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Abstract  Rensch’s rule proposes a universal allometric scaling phenomenon across species 

where sexual size dimorphism (SSD) has evolved: in taxa with male-biased dimorphism, 

degree of SSD should increase with overall body size, and in taxa with female-biased 

dimorphism, degree of SSD should decrease with increasing average body size. Rensch’s rule 

appears to hold widely across taxa where SSD is male-biased, but not consistently when SSD 

is female-biased. Furthermore, studies addressing this question within species are rare, so it 

remains unclear whether this rule applies at the intraspecific level. We assess body size and 

SSD within Tribolium castaneum (Herbst, 1797), a species where females are larger than 

males, using 21 populations derived from separate locations across the world, and maintained 

in isolated laboratory culture for at least 20 years. Body size, and hence SSD patterns, are 

highly susceptible to variations in temperature, diet quality and other environmental factors. 

Crucially, here we nullify interference of such confounds as all populations were maintained 

under identical conditions (similar densities, standard diet and exposed to identical 

temperature, relative humidity and photoperiod). We measured thirty beetles of each sex for 

all populations, and found body size variation across populations, and (as expected) female-

biased SSD in all populations. We test whether Rensch’s rule holds for our populations, but 

find isometry, i.e. no allometry for SSD. Our results thus show that Rensch’s rule does not 

hold across populations within this species. Our intraspecific test matches previous 

interspecific studies showing that Rensch’s rule fails in species with female-biased SSD. 

 

Key words  allometry, body size, Coleoptera, sexual selection, sexual size dimorphism, 

Tenebrionidae 
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Differences in male and female body size within a given species are ubiquitous in the animal 

kingdom. Sexual size dimorphism (SSD) describes how the body sizes of the sexes relate to 

each other, and a range of selective pressures have so far been invoked to explain this 

widespread phenomenon (Fairbairn, 1997; Blanckenhorn, 2000, 2005). The diverse selective 

pressures that act on female and male body size can relate to sexual selection, as well as 

natural selection or fecundity selection. For instance, male-male competition over territories 

or resources, as well as female choice for larger-bodied males, could drive male-biased SSD 

(Darwin, 1871). There could also be selection for smaller males, if these are more mobile or 

agile, and this could drive female-biased SSD (Andersson & Norberg, 1981; Zamudio, 1998).  

 Whereas some animal groups such as mammals generally show a pattern of male-

biased SSD (i.e. males are the larger sex), in other groups such as spiders or fish, SSD tends 

to be female-biased (i.e. females are the larger sex). The degree to which male and female 

body sizes differ is highly variable, both between and within species. Size differences 

between the sexes can range from barely perceptible to extremely pronounced. For example, 

stark contrasts are found in some spider species, where males are less than 10% of the size of 

females (see Elgar, 1991). Despite recognition that SSD is so widespread (Stillwell et al., 

2010), the major underlying mechanisms responsible generally remain elusive 

(Blanckenhorn, 2000, 2005). Particular drivers, such as sexual or natural selection 

(Blanckenhorn, 2000; Lindenfors et al., 2007; Allen et al., 2011) may conceivably favor 

different optimal sizes for males and females, yet matters are complicated by genetic 

correlations of shared traits (Lande, 1980). 

 More rapid divergence over evolutionary time is expected in male versus female body 

size, due to the latter being more constrained, and the resulting interspecific pattern in SSD 

variation is described by Rensch’s rule (Rensch, 1950; Fairbairn, 1997, Blanckenhorn et al., 

2007a, b). Specifically, the rule predicts that with increasing species body sizes, male-biased 
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SSD will increase and female-biased SSD will decrease. Rensch’s rule appears to be 

generally applicable in taxa where SSD is male-biased (e.g. Polak & Frynta, 2010), but not 

consistently when the pattern is one of female-biased SSD (Blanckenhorn et al., 2007a, Webb 

& Freckleton, 2007, Cueva del Castillo & Fairbairn, 2012; Liao et al., 2013; but see Stuart-

Fox, 2009). Considering that so many animal species, e.g. ca. 88% of insects (Stillwell et al., 

2010), exhibit female-biased SSD, this represents a severe restriction on the general 

usefulness of this ‘rule’. Considering the importance of insects in terms of biodiversity and 

biomass, further evidence from this important group would be welcome (Blanckenhorn et al., 

2007a). In addition to further information from female-biased dimorphic taxa, informative 

tests of Rensch’s rule can be made using intraspecific, interpopulation SSD and body size 

variation (Blanckenhorn et al., 2007a). Based on the few within-species studies available, 

evidence is so far inconclusive. Whereas Fairbairn and Preziosi (1994) find support for 

Rensch’s rule in water strider populations, studies on other insect species (dung flies: 

Kraushaar & Blanckenhorn, 2002; bushcrickets: Eweleit & Reinhold, 2014) or humans 

(Gustafsson & Lindenfors, 2004) do not. Similarly, in a study focusing on SSD and Rensch’s 

rule in blennies, Rensch’s rule was only confirmed in two of the three species assessed 

(Lengkeek et al., 2008). So, overall, more studies focusing on intraspecific tests would be 

useful to determine whether Rensch’s rule can be generally applied. 

 The red flour beetle Tribolium castaneum (Herbst, 1797) shows a female-biased SSD, 

and has been an informative model system for the study of various aspects of sexual selection 

and conflict (see Michalczyk et al., 2010, 2011b; Sbilordo et al., 2011; Grazer & Martin, 

2012), including targeted experimental evolution studies (Michalczyk et al., 2011a, Kerstes et 

al., 2013; Demont et al., 2014). Due to intense interest in this coleopteran as an important 

stored food pest with global distribution, a large range of laboratory stocks derived from 

widespread locations have been maintained in laboratory culture. Extensive genetic resources 
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are available, including a fully sequenced and annotated genome (Tribolium Genome 

Sequencing Consortium, 2008). T. castaneum has a long history of service as a model system 

of choice in various contexts, generating extensive knowledge of general species biology (see 

Sokoloff, 1972, 1974), including directly relevant aspects such as body size evolution 

(Conner & Via, 1992). More recently, the evolution of SSD in this species has been 

investigated using an artificial selection approach (Tigreros & Lewis, 2011). Beetles were 

subjected to sexually antagonistic selection, achieved by selecting on body size in opposite 

directions in males and females. The authors concluded that sex-specific larval development 

may drive SSD in this system (Tigreros & Lewis, 2011).  

 Here we use a range of wild type T. castaneum populations (representing a degree of 

variation in body size) derived from separate geographic locations and maintained under 

standard lab conditions for several years. Body size and hence SSD patterns are known to be 

generally highly susceptible to developmental influences from temperature (Temperature-

Size Rule: Atkinson, 1994; Angiletta, 2009). Furthermore, humidity, photoperiod, diet quality 

or other environmental influences can also have strong impacts (see e.g. Litzgus & Smith, 

2010; Stillwell et al., 2010; Laiolo et al. 2013; Çağlar et al., 2014). This is particularly 

important in this context, as it has been predicted that females and males may respond to 

environmental conditions in different ways, generating variance in SSD across environments 

(see ‘differential plasticity hypothesis’: Fairbairn, 2005; Teder & Tammaru, 2005). Here we 

eliminate interference of many potentially confounding factors as our beetle stocks were 

maintained under standardised environmental conditions for long periods of time (at least 20 

years). In our lab, beetle populations were housed before measurement in the same climate 

chamber at similar densities, exposed to the same constant temperature, relative humidity 

conditions and photoperiod as well as given the same standard diet. This model system 

therefore presents an excellent opportunity for a direct intraspecific test of Rensch’s rule 
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where significant body size variation exists, despite different populations being isolated and 

maintained under uniform environmental conditions for more than 20 years. 

 

Materials and methods 

Sample populations 

Twenty wild type T. castaneum populations of independent origin were assessed in 

this study (Table 1 for details). In addition, we measured female and male beetles of the 

Reindeer (Rd) stock. Rd beetles have a dominant mutation generating antennae of markedly 

different shape compared with wild type. As Rd can easily be identified by eye, they have 

proved very useful as a phenotypic marker strain in sperm competition studies (Michalczyk et 

al., 2010, 2011a; Sbilordo et al., 2011; Sbilordo & Martin, 2014). All beetle populations were 

derived from stocks obtained from Richard Beeman at USDA and held in our laboratory for 

over a year before measurement, where they were reared on medium containing 9 weight 

units of white plain organic flour and 1 weight unit of powdered organic brewer’s yeast 

provided ad libitum. The use of standard food is important as diet quality can have profound 

effects on developmental time and hence body size and weight of offspring in Tribolium 

(Sokoloff, 1972, 1974; Sverdlov & Wool, 1973; Via & Conner, 1995). Stocks were 

maintained in the same climate chamber at 30° C and 65% relative humidity with a 16h light 

: 8h dark cycle. Again, maintaining beetles in one climate chamber under standard conditions 

is critical, as factors such as temperature and relative humidity (Park & Frank, 1948; Howe, 

1962; Grazer & Martin, 2012) or food quality (Fedina & Lewis, 2006; Fedina, 2007; Sbilordo 

et al., 2011) affect various reproductive traits and body size in this species (see also Sokoloff, 

1972, 1974).  

 Beetle stocks were kept in 12 × 12 × 12 cm plastic boxes covered with lids 

incorporating 7 × 7 cm windows of fine metal mesh. At least two boxes for each strain were 
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maintained in culture, and populations were maintained at ca. 500 adult beetles per box to 

standardize population density and avoid confounding effects associated with differences in 

local sexual selection intensity (e.g. Gavrilets, 2000; Martin & Hosken, 2003, 2004). Each 

box contained ca. 250 g of rearing medium (see above). The amount of flour provided is 

known to affect the number and size of offspring (e.g. Campbell & Runnion, 2003). The food 

medium was therefore provided in abundance to counter possible impacts on adult body size 

due to differences in larval density and/or resulting larval competition.  

 

Body size measurements and statistical procedures 

The body sizes of thirty sexually mature beetles of each sex (all ca. 2 weeks old) were 

measured for each of 21 stocks of T. castaneum. Beetles were frozen alive at –18° C and 

elytra lengths measured under a stereomicroscope at 20× magnification with an eyepiece 

measuring graticule. Elytra length is routinely used as a measure of body size for this species 

(see e.g. Lewis & Austad, 1990), and was thus chosen to enable comparisons with previous 

work. Based on these measurements, one commonly used index of sexual size dimorphism 

(SSD) (Lovich & Gibbons, 1992), was calculated for each population in the study: SDI = 

[(Female size/Male size) – 1] × 1 if female is the larger sex (as is the case in T. castaneum) 

(for calculation of a range of other indices from this data, see e.g. Smith, 1999; Blanckenhorn 

et al., 2006). The information on male and female body size and SDIs (Table 1) is 

supplemented with an allometric regression plot of male on female body size (Fig. 1). 

 Statistically, a pattern consistent with Rensch’s rule would be evident as significant 

hypoallometry (SSD increases with decreasing body size), i.e. as a slope of b < 1 (Fairbairn 

& Preziosi, 1994). As random error is expected in both y and x (see e.g. Schulte-Hostedde et 

al., 2005), it is more appropriate to estimate the slope via reduced major axis (RMA) 

regression (Sokal & Rohlf, 1995). To do this, we used an Excel spreadsheet designed for 
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calculation of RMA and MA slopes that was supplied by Wolf Blanckenhorn (see Fairbairn, 

2005, Blanckenhorn et al., 2007b). The slope was additionally estimated using the RMA 

software for JAVA 1.21 (see Bohonak & van der Linde, 2004). Overall, we investigated 

whether the slope showed a pattern of hypoallometry, and was hence consistent with 

Rensch’s rule, via inspection of overlap of the 95% confidence intervals (see Fairbairn, 2005; 

Schulte-Hostedde et al., 2005).  

 

Results 

Intraspecific variation in SSD 

An overview of mean female and male body sizes (elytra lengths) and SDIs for each 

population assessed is given in Table 1. In addition to mean body sizes we provide one index 

of SSD for each population, i.e. SDIs (Lovich & Gibbons, 1992). As expected, females are on 

average larger than males in all populations assessed (all points above the hatched line of 

isometry in Fig. 1).  

 

Rensch’s rule 

We found that mean female and male body sizes were significantly correlated (log10 

body sizes; linear regression: R2 = 0.882, F1,19 = 141.425, P < 0.0001; Fig. 1). Using the Excel 

spreadsheet (see Blanckenhorn et al., 2007b, Fairbairn, 2005), we obtain a RMA slope of 

1.022 for raw data (95% confidence limits of 0.859 and 1.221; Least Squares (LS) slope 

0.961, SE 0.058, Major Axis (MA) slope 1.024, SE 0.038). For log10 body sizes, the RMA 

slope equals 0.983 (95% confidence limits of 0.823 and 1.172; LS slope 0.923, SE 0.055, MA 

slope 0.982, SE 0.037). Results were additionally confirmed using RMA software for JAVA 

1.21 (see above). All regression analyses performed indicate that the slope is not significantly 
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different from b=1 (i.e. a pattern of isometry, no allometry for SSD). Our results therefore do 

not fit Rensch’s rule (i.e. significant hypoallometry). 

 

Discussion 

 

Here, we use T. castaneum wild type strains kept under identical standard conditions, but 

varying across populations by ~20% in average body size. This variation is likely due to 

genetic differences, rather than the result of environmental influences as populations were 

maintained under exactly the same conditions. Using these populations, we are able to 

provide a targeted intraspecific test of Rensch’s rule, and show that the rule does not hold for 

this female-biased size dimorphic species (i.e. we find a pattern of isometry, not one of 

hypoallometry). It is worth stressing that although there are numerous examples of Rensch’s 

rule in groups where males represent the larger sex, many tests of the rule in taxa with 

exclusively female-biased SSD have failed to confirm the pattern (Abouheif & Fairbairn, 

1997; Fairbairn, 1997; Tubaro & Bertelli, 2003, Blanckenhorn et al., 2007a, Webb & 

Freckleton, 2007, Cueva del Castillo & Fairbairn, 2012).  

 It is generally accepted that the evolution of male-biased SSD may be driven 

primarily by sexual selection (see Stilwell et al., 2010). In taxa showing male-biased SSD, 

Rensch’s rule may generally hold more frequently due to the combination of sexual selection 

on larger male body size with weaker correlated selection on female size (Szekely et al., 

2004). The evolution of female-biased SSD, in contrast, is still poorly understood, and 

possibly “driven by a more diverse and complex range of selective processes” (see Stuart-

Fox, 2009). For example, larger female size could be due to sex role reversal (i.e. females 

compete for access to males), and this is common in birds with female-biased SSD (see 

Tubaro & Bertelli, 2003). Or, rather than selection for large females, there may also be 
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selection for smaller males, if these are more agile, for instance (see Andersson & Norberg, 

1981; Zamudio, 1998). Because of these diverse selective pressures, Rensch’s rule may be 

expected to fit less consistently when taxa show female-biased SSD, as is the case here in T. 

castaneum populations studied. For T. castaneum, the interplay of selective pressures 

responsible for female-biased SSD and the isometric pattern found remains to be captured. 

 Comparative studies generally do not take into account potentially substantial 

seasonal or regional differences. Body size is very sensitive to variation in temperature or 

food quality, and this can also affect patterns of SSD via the degree of dimorphism (e.g. Hu et 

al., 2010). Indeed, body size of both sexes is known to be susceptible to variation in 

temperature and humidity in Tribolium (Sokoloff, 1974). Here we deliberately use different 

flour beetle populations, which vary in their average body sizes, but are maintained under 

standardized conditions on the same food and under the same temperature and humidity 

conditions. This allows us to avoid the known environmental effects on a range of traits in 

this species (e.g. Howe, 1962; Fedina & Lewis, 2006; Sbilordo et al., 2011; Grazer & Martin, 

2012). Patterns of SSD documented here are far less prone to potentially confounding 

variation present in data from samples collected from different locations and at different 

times, or taken from heterogeneous sources from the literature, as would often be the case for 

comparative approaches.  

 It has been recognized that more work would be needed addressing population 

differences in SSD (Jannot & Kerans, 2003). Intraspecific studies remain rare, so our study 

provides a valuable test of Rensch’s rule, which is relatively free of confounding variation 

from the environment or phylogenetic inertia. Furthermore, our system is ideally suited to 

addressing interpopulation variation because the separate stocks used have been maintained 

and undergone simultaneous culturing for many years. Because SSD is thought to be tightly 

associated with ecological conditions and life-history strategies, and hence closely linked 
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with the phylogeny of study species, intraspecific testing provides an important complement 

to cross-species analyses (Brooks & McLennan, 1991).  

 In conclusion, we show that Rensch’s rule does not hold across populations of the 

flour beetle Tribolium castaneum, a species where females are larger than males. In this 

respect, our intraspecific test matches previous interspecific studies showing that Rensch’s 

rule fails in species with female-biased SSD (e.g. Blanckenhorn et al., 2007a; Webb & 

Freckleton, 2007; Guillermo-Ferreira et al., 2014; Hirst & Kiørboe, 2015). Crucially, as we 

are able to limit common environmental sources of variation through the use of laboratory 

stocks kept under standard conditions, our results are likely to be particularly robust. 

Understanding the precise selective pressures responsible for the isometric pattern found here 

could be the subject of future study, building on the wealth of data already available 

concerning the action of sexual selection (and to a lesser extent, natural selection) in this 

species. 
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Table 1 SSD and body sizes in Tribolium castaneum populations measured. All populations 

assessed are wild type strains except for Rd (dominant mutation associated with altered 

sensory surface of the antennal club). The table includes mean body sizes in mm for both 

sexes (N=30 individuals per population and sex) and values for one index of sexual size 

dimorphism (see main text for details). 

 

Strain Year 

collected 

Country (Locality) Female elytra 

length  

(mm) ± S.D. 

Male  

elytra length 

(mm) ± S.D. 

Lovich & 

Gibbons 

SDI 

Abidjan unknown Ivory Coast (Abidjan) 2.272 ± 0.049 2.235 ± 0.047 0.01566 

COL-1 1987 Colombia (Palmira) 2.293 ± 0.077 2.259 ± 0.080 0.01505 

CTC-485 1988 Australia (NSW) 2.143 ± 0.077 2.090 ± 0.065 0.02536 

FSS2 1943 England (London) 2.331 ± 0.117 2.282 ± 0.081 0.02147 

GA1 1980 USA (Georgia) 2.356 ± 0.079 2.330 ± 0.074 0.01116 

Heng-5 1989 Thailand (Chiang Mai) 2.263 ± 0.071 2.207 ± 0.067 0.02537 

HO-TCS 1989 Singapore (Jurong) 2.477 ± 0.071 2.396 ± 0.060 0.03381 

ISR-1 1988 Israel (Tel Aviv) 2.188 ± 0.088 2.136 ± 0.083 0.02434 

Japan-2 1988 Japan (Kyushu) 2.532 ± 0.074 2.383 ± 0.141 0.06253 

Lab-S 1976 USA (Kansas) 2.310 ± 0.074 2.197 ± 0.054 0.05143 

Montreal 1973 Canada (Montreal) 2.263 ± 0.047 2.192 ± 0.059 0.03239 

PAK-1 1979 Pakistan (Peshawar) 2.248 ± 0.088 2.074 ± 0.055 0.08390 

PAK-2 1979 Pakistan (Peshawar) 2.125 ± 0.060 2.087 ± 0.062 0.01821 

PRC-

Nanj 

1989 China (Nanjing) 2.422 ± 0.072 2.371 ± 0.074 0.02151 

PRC-

Ning 

1989 China (Ningbo) 2.414 ± 0.062 2.366 ± 0.076 0.02029 

Pruz 1 1963 Poland  2.419 ± 0.059 2.327 ± 0.069 0.03954 

Raj-1 <1979 India  2.316 ± 0.076 2.255 ± 0.057 0.02705 

Rd <1984 Laboratory  2.158 ± 0.074 2.053 ± 0.085 0.05114 

Solet 1979 Israel (Hatzeva) 2.212 ± 0.079 2.160 ± 0.072 0.02407 

Ug-3 1986 Uganda (Kampala) 2.395 ± 0.063 2.309 ± 0.070 0.03725 

Z-1 1988 USA (Alabama) 2.364 ± 0.130 2.294 ± 0.128 0.03051 
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Fig. 1 Allometric regression plot of log female on log male body size. Each symbol denotes 

one laboratory stock population (strain identities provided in legend above, for further details 

see main text and Table 1). Regression equation: y = 0.923  x + 0.040. The hatched line of 

isometry (i.e. female body size = male body size) is included as a guideline. This helps 

illustrate a clear pattern of female-biased SSD where all points fall above the line.  

 


