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Abstract

Background: Robust statistical detection of differences in the bacterial growth rate can be challenging, particularly
when dealing with small differences or noisy data. The Bayesian approach provides a consistent framework for
inferring model parameters and comparing hypotheses. The method captures the full uncertainty of parameter
values, whilst making effective use of prior knowledge about a given system to improve estimation.

Results: We demonstrated the application of Bayesian analysis to bacterial growth curve comparison. Following
extensive testing of the method, the analysis was applied to the large dataset of bacterial responses which are freely
available at the web-resource, ComBase. Detection was found to be improved by using prior knowledge from clusters
of previously analysed experimental results at similar environmental conditions. A comparison was also made to a
more traditional statistical testing method, the F-test, and Bayesian analysis was found to perform more conclusively
and to be capable of attributing significance to more subtle differences in growth rate.

Conclusions: We have demonstrated that by making use of existing experimental knowledge, it is possible to
significantly improve detection of differences in bacterial growth rate.

Keywords: Bayesian analysis, Nested sampling, Prior knowledge, Bacterial growth rate comparison

Background
This paper concentrates on a practical situation that
occurs frequently in microbiology research. It is a widely
accepted principle regarding bacterial batch cultures that
when cells are inoculated into a growth-favouring envi-
ronment, this determines a maximum specific growth rate
[1]. It is a common task to measure this rate, often with
a view to comparison across species or environmental
conditions. However various issues can make such mea-
surements difficult. The problems can be biological or
technical. For example, the window of exponential phase
could be too small to derive a statistically significant
conclusion for the maximum specific growth rate. Also,
differences in the rate of growth are often small, making
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the detection challenging, particularly when data is lim-
ited and noisy. In this paper we address these issues by
taking advantage of existing experimental knowledge to
improve detection.
The growth rate may be modulated by the state of the

population: close to the inoculation, the cells are still
adjusting to their new environment (lag phase), while
at higher densities they slow down and eventually stop
growing (transition to stationary phase). This behaviour
is encapsulated in Fig. 1. During the lag phase, the spe-
cific growth rate is much less than its maximum and
only a small amount of growth is detectable. To interpret
growth measurements, a predictive mathematical model
of bacterial growth can be used. Such models provide
a means to describe the growth behaviour of a species
over time by reducing the system to a set of fundamental
parameters (such as the growth rate). These parameters
must be estimated in order to fit the model to a given
dataset. In this paper we use the model of Baranyi and
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Fig. 1 The model of Baranyi and Roberts incorporates three stages of bacterial growth. An illustration of the three stages of bacterial growth (lag,
exponential and stationary) described in the model of Baranyi and Roberts [2, 3] (solid blue line). Other classical models for the population size, x(t),
incorporate only the exponential and stationary phases (black dashed line) on the logarithmic scale. The top panel shows how the specific growth
rate changes with the logarithm of the cell concentration during the three stages, whilst the bottom panel demonstrates how these phases
correspond to the familiar sigmoidal shape that is observed when plotting the log cell concentration over time

Roberts [2, 3], which is able to describe all three stages of
bacterial growth (lag, exponential and stationary). Some
background on this model is given in Additional file 1.
For this model, the widely used logarithm of the bacte-
rial concentration is sigmoidal, so that a relatively linear
phase is both preceded and followed by a transition phase
characterised by small specific growth rates, as shown
in Fig. 1. A number of classical models [4–6] for the
population size, x(t), (satisfying the condition “(dx/dt)/x
is monotone decreasing” [7, 8]) have frequently been
used for the logarithm of x too (for example see
[9–11]). The justification is that, applied in this way, such
models show the expected sigmoid pattern on the loga-
rithmic scale, although applying them on this scale makes
their use purely empirical. The techniques described in
this paper, however, may easily be extended to such
cases.

Established traditional statistical testing methods
typically consist of an F-test or Akaike Information
Criterion combined with a maximum likelihood optimi-
sation approach which makes point estimates with the
goal of finding the best fit to the data given the model or
hypothesis. The (no longer supported) program MicroFit
allowed for the statistical comparison of parameters
between two bacterial growth data sets using an F-test.
In the literature, one report used nonlinear regression
techniques to fit the specific growth rates of strains of
Staphylococcus aureus and utilised both a maximum-
likelihood based χ2 test and principal-component
analysis reference to compare restricted models (with one
or more parameters assumed to be equal between strains)
[12]. A separate study used linear spline regression to cal-
culate growth slopes in measurements of different strains
of Escherichia coli and termed curves as significantly
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different if they lay outside an estimated 95 % confidence
interval [13].
Despite their frequent use in curve fitting problems,

maximum likelihood and other optimisation techniques
can often bemisleading. A discussion of problems relating
to optimisation methods can be found in [14]. One issue is
the possibility of overfitting due to inadequate represen-
tation of measurement errors in the data [15], a problem
that frequently leads to parameters being much more
sharply defined than is justifiable given the data. Another
issue is that the point estimate approach of optimisa-
tion ignores the contribution from the rest of parameter
space and may miss alternative solutions [16]. Further,
maximum likelihood approaches do not provide a frame-
work to make use of prior knowledge to improve future
estimation.
Using the Bayesian framework we may capture the full

uncertainty of the problem, taking the whole of param-
eter space into account to make consistent predictions.
We reduce the risk of overfitting since Bayesian tech-
niques inherently account for the trade-off betweenmodel
simplicity and goodness of fit [17]. Furthermore we may
encapsulate existing knowledge through the prior proba-
bility and capitalise upon this knowledge to improve our
inferences. In addition, the tools for model and hypothesis
comparison are readily available through the calculation
of the Bayes factor [16].
The success of Bayesian methods for parameter infer-

ence in biological systems has promoted an exciting
new research area. A good review of this area can be
found in [18]. Major developments in the application of
Bayesian methods in general have been possible due to
advances in sampling techniques. Nested sampling, as
pioneered by Skilling offers a large improvement over
multi-dimensional approaches such as highly computa-
tionally expensive Markov chain Monte Carlo methods,
due to the reduction of the high-dimensional integrals
that arise from Bayesian analysis to integrals over a single
dimension [19, 20]. Recent applications include simula-
tions of potential energy surfaces for protein folding [21],
parameter inference for a model of circadian rhythms [22]
and the analysis of experimental data for mice infected
with Salmonella enterica, with relevance to alternative
modelling techniques [23]. Also using nested sampling,
a recent study considered how Bayesian analysis can
address the problems associated with uncertainty when
inferring parameters and comparing models for biological
processes, particularly within the framework of experi-
mental design [14].
In this paper we employ a nested sampling based

Bayesian approach to infer parameters and compare
bacterial growth curve data, in particular through com-
parison of the growth rate. Our work makes use of
the ComBase database [24], which contains over 15,000

microbial growth curves collected under many different
experimental conditions.

Methods
Model for bacterial growth
In this paper we use the 4 parameter model of Baranyi
and Roberts [2, 3] which encompasses both the lag to
exponential and exponential to stationary transitions of
bacterial growth. Letting the bacterial concentration at
time t be given by x(t), this model is described by

y(t) = ln x(t) = y0 + μmaxA(t) − ln
(
1 + eμmaxA(t) − 1

e(ymax−y0)

)
,

(1)

A(t) = t − h0
μmax

+ ln
(
1 − e−μmaxt + e−(μmaxt−h0)

)
μmax

, (2)

where y0 = ln x(0) and ymax = ln xmax, for xmax the max-
imum bacterial concentration. In addition μmax denotes
themaximum specific growth rate and h0 = λμmax, where
λ is the length of the lag phase. More details on the back-
ground of this model are available in Additional file 1. We
note that although the bacterial concentration must be
transformed to the ln x scale for use in the model, the con-
centration and parameter set are transformed afterwards
to the more usual log10 x scale in all of our results.

Parameter inference using Bayesian analysis
Key to the task of parameter inference using Bayesian
analysis is Bayes’ theorem, which encapsulates our infer-
ence about the parameter set, p, when using some hypoth-
esis or model, H, given the observation of some data, D,
and any background information, I, by calculation of the
posterior probability distribution, P(p|D,H , I), where

P(p|D,H , I) = P(D|p,H , I)P(p|H , I)
P(D|H , I)

. (3)

Here, P(D|p,H , I) (with shorthand L(p)) is the likeli-
hood, P(p|H , I) (or π(p)) is the prior probability distri-
bution without knowledge of the data and P(D|H , I) (or
Z) is known as the evidence and can be thought of as
the probability of seeing the given data if hypothesis H is
correct.

The likelihood function
Given a dataset with N independent data points with nor-
mally distributed errors, the appropriate log-likelihood
function is

logL = −
N∑
i=1

log
(
σi

√
2π

)
− 1

2

N∑
i=1

(di − yi)2

σi2
, (4)

where di is the y component of the i-th data point and
yi denotes the y value obtained by applying the model
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using the t component of the i-th data point. The weight-
ing or noise level is taken to be constant, so that σi = σ .
This assumption can be justified by considering that all
data was collected using a viable count method, for which
colonies resulting from serial dilutions of bacterial sus-
pensions are counted and the results used to determine
the bacterial concentration (number of colony forming
units) in the original sample [24]. Since there is an opti-
mum range of colony numbers for counting (between 50
and 300), one bacterial concentration that is 10 times big-
ger than another must be 10 times more diluted and the
resulting error incurred by forward interpolation of the
counted value will be 10 times greater. For this reason,
we may assume that the errors in the measured bacterial
concentration, x, are log-normally distributed, and there-
fore the errors in y = log10(x) are normally distributed. In
our analysis σ may be prescribed (at σF ) or inferred as a
parameter (σI ) using the Jeffreys prior [25]. In Additional
file 1 we compare these two cases and show that it may
be disadvantageous to prescribe σ . We recommend that
unless we are sure of the noise level associated with our
data, σ should be inferred.
Alternative measures may be used to include relevant

data points for which the microbial concentration is too
low to be detected by the given experimental method.
Depending on the sensitivity of the method used when
collecting the data, the threshold below which values were
considered undetected was taken to be either 0.7 or 1.3
on the log10 x scale. For these values, rather than using
the log-likelihood function (Eq. 4), the probability was
assigned by the uniform distribution between zero and
the threshold, and zero above the threshold (although
we include a small Gaussian tail in this region to avoid
a singularity in the log likelihood). In this way, we may
account for a lack of knowledge (equal likelihood) regard-
ing the position of these points below the threshold and
an absolute certainty that these points do not lie above the
threshold.

The prior
We start by assuming a uniform prior probability (with
bounds that are taken to scale with the data), reflect-
ing a lack of prior information for all parameters. In
the case that we have prior knowledge available that
we wish to take into account, we can use an appro-
priate prior distribution. In this paper we have used a
Gaussian or Cauchy prior (with appropriate bounds) to
capture existing knowledge of the growth rate parame-
ter. The informative Gaussian prior is the usual candidate
for expressing definite prior information about a variable
[26]. The weakly informative Cauchy distribution like-
wise encompasses a high probability region defined by
prior information, but assigns more weight to values out-
side of this region, and so may be used when our prior

information is less definite [27]. By making use of these
three priors, we may decide whether to use clusters of
pre-analysed growth curves as prior knowledge (by choos-
ing an informative prior over the non-informative uniform
prior) and to account for the strength of a given cluster
and our confidence in its relevance (by choosing either a
weakly informative or informative prior). A more detailed
comparison and discussion on the choice of prior is given
in the results section.

Calculation of the evidence
In Eq. 3 the evidence is essentially a normalisation factor
and can be obtained through marginalisation by integrat-
ing over the parameters,

Z =
∫
p
L(p)π(p)dp. (5)

This integral may be obtained using nested sampling. Fol-
lowing references [19] and [20], we transform (5) into a
one-dimensional integral over likelihood space. Denoting
the elements of prior mass as dX = π(p)dp, we let X(λ)

denote the proportion of the prior with likelihood greater
than λ, so that

X(λ) =
∫

L(p)>λ

π(p)dp. (6)

Using this terminology, we may re-write (5) as

Z =
∫ 1

0
L(X)dX, (7)

where L(X(λ)) ≡ λ. The algorithm preserves an active set
of n objects p1, . . . ,pn sampled across the prior. At each
step the objects are sorted according to their calculated
likelihood, the object with lowest likelihood (denoted L∗)
removed and a new sample point generated subject to the
constraint L(p) > L∗. This process is repeated until ter-
mination, moving the objects up the likelihood gradient to
regions of higher likelihood, even if these regions become
disconnected in parameter space. For a detailed descrip-
tion of the choice of all control parameters used during
the process, see Additional file 1.
Using the generated samples, the integral (7) can be

approximated numerically by

Z ≈
N∑
k=1

hkLk , (8)

where hk = Xk−1 − Xk is the width between successive
sample points (and X0 = 1) and N is the total num-
ber of samples (the number of objects discarded from the
active set plus those remaining in the active set at termina-
tion). Summary statistics of the posterior distribution are
also readily available. For example given a parameter, p,
with sequence of samples, pk , each with associated weight,
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wk = hkLk/Z , the mean and standard deviation are given
by

mean(p) =
N∑
k=1

wkpk , sd(p) =
( N∑
k=1

wkpk2 − mean(p)2
)
.
1/2

Markov chain Monte Carlo methods produce samples
from parameter space that are equally weighted and hence
can be used to gain an understanding of the underlying
posterior distribution. The same is possible with nested
sampling; staircase sampling can be used to generate a
number of equally-weighted posterior samples [19]. We
make use of this technique to explore the posterior tra-
jectories of inferred bacterial growth curves following
analysis.

Model Comparison using Bayesian analysis
Given the evidence, Bayesian analysis also provides a
framework for model comparison. Again making use of
Bayes’ theorem, we can write the posterior probability of
some model or hypothesis given the data as

P(H|D, I) = P(D|H , I)P(H|I)
P(D|I) . (9)

Given two such models or hypotheses, H1 and H2, to
describe the same data, their respective posterior proba-
bilities can be divided to obtain the ratio

P(H1|D, I)
P(H2|D, I)

= P(D|H1, I)P(H1|I)
P(D|H2, I)P(H2|I) , (10)

and assuming equal prior probabilities for the hypotheses
(P(H1|I) = P(H2|I)),

P(H1|D, I)
P(H2|D, I)

= P(D|H1, I)
P(D|H2, I)

= Z1
Z2

= B12. (11)

The ratio of evidences Z1/Z2 is known as the Bayes
factor and provides a metric for model comparison [28].
Jeffreys’ scale [29] provides a useful qualitative tool for
interpretation of this factor (by calculating ln(B12)), as
shown in Table 1. The table shows the grading of decisive-
ness of evidence to support or reject the hypothesis H2. If
the log-Bayes factor is negative it can trivially be reversed
to provide evidence against the competing hypothesis. It
should be noted that in contrast to null hypothesis signif-
icance testing (rejecting or failing to reject the null) the
Bayes factor provides the ability to rank hypotheses.

Table 1 Jeffreys’ scale for interpreting the Bayes factor and
rejecting hypothesis 2 compared to hypothesis 1

2 lnB12 Evidence against hypothesis 2 (H2)

0–2 Hardly worth mentioning

2–6 Has some substance

6–10 Strong

> 10 Very strong

This model comparison framework is a useful and ver-
satile tool. In Additional file 1 we consider the application
to bacterial growthmodel comparison. In this paper, how-
ever we focus on the application to the comparison of
growth rates for a single model.

Hypothesis testing to compare growth rates between two
curves
As mentioned in the introduction, different bacterial
strains or changes in the environment can result in differ-
ent characteristic growth rates. Given two growth curves,
therefore, it is often of great interest to determine whether
the two growth rates are significantly different. We com-
pute the evidence and posterior probability for each of
three possible hypotheses to describe a pair of curves. In
the first hypothesis (H1) the two curves are replicates and
the same set of parameters can be used to describe each,
in the second (H2) the two curves have the same growth
rate but differ in all other parameters and in the third (H3)
the curves share no common parameters. In all three cases
both curves are fitted using the growth model of Eqs. 1
and (2) and the likelihood function is given by combining
the individual likelihoods for the two curves (from Eq. 4).
The individual hypotheses may then be compared using
Bayes factor and the results interpreted using Jeffreys’
scale. This gives us a standardised scale of confidence in
which to place results and allows us to consistently decide
how many parameters are necessary to describe the two
curves.
In order to compare to a traditional statistical testing

method, we perform a similar analysis on the two datasets
using an F-test. We test using two different models. In the
separated model, optimisation is used to fit the growth
model to the two datasets separately. In the unifiedmodel,
optimisation is performed on the combined dataset such
that themodel is fitted independently for each dataset, but
the same growth rate is used for both. The null hypothe-
sis is given by the statement the two curves have the same
growth rate. The F-test statistic is given by

F =
∑N1+N2

i=1 (yiu − yis)2∑N1+N2
i=1 (di − yis)2 /(N1 + N2 − 1)

, (12)

where the two datasets haveN1 andN2 data points respec-
tively, di is the y component of the i-th data point and
yis and yiu denote the y value obtained by applying the
separated and unified models respectively using the t
component of the i-th data point. Here the first degree of
freedom is given by the difference between the number
of parameters in the separated and combined models and
the second degree of freedom by the difference between
the total number of data points and the number of param-
eters in the combined model. The null distribution of the
test statistic is the f -distribution and for each calculated
statistic there is an associated probability density value. A
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commonly used threshold for the probability density value
is 0.05 [30], below which the null hypothesis is rejected.
In this case the difference in growth rate between the two
growth curves is considered to be significant.

Implementation
All results in the following sections were computed using
our implementation of the above methods, Bayesfit and
Bayescompare; the former may be used for inferring the
parameters of the model for a single growth curve and
the latter for the detection of differences in growth rate
(via hypothesis testing). Both provide the means to incor-
porate prior knowledge as part of the analysis and allow
for the use of a range of growth models (with different
numbers of parameters). We have made these functions
available as part of the R package babar (downloadable
from CRAN [31]). Details and examples regarding the
functionality of the package are available online as part of
the CRAN documentation. Additional analysis and pro-
duction of plots were performed using R (v. 3.2.1) [32] and
additional packages, ape [33], gridBase [34], corrplot [35],
plyr [36] and ggplot2 [37].

Results and discussion
The growth rate is more precisely defined than the lag time
associated parameter
Plots from our analysis show that the marginal posterior
distribution is approximately unimodal for all parameters
(Figure S10 in Additional file 1) and can be represented,
for the sake of comparison, by the means and variances
of posterior samples (Figure S11 in Additional file 1).

Further, when using nested sampling to infer the param-
eters of a test curve, the correspondence with actual
(known) parameter values is found to be good (especially
for the growth rate), as is the accuracy of the inferred noise
level, σI (Figure S12 in Additional file 1).
Through calculation of the coefficient of variation for

all parameters over the ComBase database, the growth
parameter, μmax, is found to be more constrained by the
data than the lag time associated parameter, h0 (see Fig. 2).
This observation agrees with the work of others in the
literature, where the growth rate has been found to be
characteristic of the bacteria [1], whilst h0 has been found
to be the least constrained by the data and therefore
the most difficult to infer accurately [11]. Given that the
minimum and maximum bacterial concentration param-
eters, y0 and ymax, are largely influenced by experimental
conditions (for instance, the inoculation level), this also
lends evidence towards the hypothesis that the growth
rate is the most important parameter for the purposes of
meaningful curve comparison.
It must be noted, however, that the degree of accuracy of

any parameter is subject to the quality of data. For exam-
ple, we can expect that in the case that we have ample
data based around the growth region, our inference of the
growth rate will be more accurate than in the case that
we only have sparse measurements. In the latter case, the
increased uncertainty will naturally result in less tightly
constrained behaviour in terms of the inferred growth
dynamics. This kind of difference in behaviour is cap-
tured as part of our analysis and reflected in the inferred
parameter variances (see Figure S13 in Additional file 1).
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Fig. 2 The inferred growth rate, μmax, is more precisely defined than the lag time associated h0. Boxplots for the coefficient of variation (cv = standard
deviation/mean) for all parameters, calculated from the results of performing the Bayesian analysis using the 4 parameter model of Baranyi and
Roberts over the entire database of growth curves from the ComBase database. Here the noise level, σ , is inferred for each curve. Whiskers show the
minimum and maximum of the results in each case. Over the database, we find that the inferred growth rate, μmax, is the most precisely defined
when comparing to h0 = λμmax (where λ is the lag time)
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The Bayes factor can be used to reliably detect differences
in growth rate
The Bayes factor allows us to compare differences in the
growth rate parameter, μmax. Figure 3 shows that the dif-
ference in growth rate that may be detected depends on
the quality of the experimental data. Here a perturba-
tion analysis is performed by comparing two curves as the
difference in growth rate between the two increases. Fol-
lowing the methods definition of hypotheses 1 to 3, the
evidence is obtainined for hypothesis 2 (the curves have
the same growth rate) versus hypothesis 3 (the curves have
different growth rates). During the analysis, two test curves
(with pre-defined parameters) are generated, the first of
which is fixed with growth rate 0.11, and the second of
which has a growth rate which may be varied. The analy-
sis is repeated n times for each difference in growth rate
and the second curve is computationally re-generated for
each repeat, so that the n resulting curves can be thought
of as replicates, each with different random noise asso-
ciated. The mean and standard deviation of the Bayes
factor is calculated from the n repeats and this informa-
tion, together with the known variance of the Bayes factor
from Figure S2 in Additional file 1, can be used to illus-
trate the effect of lack of information on our analysis. We
examine the effect of different noise levels, σ , datasets
with different numbers of data points and different num-
bers of replicates. Unsurprisingly, the greater the amount
and the better the quality of experimental data, the smaller
the difference in growth rate that can be detected.
Given the above findings, it is interesting to see

how Bayesian analysis compares to traditional statistical

testing methods under similar conditions. Figure 4 shows
a comparison between the results of testing using the F-
test described in the methods section and testing using
Bayes factors. We consider the outcome of each testing
method for two curves with and without the same growth
rate at various different noise levels. Here, similarly to
above, the first curve is fixed whilst the second is com-
putationally regenerated 50 times for each noise level,
resulting in 50 replicate curves each with different ran-
dom noise. Initially, we consider the results when we use
a uniform (uninformative) prior and find that Bayesian
analysis produces more consistent results across the range
of noise levels and correctly predicts equal growth rates
more often than the F-test. The improvement in detec-
tion is more noticeable at larger noise levels (at times
exceeding 10 %), since by using Bayesian analysis we may
account for the noise level, σ . The same is true when the
two growth rates are different; at larger noise levels there
is a higher percentage of occurrences of correct detec-
tion when using Bayesian analysis with a uniform prior.
For a few of the smaller noise levels, however, the F-test
correctly predicts a difference in growth rate more often.
Therefore, we next examine the effect of incorporating
prior knowledge in our analysis to see if this provides a
means to improve the overall level of detection.

Prior knowledge can be used to improve detection of
differences in growth rate
Bayes’ theorem provides a framework tomake use of exist-
ing experimental knowledge through the use of the prior
probability. In the following we evaluate whether making
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Fig. 3 The difference in growth rate that can be detected is data-dependent. The results of comparing two curves and calculating the log Bayes
factor, lnB23, for hypothesis 2 (H2 following previous convention; the curves have the same growth rate) versus hypothesis 3 (H3 following previous
convention; the curves have different growth rates) as the difference in growth rate, �μmax, between the two is increased. Here, the first curve is fixed,
whilst the growth rate for the second is increased and n replicates with computationally random noise (with level σ ) are generated for each
difference in growth rate. The solid lines and shading represent the mean and standard deviation respectively for each case. The dashed line
represents the line below which we favour hypothesis 3 over hypothesis 2 based on Jeffreys’ scale. The effect of using curves with different numbers
of points and noise levels is explored, as well as using different numbers of replicates
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Fig. 4 Bayes factor performs more consistently than an F-test when comparing growth rates. The results of using both an F-test (as described in the
methods section) and Bayes factors (with the noise level, σ , inferred) on the same data to test whether two curves with 32 points have equal or
different growth rates. We test two differences in growth rate, �μmax. The first curve is fixed, whilst for the second curve, 50 computationally
random replicates are generated for each noise level σL . For the Bayesian analysis, growth rates are considered to be different if there is substantial
evidence for this (hypothesis 3) over equal growth rates (hypothesis 2). We also perform the analysis using prior knowledge (obtained from four
previously analysed curves) for both curves. Here we make use of both the Gaussian and Cauchy priors and note that in the right hand plot the two
are indistinguishable. Detection when using Bayes factors may be further improved by incorporating prior knowledge

use of such knowledge can further improve our results
with regards to growth rate comparison.
After running the Bayesian analysis over the large

dataset of growth curves available at ComBase, an over-
all correlation of 0.63 was found between the recorded
temperature and the estimated growth rate (Figure S14,
Additional file 1). Due to the expected dependence of
growth rate on bacterial species, it is reasonable to expect
this correlation to be stronger when filtering by bacterial
organism. Indeed, this is the case. For example, the 63
curves that were recorded at pH values of between 5 and
5.1 for the organism Salmonella spp. had a high correla-
tion of 0.90 between temperature and growth rate (see top
panel of Fig. 5).
We next investigate whether such a correlation may be

used to build clusters of growth curves which could pre-
inform priors for improved parameter estimation. The
bottom panel of Fig. 5 shows the results of clustering the
above-mentioned 63 curves by temperature, and colour-
ing according to the inferred growth rate from our initial
analysis. Here we use the R function, hclust, to perform
average linkage hierarchical clustering, taking Euclidean
distance as a metric. We see a good correspondence
between the temperature clusters and their estimated
growth rates, and similarly, when instead clustering by
growth rate and colouring by temperature (Figure S15,
Additional file 1). This suggests that such clusters could be
exploited to inform the prior for the growth rate parame-
ter. This in turn may lead to improved parameter estima-
tion for a new growth curve under similar conditions.

Given justification in the methods section, we build
informative Gaussian or Cauchy priors using the inferred
means, μi, and variances, σi2, of growth rates from N
previously analysed curves in a cluster. The overall mean
and variance, μcluster and σcluster

2, for the growth rate are
calculated using

μcluster =
N∑
i=1

μi
N

, (13)

σcluster
2 =

N∑
i=1

μi2

N
−

( N∑
i=1

μi
N

)2

+
N∑
i=1

σi2

N
, (14)

where the variance is calculated using the law of total vari-
ance [38]. These values are then used in the prior (Figure
S16 in Additional file 1 illustrates this method).
Figure 6 shows the results of using test data to illus-

trate the difference in evidence (and therefore ranking)
between the three priors (uniform, Gaussian and Cauchy)
as a function of the distance of the curve being analysed
from the cluster used for prior knowledge. We illustrate
this distance in terms of a difference in growth rate but, as
shown above, this equates to a difference in temperature.
Using a Gaussian or Cauchy prior, we observe a greater
evidence as the curve becomes closer to the cluster. Since
this results in a higher ranking for these choices of prior
compared to the uniform prior, this suggests that either
will improve parameter inference if the growth rate (or
temperature) of the curve is close to that of the cluster. On
the other hand, if we move too far away from the cluster,
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Fig. 5 Correlations between temperature and growth rate may be
used to build clusters of growth curves. (Top) Growth curves for the
organism Salmonella spp. recorded at pH values of between 5 and 5.1
show a strong correlation (0.90) between their estimated growth rate
and the temperature conditions in which they were grown. (Bottom)
Clustering by temperature reveals clear grouping and when coloured
by estimated growth rate this is well maintained. Clusters in the tree
are labelled by temperature and the leaves coloured by growth rate.
Colours are the same in both the top and bottom plots (high growth
rate is purple, low growth rate is green). These clusters can therefore
be used to give prior knowledge for improved parameter estimation

an informative prior may not be the most highly ranked
choice, although the heavy-tailed Cauchy prior is more
forgiving than the Gaussian. As expected, when no back-
ground knowledge informs the choice of prior (that is for a
uniform prior) the evidence does not change significantly
across the different data sets.
The improvement in parameter estimation when cor-

rectly using prior knowledge is found to be useful when

comparing growth curves, as more precise estimation
of parameters allows better detection of differences in
growth rate. We return to the analysis of the previous
section and Fig. 4 and find that when making appropri-
ate use of clusters during hypothesis comparison, there is
a general improvement in the percentage of occurrences
of correct detection for a difference in growth rates. Due
to this, the incorporation of prior knowledge results in a
higher percentage of correct prediction than for the F-
test in almost every case. As mentioned previously, this
improvement is more noticeable for noisy data, where we
may see up to a 25 % increase in correct prediction. When
the growth rates are the same, it may be better to use a
uniform prior. Since in practice we do not know how sim-
ilar the growth rates are, these results suggest running the
analysis both with and without prior knowledge and look-
ing at the evidence value for the most appropriate prior
choice in each case. In Fig. 7, we show an example of the
application of these techniques to curves from the Com-
Base dataset. Here, we consider two clusters, each at a
given temperature and pH value, and illustrate the sub-
tle differences in growth rate that may be detected when
comparing two curves, one from each cluster, using the
rest of the curves as prior knowledge. In particular, whilst
the difference between the two curves is too small to be
deemed significant when using an F-test, for the Bayesian
analysis a large proportion of the evidence supports the
curves having different growth rates. This shows that we
are able to attribute statistical significance to differences
that are too small to be detected by an F-test.
These results are encouraging and point to the impor-

tance of methods, such as Bayesian analysis, which fully
take into account both the quality of data and prior experi-
mental knowledge when comparing growth rates between
microbial response curves. Using Bayesian analysis we can
improve on both the consistency and level of detection
in our analysis, as well as answering the growing need to
standardise statistical testing within a well-defined frame-
work.

Conclusions
Given the abundance of information available in many
cases for bacterial response under differing environmental
conditions, it is an appealing idea to use existing measure-
ments to build a local model of environment space which
may be used to address the challenging problem of detect-
ing small differences in growth rate. We have shown that
using Bayesian techniques we can consistently detect such
differences. These techniques make use of the evidence
and the Bayes factor as tools for ranking hypotheses. By
taking into account prior knowledge through clusters of
previous results under similar conditions and also by esti-
mating the noise level of the data as part of the analysis,
more subtle differences in growth rate may be shown to be
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Cauchy (black) prior as a function of position in-between the two clusters (in terms of growth rate). In the case of the Gaussian or Cauchy priors, the
solid lines indicate that cluster A has been used for prior knowledge, whilst dashed lines indicate that cluster B has been used. Data sets from cluster
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growth curve is near to the cluster, but loses evidence as curves become more dissimilar from their cluster. The Cauchy prior can alleviate this to
some extent, whilst the uniform prior has little change across growth rates

significant. Such differences may be missed by traditional
statistical testing methods such as an F-test.
When using clusters of results as prior information,

however, we highlight that one should be careful that the
given cluster is relevant to the curve to be analysed, so as
not to obtain to misleading results. This should involve

taking into account both how close the environmental
conditions of the new curve are to that of the cluster and
how tightly-defined the cluster itself is. A tightly-defined
cluster that is a distance away from the new curve is likely
to have a detrimental effect on the results. This is espe-
cially true when using the highly informative Gaussian
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Fig. 7 Using prior knowledge we can attribute significance to subtle differences in growth rate. We take Escherichia coli data from ComBase and use
Bayes factors to compare the curve EcBook16_22_c (black solid line and filled circles in the left panel) with a curve with subtly different growth rate,
EcGB_20_b (blue solid line and filled circles in the left panel), collected at a slightly different temperature and pH. The noise level, σ , is inferred and
for each curve, we use prior knowledge from a cluster of previously analysed curves (dashed lines and crosses in the left panel), measured at the
same temperature and pH. Growth rates are considered to be different if there is substantial evidence for this (hypothesis 3, H3) over equal growth
rates (hypothesis 2, H2). Due to the variability in the stochastic algorithm, we compute the Bayes factor, B23, for 50 runs (red circles in the right panel)
and compute the mean and standard deviation (black diamond and triangles in the right panel). Whilst the outcome of testing differences using an
F-test is to accept the null hypotheses that the two curves have the same growth rate, a large proportion of runs for the Bayesian analysis result in
the detection of a difference in growth rate
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prior. If it is suspected that this is the case, we recommend
performing the analysis with both a uniform and Gaussian
or Cauchy prior, in which case the evidence should be
examined for the most appropriate choice. In some cases,
it may be possible to combine clusters of results to form a
more relevant but broader Gaussian or Cauchy prior.
We have also shown that the same framework can eas-

ily be used for model comparison (see Additional file 1).
Indeed, in general, the evidence and Bayes factor are use-
ful tools for conclusively testing hypotheses and models.
We advocate the evidence as an alternative tool to tra-
ditional statistical testing methods and goodness of fit
measurements in general.
There is scope for wider application of the techniques

developed in this paper. The same methods may be used
to analyse assays of bacterial growth in plants after, for
example, spray inoculation. Here, it would be important
to take into account lack of information since frequently
only a small number of bacterial concentration measure-
ments are collected. Optical density measurements also
often lead to growth curves, which may be analysed by
fitting to mathematical models such as those we have
discussed [39, 40]. Although the present study has been
restricted to bacterial growth curves, it is also possible
to use the same techniques to analyse survival curves,
for which there is a rich history of model development
[41–43]. Further, the techniques presented in this paper
can be applied outside of the field of microbial response
entirely. Accurate measurement and comparison of the
rate of some quantity is needed inmany areas of chemistry
and biology. For example, the study of enzyme kinetics
requires completion of enzyme assays which measure, for
instance, the change in substrate or product concentration
over time in order to calculate a reaction rate. The many
models available for mathematical analysis of population
dynamics also lend themselves to analysis using the meth-
ods we have described. Another candidate for analysis
is the estimation of real-time polymerase chain reaction
curves using fluorescent reporters, for which the famil-
iar phases of lag, growth and saturation can be observed
[44]. In fact, many systems show a sigmoidal growth
behaviour, introduced due to a combination of damping
or disturbing factors that result in a levelling off of the
rate for very small or large times, and could be analysed
and compared using the models and techniques in this
paper.
In the analysis of both bacterial growth curves and other

systems showing similar growth behaviour, the growth
rate is often the primary parameter of interest and other
parameters may be thought of as noise since they are
not strictly required as output. Here, it may make more
sense to integrate out these “nuisance parameters” prior
to the analysis [45]. Not only would this focus all efforts
on accurate estimation of the rate, but, theoretically, it

should also speed up the computation time. However,
given the structure of models such as that defined by
Eqs. 1 and 2, calculation of the likelihood function is likely
to require numerical integration, which may in fact slow
down the computation. It would be interesting, neverthe-
less, to determine whether such techniques could further
improve detection of differences in growth rate.
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