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Abstract 

Largely using gene-based evidence, the last few years have seen real insights on the diverse 

ways in which different microbes break down dimethylsulfoniopropionate, an abundant anti-

stress molecule that is made by marine algae, some corals and a few angiosperms. Here, we 

review more recent advances in which in vitro biochemical tools – including structural 

determinations – have shed new light on how the corresponding enzymes act on DMSP. 

These have revealed how enzymes in very different polypeptide families can act on this 

substrate, often by novel ways, and with broader implications that extend from enzymatic 

mechanisms to microbial ecology. 

 

Introduction 

The sulfur-containing zwitterion dimethylsulfoniopropionate (DMSP), is made in massive 

amounts (~109 tons annually, worldwide), with influences on diverse phenomena, from 

cloud formation to bird behavior [1]. Yet there is less general awareness of DMSP than these 

credentials deserve, most likely because it is a molecule of the seas and their margins. The 

marine organisms that make DMSP embrace single-celled plankton as diverse as 

dinoflagellates, diatoms and coccolithophores, as well as some red and green algal 

seaweeds, a few angiosperms [2], and, recently, the first DMSP-synthesizing animal, the 

coral Acropora was described [3]. DMSP may serve as an osmoprotectant, though other, 

anti-stress functions have been suggested (e.g. [4]); indeed, it may have different duties in 

the varied organisms that make it. 

Although first identified in 1948 [5], we know little of how DMSP is made at a molecular 

genetic level, though some credible pathways were proposed (e.g. [6]). In contrast, there 

have been recent insights into how DMSP is catabolized, although awareness of this 

phenomenon, too, is not new. Cantoni and Anderson [7] showed in 1956 that the DMSP-

producing macroalga Polysiphonia also broke it down to acrylate and the volatile dimethyl 

sulfide (DMS), as do other eukaryotic DMSP-producing organisms (see [8]). Furthermore, 

many marine bacteria can concentrate the DMSP that leaks from producer organisms, and 

then catabolise it. This process is not only a major driver of marine nutrition and global sulfur 

cycling, but the DMS product itself has diverse environmental effects. It is a chemoattractant 
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for marine animals (birds, mammals and invertebrates), as indeed is DMSP itself [9,10]. And, 

at a very different level, DMS oxidation products cause atmospheric water molecules to 

coalesce, with possible effects on weather through cloud formation [11]. 

Furthermore, some abundant marine bacteria can catabolize DMSP in a very different way, 

in which the substrate is first demethylated in a pathway that allows some bacteria to use 

DMSP as a sulfur and/or carbon source [12-15]. 

This chapter encapsulates recent work on DMSP catabolism, emphasizing biochemical 

studies on the relevant enzymes, relating these to earlier genetic analyses (recently 

reviewed [12-15]). 

 

DMSP catabolism by eukaryotic phytoplankton 

Emiliania huxleyi is an abundant single-celled coccolithophore, long known not only to make 

DMSP, but to cleave it into DMS plus acrylate, possibly as a defense mechanism against 

zooplankton predation [16]. But, only very recently has the corresponding gene and its 

DMSP lyase product been identified [8]. This nuclear gene, Alma1, encodes a tetrameric 

DMSP lyase that is sensitive to oxidative stress and is located in the cell’s chloroplastic 

membrane [8]. Alma1 is in the aspartate/glutamate racemase super-family, which not only 

includes racemases sensu strictu, but has representatives with different functions, for 

example aryl-malonate decarboxylases and maleate cis-trans isomerases. These enzymes 

add or remove a proton from the carbon adjacent to a carboxylate, so Alma1 likely catalyzes 

the abstraction of a proton next to the DMSP carboxylate, releasing DMS plus acrylate 

(Figure 1). 

An active DMSP lyase with low-level similarity (~25% identical to Alma1) also occurs in the 

dinoflagellate Symbiodinium, a distantly related phytoplankton that interacts intimately with 

its Cnidarian host and is essential for coral productivity [17]. The functions of a range of 

polypeptides with similarly low sequence identity to Alma1 but which occur in diverse 

phytoplankton and even in bacteria are yet to be established. Interestingly, E. huxleyi itself 

has other poorly conserved Alma1 paralogues; those that were tested had very low DMSP 

lyase activity but the possibility that these were not expressed in soluble, fully functional 

form was not excluded [8]. One of these comprises two, tandemly arranged Alma1-type 

domains, superficially reminiscent of the architecture of the bacterial DMSP lyase DddD 

(below). 

E. huxleyi strains differ in their baseline levels of DMS production and, nicely, this correlates 

with their amounts of Alma1 protein [8]. However, the intrinsic and/or extrinsic signals that 

affect expression of Alma1 are unknown. We did note, however, that published 

transcriptomic measurements indicated that E. huxleyi Alma1 and the Symbiodinium Alma1-

like gene were expressed at low levels in laboratory-grown cells. Expression was unaffected 

by temperature or salinity [18,19], although transcription of E. huxleyi Alma1 was enhanced 

~3-fold in low-sulfate media [18,19]. 

 

Bacterial DMSP catabolism 
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It was known for some time that DMSP could be catabolized by bacteria in two distinct ways 

– the “demethylation pathway” in which a methyl group is removed, yielding 

methylmercaptopropionate (MMPA), and a “lysis” route in which DMS was produced, with 

some marine bacteria being able to accomplish both of these (see [16]).  

To date, only one gene (dmdA) that encodes a DMSP demethylase enzyme has been 

identified; in contrast, the lyases, encoded by different ddd genes are of at least four 

different types (see [12,13,20]). We now consider recent biochemical analyses of these 

DmdA and Ddd gene products, summarized in Table 1. 

 

DmdA DMSP Demethylase 

The DMSP demethylase, DmdA, is found, mostly, in two clades of marine alpha-

Proteobacteria, namely the Roseobacters and Pelagibacter ubique (SAR11), [21,22], both of 

which are very populous in the oceans, accounting for the widespread and abundant 

distribution of dmdA genes in marine metagenomes. Our own inspection of the large 

(>4x107 non-redundant sequences) Tara Oceans data set [23] showed that ~28% of the 

sampled cells contained dmdA, a similar value to that found in surveys of other 

metagenomes [22], notably that of the Global Ocean Survey (GOS) [24]. 

DmdA has significant (25%) sequence identity to amino-methyltransferases of the glycine 

cleavage T-protein (GVT) family. In addition to their deamination activity, these enzymes 

transfer a methyl group to the acceptor molecule, usually tetrahydrofolate (THF) to yield 5, 

10-methylene-THF. Atypically for members of this family, though, the methylated product of 

the DmdA-mediated demethylation of DMSP is 5-methyl-THF [25]. 

The recently obtained structure [26] of P. ubique DmdA shows that it is a dimer and although 

it adopts a fold that resembles other GVT family members, there are significant differences 

at both the THF- and nearby DMSP-binding sites. The structure revealed the proximity (3.3 

Å) of the N5 atom of THF and the methyl group on the DMSP’s sulfonium atom, prompting a 

model that couples the methyl transfer (to THF) and the N5 proton to form a water 

molecule. Mechanistically, this more closely resembles that in the family of SAM-dependent 

methyltransferases, rather than that of other GVT enzymes. Thus, minor, precise differences 

near the active site of GVT family enzymes can affect the specificity and the enzymatic 

mechanism, even though the overall fold is little-changed. 

 

DMSP Lysis Pathway(s) 

The lysis pathway can be mediated by at least four classes of “Ddd” (DMSP-dependent DMS) 

bacterial enzymes, representing different polypeptide families. 

 

 DddD Acetyl CoA Transferase 

The in vitro characterization of the DddD DMSP lyase [27] substantiates and extends earlier 

genetic and bioinformatic observations on this enzyme, identified first in the γ-

Proteobacterium Marinomonas [28]. DddD is (so far) unique in that its C3 initial product is 

not acrylate, but 3-hydroxy-propionate (3HP), or a CoA-linked version thereof [28] (Figure 1). 
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The DddD polypeptide has an unusual architecture, with similar, tandemly arranged 

domains. These both resemble CaiB, a Class III CoA-transferase involved in interconverting 

crotonobetaine and L-carnitine, the latter being structurally similar to DMSP [29]. DddD’s 

catalytic mechanism likely involves an initial, acetyl-CoA-dependent covalent attachment of 

DMSP to the enzyme, possibly at an aspartate residue that is conserved at the C-terminal 

domain of all functional DddD enzymes [27]. Subsequent hydration of DMSP releases DMS 

plus 3HP-CoA (and/or free, unmodified 3HP). While resembling CaiB, both in sequence and 

in some of the proposed mechanisms, DddD has distinctive features. CaiB forms a 

homodimer of intertwining polypeptides [30]; although DddD may have a similar overall 

structure, this would comprise a single, larger polypeptide [27]. Also, CaiB CoA-transferase 

works in conjunction with a second enzyme, CaiD, which is responsible for hydrating 

carnitine CoA; in contrast, and unusually, DddD accomplishes both these reactions. 

Many bacteria containing DddD (mainly γ-Proteobacteria, e.g. Marinomonas) grow well on 

DMSP as sole carbon source [28,31]. Furthermore, dddD is often clustered with dddA and 

dddC, which encode enzymes needed for subsequent, sequential catabolism of 3HP(-CoA) 

[28,31], consistent with DddD’s important role in DMSP-dependent nutrition.  

However, functionally ratified homologues of DddD also occur sporadically in other sub-

phyla of Proteobacteria – e.g. Rhizobiales and Rhodobacterales (both α-) and Burkholderiales 

(β-) - pointing to repeated horizontal gene transfer (HGT) events [28]. 

This DddD-type architecture of two tandemly arranged CaiB domains is widespread in 

different bacterial taxa, albeit their sequences being less similar to those in DddD itself. The 

function(s) of these homologues is unknown. Further, it was noted [32] that E. huxleyi has a 

gene that would encode such a polypeptide. However, this does not appear to be a bona fide 

DMSP lyase, not least because this eukaryote makes acrylate, not 3HP, as its C3 DMSP 

cleavage product (see above).  

 

 The “metallo-peptidase” DddP 

The DddP DMSP lyase cleaves DMSP into DMS plus acrylate [33,34], and is widespread in 

bacteria of the Roseobacter and SAR116 clades, accounting for its relatively high abundance 

(4-26% of sampled bacterial cells) in a number of marine metagenomes [22,35-37]. 

Functional DddP enzymes also exist in a few strains of other bacteria and, strikingly, in much 

more distantly related organisms, even including Ascomycete fungi, likely through inter-

Domain HGT [33,38]. As predicted from its sequence [33] the recently described structures 

of DddP in two Roseobacters confirm it to be in the M24B sub-group of metalloproteases 

[39,40], with the expected metalloproteinase-like ‘pitta-bread’ fold. It is dimeric [34], with 

the interface of the two monomers encompassing the active sites – one per monomer. Each 

site includes a binuclear metal centre, one occupied by Fe and the other by a choice of 

different metals. The two metal ions are co-ordinated to residues (3 x aspartate, 2 x 

glutamate and a histidine) that are conserved in all functional DddP enzymes (see Figure 4 in 

[39,40]). Other conserved residues (tryptophan and tyrosine) of DddP are proposed to bind 

to the S+ of DMSP via cation-π interactions and orientate this substrate for electrostatic 
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interaction with one Fe ligand at the carboxyl group, causing the Fe to move [40]. This ion-

shift would expose the remainder of the substrate to two residues (aspartate and glutamate) 

that would abstract a proton, leading to a beta-elimination, releasing DMS and acrylate. The 

model tallies with earlier site-directed substitutions of the predicted metal-binding amino 

acids; these completely abolished DMSP lyase activity [34].  

 

 Cupins 

The cupin motif comprises a metal-binding β-barrel and occurs in a vast number of 

polypeptides, with myriad functions [41]. No fewer than three different cupin-type DMSP 

lyases, DddL, DddQ and DddW have been identified to date – again, mostly in the marine 

Roseobacters [12]. These lyase enzymes share no extended amino acid similarity, except at 

this cupin motif, positioned towards their carboxyl termini. 

The recently presented structure [42] of DddQ and biochemical work on DddW [43], two 

cupin-type DMSP lyases respectively from Ruegeria lacuscaerulensis and R. pomeroyi reveal 

that both are dimeric. Furthermore, both depend on a divalent metal cofactor, binding to 

three histidines and a glutamate residue within their cupin domains. These residues are 

conserved in the cupin DMSP lyases (Figure 2a), and modelling, based on the DddQ 

structure, shows that their predicted locations in DddL and DddW are very similar to those in 

DddQ. The crystallised DddQ protein contains a bound Zn whereas DddW is purified 

predominantly containing Fe. However, both these lyases can function with other divalent 

metal cofactors; viz Mn2+ and Co2+ for DddQ and Mn2+ and Fe2+ for DddW. Despite this 

apparent promiscuity, Fe2+ is the “preferred” ion for DddW, with a Kd of ~5 nM, ~200-fold 

lower than other tested transition metals [43]. 

 

The proposed mechanism of cupin-containing DMSP lyases [42] for beta-elimination of a 

proton has novel features, in that initial binding of DMSP to the metal cofactor may cause 

movement of a nearby, conserved tyrosine (Y131 for DddQ as shown in Figure 2b), bringing 

the oxygen atom of tyrosine closer to the alpha-carbon of DMSP, leading to the abstraction 

of a proton plus the release DMS and acrylate. It should be noted, though, that this model 

has been questioned by others [44]. 

 

Closing discussion points 

The last few years have seen increasing amounts of biochemical flesh on earlier genetic and 

physiological bones of DMSP catabolism. And, again, the watchwords seem to be “novelty” 

and “variety”. Even for those enzymes whose deduced amino acid sequences place them in 

known, and sometimes well-characterised, polypeptide families, several of them have 

distinctive features.  

Thus: 

 DddD is the first characterised enzyme with the tandem CaiB-CaiB CoA-transferase 

domain arrangement, maybe providing a template for other polypeptides with this 

architecture, in diverse organisms, but with, as yet, unknown function(s). 
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 The proposed role of the mobile tyrosine residue in DddW, and by inference in other 

cupin-type lyases, is highly unusual - though see comments by others [44]. 

 Although DddP is in a family whose usual substrates are amino acids, and has an 

overall structure that resembles archetypal M24 proteases, DMSP is clearly not a 

peptide. However, subtle differences in the active site residues, and the ways that 

these may influence the interactions with metal cofactors may account for this 

difference in the natures of the substrates [40]. 

 Similarly, the DmdA DMSP demethylase, whose overall sequence and structure place 

it in one family (glycine cleavage T1), has a mode of action that more closely 

resembles that of the SAM-dependent methyltransferases. 

 

And, yet another “Ddd” lyase, DddY, occurs in bacteria that favour microaerobic habitats and 

is (so far) unique in being periplasmic [45]. It does not resemble any polypeptide of known 

function, so elucidating its enzymatic details presents extra challenges, even though it was 

the first to have been purified [46] and even partially sequenced [47]. 

It will be of interest to establish if the varied types of enzymes that act on DMSP (and/or the 

organisms that harbour them) are adapted to function in particular marine environments. 

For example the local, perhaps transient, availability of particular metals may influence the 

effectiveness of the different metal-containing lyases. 

Many enzymes that act on DMSP have strikingly (some might say “disturbingly”) high Km 

values, in the millimolar values for DddP and DmdA and especially high for the cupins (Table 

1). Also troubling are the low Kcat values of some of the cupin lyases. Some authors (including 

ourselves [12]) asked if this hints that the “real” substrate for at least some of them may not 

be DMSP, but other, as yet unknown molecules [44]. Even though bacteria can concentrate 

DMSP to impressively high intracellular concentrations – as much as 70 mM [25] – the 

concerns raised by the values of these catalytic parameters still require unambiguous 

resolution. Of course, the question of what is the “correct”, natural substrate for any given 

enzyme is not restricted to those that include DMSP as a substrate, and the consequences 

and origins catalytically promiscuous enzymes have been considered in some depth (e.g. 

[48]).  Although some of these “DMSP lyases” may indeed turn out to be other than this 

term implies, the fact that their corresponding genes are seen in the metagenomes of 

bacteria that are from the seas and their margins and not, for example, in soils or in the 

human microbiome, strongly predicts that the “correct” substrate (if such there be) also has 

a marine distribution. For the moment at least, we go along with the inestimable Douglas 

Adams, who shrewdly noted that “If it looks like a duck and quacks like a duck, we have at 

least to consider the possibility that we have a small aquatic bird of the family Anatidae on 

our hands” [49]. 

In any event, although our understanding of how DMSP is catabolised has progressed 

significantly, on a number of fronts, there are still questions to be answered, ranging from 

enzyme mechanisms to microbial ecology. 
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Figure Legends 

Figure 1. Products formed through the action of different enzymes that act on the 

substrate DMSP. 

Dimethylsulfonioproprionate (DMSP) is converted to acrylate, dimethyl sulfide (DMS) and a 

proton via the DddL, Q, W, Y, P and Alma1 enzymes of the DMSP lyase pathway. The DddD 

enzyme of the CoA DMSP lysis pathway produces 3-hydroxypropionate (3HP)-CoA and DMS 

from DMSP, using acetyl-CoA as a CoA donor. The demethylation of DMSP by DmdA 

produces methylmercaptopropionate (3-MMPA) and methyl-tetrahydrofolate (THF). 

Bacterial enzymes are in pink background, eukaryotic in green, and DddP, found in both 

Domains, in yellow. The protein families of each enzyme are indicated. 

 

Figure 2. Cupin motifs and metal binding residues of DddL, DddQ and DddW. 

(A) Sequence alignment of cupin regions of selected DddL, DddQ and DddW proteins using 

sequences at NCBI and Geneious [50]. The two conserved cupin motifs 1 (GX5HXHX3,4EX6G) 

and 2 (GX5PXGX2HX3N) are boxed in red. The catalytically important, metal-binding histidine 

and glutamic acid residues are highlighted in green. The conserved Tyr residue shown to 

play a catalytic role in DddQ is marked in cyan. Other non-variant residues are colored 

yellow. The sequences are from: Q1 = DddQ, Ruegeria lacuscaerulensis (SL1157_0332); Q2= 

DddQ, Ruegeria pomeroyi DSS-3 (SPO1596); W1= DddW, Ruegeria pomeroyi DSS-3 

(SPO0453); L1= DddL, Sulfitobacter sp. EE-36 (EE36_11918); L2= DddL, Rhodobacter 

sphaeroides 2.4.1 (RSP_1433). The numbers refer to the amino acid residues in R. 

lacuscaerulensis DddQ. 

(B)  The Zn(II)-bound structure (PDB 4LA2) [42] of Ruegeria lacuscaerulensis DddQ 

(magenta) was the template to model the active sites of DddL of Sulfitobacter sp. EE-36 

(green) and DddW of Ruegeria pomeroyi DSS-3 (cyan), using SWISS-MODEL [51]). The 

catalytic residues H123, H125, E129, Y131 and H163 of R. lacuscaerulensis DddQ 

superimpose well in all three polypeptides. The figure was drawn using Pymol (PyMOL 

Molecular Graphics System, Version 1.7.4 Schrödinger, LLC). 
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Table 1. Properties of DMSP lyases and DMSP demethylase DmdA. 

 

Enzyme 
DMSP Breakdown 

Products 
Polypeptide class 

Structure 
known? 

Size of 
polypeptide and 
quaternary form 

if known 

Co-
factors 

Enzyme Km 
for DMSP 

Taxonomic 
distribution 

DmdA 
demethylase 

methylmercaptopropionate 
(MMPA) + methyl group, 

transferred to 
tetrahydrofolate (THF), 
yielding 5-methyl THF 

Glycine cleavage T-
protein 

Yes, from 
Pelagibacter 
ubique [26] 

~360 amino acids 
Mr ~ 40kDa 

dimer 

THF used as 
methyl 

acceptor 

Ruegeria 
pomeroyi 

5.4 +/- 2.3 mM 
[25]; 

Pelagibacter 
ubique 

13.2 +/- 2.0 
mM [25] 

Mainly in Roseobacters 
and Pelagibacter [SAR11] 

(both marine α-
Proteobacteria); also in 

some marine γ-
Proteobacteria 

ALMA1 
“lyase” 

acrylate + dimethyl sulfide 
(DMS) + proton 

Aspartate/glutamate 
racemase super-

family 
No 

Emiliania huxleyi 
~350 amino acids 

MW ~ 38 kDa 
tetramer 

Symbiodinium 
~280 amino acids 

Mr ~ 31 kDa 

None 
known 

Emiliania 
huxleyi 9.0 +/- 

0.9 mM [8] 

Eukaryotic 
Coccolithophore 

Emiliania huxleyi and 
Dinoflagellate 
Symbiodinium 

DddD 
“lyase” 

3HP-CoA + Acetate* + DMS 
 

(*; derived from acetyl CoA) 

Class III acetyl CoA-
transferase 

No, but see [27] 
for model in 

Marinomonas 
MWYL1 DddD 

~840 amino acids; 
MW ~94 kDa 

monomer of two 
tandemly linked 

CaiB-like domains 

None 
known 

Not reported 
for DMSP but 
67 +/- 12 µM 
for acetyl CoA 

[28] 

γ-Proteobacteria, 
especially in 

Oceanospirillales and 
Pseudomonadales. Also in 

some other 
Proteobacteria – 
Rhizobiales and 

Rhodobacterales (both α) 
and Burkholderiales (β) 

DddY “lyase” acrylate + DMS + proton None known No 
~400 amino acids in 
mature form after 

removal of ~21 

None 
known 

Alcaligenes 
faecalis 

1.4 mM [47]; 

Periplasmic protein found 
sporadically in 

Proteobacteria that favor 
microaerobic 
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amino acid N-
terminal leader; 

MW ~45 kDa 

Desulfovibrio 
acrylicus 0.4 

mM [52] 

environments, including 
Alcaligenes, Arcobacter 
(both β), Desulfovibrio 

(), Shewanella (γ) 

DddP 
“lyase” 

acrylate + DMS + proton 
M24 

metalloproteinase 

Yes, from 
Roseobacter 
denitrificans 
[39,40] and 

Ruegeria 
lacuscaerulensis 

[39,40] 

~390 amino acids; 
MW ~44.5 kDa dimer 

Divalent 
metals; 

mostly Fe, 
but also Ni 
(see both 
Figure 2 

and Table 
S1 in 

[39,40] ) 
 

Roseovarius 
nubinhibens 
13.8 +/- 5.5 

mM [34] 

Mostly in “Roseobacters” 
Sporadically in γ-

Proteobacteria (e.g. 
Vibrio, Pseudomonas, 

Oceanimonas. Notably, 
functional DddP enzyme 

found in Ascomyctete 
fungi – including 

Aspergillus and Fusarium 

DddL “lyase” acrylate + DMS + proton Cupin No 
~ 230 amino acids; 

MW ~26 kDa 
Not Tested Not tested 

Rhodobacterales – mainly 
in Roseobacters 

DddQ 
“lyase” 

acrylate + DMS + proton Cupin 

Yes, from 
Ruegeria 

lacuscaerulensis 
[42] 

~200 amino acids; 
MW ~ 22 kDa dimer 

Zn 

Ruegeria 
lacuscaerulensi
s 21.5 +/- 6.8 

mM [42] 

Roseobacters 

DddW 
“lyase” 

acrylate + DMS + proton Cupin 

No, but see [43] 
for in vitro 

analyses for 
Ruegeria 
pomeroyi 

~150 amino acids; 
MW ~ 16 kDa 

Fe(II) 

Ruegeria 
pomeroyi 

8.7 +/- 0.7 mM 
[43] 

A few Roseobacters and 
other Rhodobacterales 

e.g. Ponticoccus 
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Figure 1. 
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Figure 2a. 
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Figure 2b. 

 
 

 


