weekly normalized number of searches of the
celebrity that have been performed from the first week in January 3013 to the
first week in January 2015. One TS element defines the interest of people in the
UK through web searches, TSweb, and the other TS reports their interest using
Youtube searches, TSUtube.

8. EXPERIMENTAL SET UP

In order to compute DMs for SD element in all the experimented datasets, we
chose the Standardized Euclidean distance, which requires computing the stan-
dard deviation vector. With regards to TE elements, we chose the most common
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% of uncertain objects 4% 8% 15% 30% 46% 73%

margins limits objects≤5% 5%<objects≤10% 10%<objects≤20% 20%<objects≤35% 35%<objects≤50% 50%<objects≤75%

SMF
0.2900 0.3321 0.4107 0.4246 0.3233 0.2100

Hk-medoids
0.3833 0.4148 0.7200 0.7233 0.5800 0.3633

Table 5. Certainty thresholds sensitivity example: performance on the paper dataset is mea-
sured by Jaccard coefficients. The first raw indicates the actual percentages and the second
raw represents the thresholds margins range.

measure of similarity in text mining, the Cosine calculation (Salton and McGill,
1987) as this measure is widely used and reported to be effective with text, for
example in information retrieval applications (Baeza-Yates and Ribeiro-Neto,
1999) and in clustering (Larsen and Aone, 1999). For TSs, we use Dynamic
Time Warping (DTW), first introduced into the data mining community in 1996
(Berndt and Clifford, 1996). DTW can cope with TSs of different lengths. Its
ability to do this was tested by many researchers (e.g., (Ratanamahatana and
Keogh, 2005)). However, our calculated distances are normalized through the
sum of the lengths of the TSs that we are comparing. For IE, we use the GIST
(Oliva and Torralba, 2001) descriptor as it is easy to compute, provides a com-
pact representation of the images and it is not prone to segmentation errors.
Also, it has recently shown good performance in different image tasks (e.g., im-
age retrieval (Li et al., 2008) and image completion (Hays and Efros, 2007)).

By choosing the above similarity calculations, we were able to obtain individ-
ual DMs as the first step of SMF. Afterwards, we combine the individual DM as
proposed in section 4 to calculate the FMs; then we calculate UFMs, DFMs and
CVs. Using all these calculations, we first apply a standard k -medoids algorithm
to the FMs.

As a second step, we want to compare the clustering results obtained with
standard k -medoids on all objects to k -medoids using uncertainty filters so that
certain objects dominate the experiment. For this, we applied the k -medoids only
to the objects that are considered as certain using specified thresholds for UFMs
and DFMs, and then we assigned uncertain objects to the closest generated
medoids.

We want to set the thresholds in a way that considers a reasonable number of
objects as uncertain, thus, we neither assess a very big nor a very small propor-
tion of objects as uncertain. Our parameter experimentations lead to thresholds
associated with between 10% and 35% of objects being considered as uncertain
because between those margins we saw little effect on performance. However,
when going outside those margins, clustering performance deteriorates. We il-
lustrate the sensitivity of this parameter using the paper dataset in Table 5. It
compares jaccard coefficients for both SMF and Hk -medoids when we set dif-
ferent thresholds for UFM and DFM. We can see that thresholds leading to
less than 10%, and greater than 35% of objects being considered as uncertain
gave worse results for Hk -medoids and the SMF approach. Note that the same
conclusion is also obtained for the other datasets.

Note that, uncertainty filters for the plants dataset and the celebrities dataset
included DFM only because all objects are complete so it is only necessary to
deal with uncertainty arising from the disagreement between DMs.

Finally, we implement our proposed Hk -medoids algorithm using all the re-
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quired pre-calculated matrices and specified settings. We assess and compare all
the obtained clustering configurations.

With regards to clustering, the five heterogeneous datasets we have compiled
have one or more natural grouping system(s). Thus, we can benefit from the
ground truth labels when evaluating clustering performance. However, we are
interested in the ability of the FM to identify the correct clusters, as opposed
to details of the individual grouping systems. Hence, instead of the grouping’s
name, we used here numbers to identify the different systems, e.g. grouping1,
grouping2, etc. To evaluate the clusterings obtained by each approach we calcu-
late 3 different external validation measures: Jaccard coefficient (Jaccard, 1908),
rand statistic (Rand, 1958) and Dice’s index (Dice, 1945). Finally, we demon-
strate the significance of Hk -medoids performance using statistical testing. We
apply a z -test to establish if the differences in performance between Hk -medoids
and the best individual DM and between Hk -medoids and SMF are statistically
significant. We compare the difference in performances using the Jaccard calcu-
lations as a representative of the external validation coefficients. Note that as
the nature of k-medoids implies that we may get different results with differ-
ent initialisations, we applied each algorithm 50 times. Each run was executed
with random initialization. In the next section we report the best result for each
experiment out of 50 runs, that is both for k -medoids and Hk -medoids.

9. RESULTS AND DISCUSSION

Before applying our Hk -medoids algorithm, we apply SMF to produce a sin-
gle matrix to represent dis/similarities between heterogeneous objects as well as
the matrices for uncertainty. For the cancer dataset, SMF produced 24 DMs that
reflect the distances for each element separately in addition to FM which fuses all
the 24 elements with equal weights. Uncertainty related to FM was calculated in
UFM and DFM. Thresholds were set as UFM=0.4 and DFM=0.3, as a result we
considered 175 patients as uncertain objects which is about 10.95% of the total
number of objects. This dataset can be characterised by 4 different natural grop-
ing systems according to either diagnostic information or outcome information,
hence we assess the clustering results obtained against those 4 groupings.

For the plants dataset, 5 DMs were generated by SMF. They corresponded
to the SD, TE, TE element discounting rare terms (TENoRare), IE and the
IE element represented with reduced colours (IEReduced). We can therefore
fuse different combinations of those, producing 4 FMs. All fused distances were
calculated using equal weights:

– FM fuses DMSD, DMTE and DM IE ;

– FM-NoRare fuses DMSD, DMTENoRare and DM IE ;

– FM-NoRare-Reduced fuses DMSD, DMTENoRare and DM IEReduced;

– FM-Reduced fuses DMSD, DMTE and DM IEReduced.

Only a DFMs filter was used because there were no incomplete objects. The value
of the filter was 0.3, and that lead to the inclusion of 14, 24, 25 and 20 plants
respectively for FM, FM-NoRare, FM-NoRare-Reduced and FM-Reduced. The



An adaptive version of k -medoids to apply clustering analysis to heterogeneous data 17

number of uncertain objects according to this filter was in all cases > 10% and
≤ 25% of the total number of plants objects.

For the journals dataset we produced 3 DMs that reflect the distances for
each element separately in addition to one FM which fuses all the 3 elements
with equal weights. UFM and DFM thresholds were set up as UFM = 0.33 and
DFM = 0.1. By applying those filters, we considered 41 journals as uncertain
or just around 30% of the 135 journals that we have.

For the papers dataset, SMF produced 4 DMs for SD, TS, TE and TE element
without rare terms respectively. In addition, 2 FMs were produced using equal
weights:

– FM fuses DMSD, DMTS and DMTE ;

– FM-NoRare fuses DMSD, DMTS and DMTENoRare.

Uncertainty thresholds were set up as UFM = 0.33 and DFMs = 0.4. Using
those filters, 99 papers were considered in both FM and FM-NoRare analysis as
uncertain objects or < 33% of the total number of objects.

For the celebrities dataset, SMF generated 3 DMs that reflect the distances
for each element separately and FM-1 which fuses all the 3 elements with equal
weights. DFM was also computed. UFM was not calculated as there were no
incomplete objects in the analysis. The threshold was set up as DFM = 0.2.
As a result of applying this filter, we dealt with 23% of our objects as uncertain
data.

After calculating all the required distance matrices and setting uncertainty
filters, we applied the clustering algorithm. Clustering results are summarised in
table 6. For the cancer and journals dataset, there are more than one natural
grouping system for the objects and those are represented in the table using
grouping1, grouping2, . . ., etc. For the other 3 datasets, we consider only one
possible grouping system. However, in the plants and papers datasets, we gener-
ated multiple fusion matrices to examined all different possible combinations of
the individual DMs as described in Section 9 and they are presented as rows. The
performance of the SMF approach is reported in the first two columns and that
of Hk -medoids is given in the last column in the table. The first column shows
the results of using SMF in conjunction with the standard k -medoids algorithm
applied on all objects. The second column shows the results of applying SMF and
k -medoids but this time using the uncertainty filters to apply k -medoids only to
the objects that are considered as certain. Uncertain objects are then assigned
to the resulting clustering. In the final column, we show the results of applying
our proposed Hk -medoids algorithm using all objects. The numbers represent
the value of the Jaccard coefficient in each case, as a representative measure for
external clustering validity. Although, we only present Jaccard coefficients for
space reasons, the same conclusion was reached by the other external validity
coefficients: Rand and Dice’s index. We used * next to the performance of Hk -
medoids to signify statistical difference with the performance of the standard
SMF approach without uncertainty filters.

The results in table 6 suggest that the performance decreases when we allow
only certain objects to establish the initial clustering (SMF with uncertainty
filters) compared to the results obtained using the full FM. However, the Hk -
medoids approach has produced better clustering performance in all cases. To
validate this important conclusion, we have tested if the differences between per-
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grouping system/ SMF SMF Hk-medoids
fused matrices without uncertainty filters with uncertainty filters

The cancer dataset
grouping1 0.5382 0.4132 0.7021*
grouping2 0.5651 0.3440 0.6358*
grouping3 0.4061 0.3292 0.4431*
grouping4 0.4781 0.3990 0.5307*

The plants dataset
FM 0.6900 0.4651 0.7200
FM-NoRare 0.7300 0.4468 0.8500*
FM-NoRare-Reduced 0.8500 0.5761 0.8600
FM-Reduced 0.6900 0.4375 0.8300*

The journals dataset
grouping1 0.3556 0.3085 0.4222
grouping2 0.7926 0.4468 0.8222
grouping3 0.5111 0.4362 0.5926*

The papers dataset
FM 0.6833 0.4246 0.7233
FM-NoRare 0.6833 0.5238 0.7333

The celebrities dataset
FM 0.5400 0.4286 0.6200

Table 6. A comparison between the performance of SMF and Hk -medoids clustering for
the prostate cancer, plants, journals, papers and celebrities dataset. Jaccard coefficients are
calculated using ground truth labels.

formances are significant. All p values that compare the performance of SMF
with uncertainty filters and Hk -medoids are < 0.05 which indicates significant
difference between Jaccard values. With regards to Hk -medoids and SMF with-
out uncertainty filters, the p statistics report them as significant for the can-
cer data (< 0.00001, 0.02305, 0.017172 and 0.00147 for grouping1, grouping2,
grouping3 and grouping4 respectively) and also for two of the FMs of the plants
dataset, FM-NoRare (0.018626) and FM-Reduced (0.010225). In addition there
is significant improvement in performance when we used grouping3 classification
(0.024477) for the journals dataset. In general, these statistics prove that the
Hk -medoids approach produces significantly better or comparable result to the
standard SMF approach.

From Table 7 to Table 11 we present more detailed results for each dataset.
In these tables, we highlighted in bold the best results for each validation mea-
sure and grouping. We used * next to the performances of Hk -medoids in order
to highlight statistical difference in relation to the performance of the standard
SMF approach without uncertainty filters. We use Jaccard calculations only as
representative to test for statistical significance. A + indicates statistical dif-
ference between the value of Jaccard coefficients for the Hk -medoids algorithm
when compared with the individual DMs.

Table 7 shows the value of external validity measures for the cancer dataset.
It compares the clustering obtained using SMF and Hk -medoids to the one ob-
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grouping system SD best TS SMF Hk-medoids

Jaccard Rand Dice Jaccard Rand Dice Jaccard Rand Dice Jaccard Rand Dice

grouping1 0.3335 0.5037 0.4002 0.5119 0.5195 0.5059 0.5382+ 0.5072 0.5184 0.7021*+ 0.5807 0.58407
grouping2 0.4230 0.4860 0.4583 0.5569 0.5065 0.5269 0.5651+ 0.51751 0.5306 0.6358*+ 0.5480 0.5598
grouping3 0.2829 0.5985 0.3613 0.3767 0.5975 0.4297 0.4061+ 0.5828 0.4482 0.4431*+ 0.5502 0.4698
grouping4 0.3191 0.5412 0.3896 0.3899 0.5263 0.4381 0.4781+ 0.5209 0.4888 0.5307*+ 0.4878 0.5172

Table 7. Cancer dataset: A comparison of external clustering validity measures for clustering
obtained using SMF, Hk -medoids, the SD element alone and the best TS element in the four
natural grouping systems.

fusion matrix best DM SMF Hk-medoids

Jaccard Rand Dice Jaccard Rand Dice Jaccard Rand Dice

FM 0.6600 0.6778 0.5690 0.6900 0.6469 0.5798 0.7200 0.6778 0.5902
FM-NoRare 0.7600 0.7251 0.6032 0.7300 0.7101 0.5935 0.8500* 0.8103 0.6296
FM-NoRare-Reduced 0.7600 0.7251 0.6032 0.8500 0.6296 0.6324 0.8600+ 0.8319 0.6323
FM-Reduced 0.6600 0.6778 0.5690 0.6900 0.6477 0.5798 0.8300*+ 0.7826 0.6241

Table 8. Plants dataset: A comparison of external clustering validity measures for clustering
obtained using SMF, Hk -medoids and the SD element alone showing as rows the different FMs.

tained by the SD element alone as well as the best individual TS in all the four
grouping systems. From the table, we can see that Jaccard and Dice’s are al-
ways in agreement and put the performance of SMF and specially Hk -medoids
ahead. Rand agreed on their judgment in grouping1 and grouping2 but not in
the other two groupings. With regards to the significant testing, all p values that
compare the performance of SMF and Hk -medoids to the SD element and to the
best TS using Jaccard index are < 0.05 which indicates significant differences
(indicated by + in the table). Hence in terms of using individual elements to
cluster versus using the SMF approach, for the cancer dataset the proposed Hk -
medoids outperforms using the SD alone, despite the groupings being derived
from information contained in the SD, and also it outperforms using the best
TS.

For the plants dataset, table 8 compares the performances of SMF and Hk -
medoids to the one obtained by the best individual DMs for all the four different
FMs. Numbers in the table show that Jaccard, Dice’s and Rand almost entirely
agree on their judgment putting Hk -medoids ahead of the others. All three exter-
nal validation techniques agree that Hk -medoids outperforms the best individual
DM in all four cases. The significance test between Jaccard index of Hk -medoids
and the best individual DM, represented by + in the table, shows that the dif-
ference is significant for FM-NoRare-Reduced and FM-Reduced.

For the journals dataset, table 9 shows the performances of SMF and Hk -
medoids as well as TStoJ, the best element, for all the 3 groupings. Jaccard
and Dice’s conclude the same outcome and put Hk -medoids ahead. Rand agrees
on their judgment only for grouping1. The statistical tests indicate that the
difference is significant only in the case of grouping2 when comparing the Jaccard
index for Hk -medoids and TStoJ. This is represented in the table using + symbol.

For the papers dataset, table 10 shows the performance of SMF and Hk -
medoids against the best individual element. All validity measures put the per-
formance of Hk -medoids ahead of the others for this dataset. The statistical
tests, however, do not show significant improvements. For this, we calculated p
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grouping system best DM SMF Hk-medoids

Jaccard Rand Dice Jaccard Rand Dice Jaccard Rand Dice

grouping1 0.3407 0.6977 0.4053 0.3556 0.6816 0.4156 0.4222 0.7216 0.4578
grouping2 0.7333 0.6986 0.5946 0.7926 0.8292 0.6132 0.8222+ 0.7703 0.6218
grouping3 0.5481 0.6646 0.5230 0.5111 0.4779 0.5161 0.5926* 0.6524 0.5424

Table 9. Journals dataset: A comparison of external clustering validity measures for clustering
obtained using SMF, Hk -medoids and the best individual element in all the three grouping
systems.

fusion matrix best DM SMF Hk-medoids

Jaccard Rand Dice Jaccard Rand Dice Jaccard Rand Dice

FM 0.6700 0.7313 0.5726 0.6833 0.7265 0.5775 0.7233 0.7526 0.5902
FM-NoRare 0.6700 0.7313 0.5726 0.6833 0.7265 0.5775 0.7333 0.7603 0.5946

Table 10. Papers dataset: A comparison of external clustering validity measures for clustering
obtained using SMF, Hk -medoids and the best individual element when using the different
fusion matrices.

values using Jaccard coefficients to test the differences in performance between
Hk -medoids and the best DM and also between SMF and the best individual
performer DM.

For the celebrities dataset, shown in table 11, again Hk -medoids is the best
performer for all validity indexes, but not with a significant difference according
to z -test assessment. Furthermore SMF performed slightly better than the best
individual matrix, TSWeb.

With regards to the time cost of Hk -medoids, we said that our Hk -medoids
is, theoretically, faster than the standard PAM implementation of the k -medoids.
To back this with empirical evidence, we compared the elapsed time needed to
produce the results by both algorithms for all the previous experiments over
the five datasets. The specifications of the processor we used to run our imple-
mentations are: Intel(R) Core(TM) i5-3337U CPU, 1.8 GHz, 64-bit windows 8.1
operating system with 6 GB installed RAM. Table 12 compares the actual run-
ning time measured in seconds for all the 14 experiments. To demonstrate how
Hk -medoids copes with the number of objects in datasets compared to PAM, a
summarised graph of the running times is shown in Figure 2. The figure shows
the average time needed to execute both algorithms on each of the datasets. Note
that the graph orders the datasets according to the number of objects in an as-
cending order: plants, celebrities, journals, papers and cancer dataset. Table 12

fusion matrix best DM SMF Hk-medoids

Jaccard Rand Dice Jaccard Rand Dice Jaccard Rand Dice

FM 0.5300 0.5469 0.5146 0.5400 0.5921 0.5192 0.6200 0.6374 0.5536

Table 11. Celebrities dataset: A comparison of external clustering validity measures for clus-
tering obtained using SMF, Hk -medoids and the best individual element.
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grouping system/ Hk-medoids PAM
fused matrices

The cancer dataset
grouping1 0.090856 2.696481
grouping2 0.091641 2.697643
grouping3 0.094189 2.781021
grouping4 0.092765 2.764705

The plants dataset
FM 0.006175 0.011016
FM-NoRare 0.00603 0.011506
FM-NoRare-Reduced 0.005926 0.011456
FM-Reduced 0.00635 0.012425

The journals dataset
grouping1 0.006851 0.018278
grouping2 0.007501 0.01645
grouping3 0.006707 0.01404

The papers dataset
FM 0.008335 0.033052
FM-NoRare 0.008053 0.03301

The celebrities dataset
FM 0.006441 0.013363

Table 12. The execution time measured in seconds of Hk -medoids and PAM implementation
of the standard k -medoids for all the experiments.

and Figure 2 are empirical evidence of our claim about the time complexity of
our algorithm, discussed in Section 6. The difference in the running time between
the two algorithms is substantial when the number of objects changes from the
minimum in the plants/celebrities datasets (100) to the maximum in the cancer
dataset (1589). Hence, for real world datasets such as the cancer dataset our
approach holds some promise.

10. CONCLUSIONS

In this paper we present a new algorithm, Hk -medoids, to cluster heterogeneous
objects defined by numerous data types. Our algorithm makes use of uncertainty
inherent in the fusion process to provide better clustering solutions and to im-
prove on running time. Experimental results show promising outcomes both in
terms of clustering quality obtained and running times.

In previous work, we have handled the challenge of applying clustering anal-
ysis to heterogeneous data by first computing a fused distance matrix that takes
into account the distance values for each data type. We also proposed calculations
that express the related uncertainty for both missing elements and also diverging
assessment by different elements. However, the uncertainty calculations were not
used in a meaningful way and did not provide any improvements to the basic
fusion. Our previous approach, SMF, used a traditional clustering algorithm that
could take a distance matrix as input, even when the original data matrix was
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Fig. 2. The average execution time measured in seconds of Hk -medoids and PAM implementa-
tion of the standard k -medoids calculated for the heterogeneous datasets ordered in ascending
number or objects.

not available, i.e. k -medoids. This could be suitable for many real-world applica-
tions, for example, when the data is private and should not be disclosed but the
distance between objects could be published without compromising the original
data.

Although, several versions of k -medoids were proposed and experimented
with in the literature, they are not able to handle data heterogeneity as we have
defined it nor the related uncertainty that arises in similarity calculations. Thus,
with a view towards an integrated analysis of heterogeneous data, we introduce
Hk -medoids, an adapted version of the standard ‘small’ k -medoids implementa-
tion that can address the aforementioned problems. This version takes as input
the distance matrix and related uncertainty calculations from the SMF fusion
approach but then uses those more effectively within the algorithm to produce a
more reliable and accurate clustering configuration. The focus on certain objects
for some parts of the algorithm also help to improve its efficiency.

We present five datasets that are compiled for our experimentation and which
are made available to other researchers. In those datasets, objects are represented
by standard data, text, time series and images in various combinations. Though
some of those datasets are limited in size, they are complex and provide a con-
tribution to other researchers working on this field.

Experimental results on those datasets compare the performance of the SMF
approach, our initial attempt to use uncertainty within it by filtering uncertain
objects, and our new Hk -medoids algorithm that integrates uncertainty into the
clustering process. They also compare to the best performance obtainable by ap-
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plying clustering to individual data elements. The results show the effectiveness
of the proposed Hk -medoids algorithm. In all cases the new algorithm performs
better in terms of computation time when compared to a PAM implementation,
and this is particularly noticeable for the larger cancer dataset. In addition, as
assessed by external clustering validation indexes it also performs equally well
or statistically significantly better (as measured by a z -test) than the SMF ap-
proach and than clustering according to the best individual element. Since in
practice it may not be possible to identify the best performing element in ad-
vance, using Hk -medoids may be more beneficial than it appears for clustering
heterogeneous data. Another important feature of our implementation is that we
adapted k -medoids, known as less sensitive to outliers compared to other popular
clustering techniques. Moreover, our proposed algorithm deals with uncertainty
that arises from the disagreement between DMs, calculated as DFM, which helps
to tackle the noise in the data. All this increases the credibility of our proposal.

Clustering heterogeneous data is a rapidly growing area of research. We intend
to expand on our research by conducting comparative studies with late fusion
approaches applying ensemble methods. In late fusion the clustering analysis is
performed separately on each data type and then at a later stage we arrive to
the final results by fusing the different clusters.

We have published our datasets as well as our matlab implementation so
other researchers can reproduce and compare to our results.
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