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Abstract

Weberviruses are bacteriophages (phages) that can infect and lyse clinically relevant, multidrug-resistant (MDR) strains of Klebsiella.
They are an attractive therapeutic option to tackle Klebsiella infections due to their high burst sizes, long shelf life, and associated
depolymerases. In this study, we isolated and characterized seven new lytic phages and compared their genomes with those of their
closest relatives. Gene-sharing network, ViPTree proteome, and terL gene-sequence-based analyses incorporating all publicly available
webervirus genomes [n = 258 from isolates, n = 65 from metagenome-assembled genome (MAG) datasets] confirmed the seven phages
as members of the genus Webervirus and identified a novel genus (Defiantjazzvirus) within the family Drexlerviridae. Using our curated
database of 265 isolated phage genomes and 65 MAGs (n = 330 total), we found that weberviruses are distributed globally and primarily
associated with samples originating from the gut: sewage (154/330, 47%), wastewater (83/330, 25%), and human faeces (66/330, 20%).
We identified three distinct clusters of potential depolymerases encoded within the 330 genomes. Due to their global distribution,
frequency of isolation and lytic activity against the MDR clinical Klebsiella strains used in this study, we conclude that weberviruses

and their depolymerases show promise for development as therapeutic agents against Klebsiella spp.
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Introduction

Members of the Klebsiella pneumoniae species complex are oppor-
tunistic pathogens that can cause serious hospital-acquired in-
fections and are major contributors to global deaths associated
with antimicrobial resistance (Antimicrobial Resistance Collabo-
rators 2022). Carbapenem-resistant isolates of K. pneumoniae are
resistant to a range of frontline g-lactam antibiotics (Antimicro-
bial Resistance Collaborators 2022, Tsang et al. 2024). The diffi-
culty of treating infections caused by such isolates with conven-
tional antibiotics has resulted in the investigation of new thera-
peutic modalities, including bacteriophages (phages; viruses that
infect and often kill bacteria) and their gene products (Herridge
et al. 2020). To realize the potential of phage therapy, it is impor-
tant to comprehensively characterize phages with clinical poten-
tial. Previously we isolated Webervirus KLPN1 from the caecum of
a healthy female, along with its host K. pneumoniae subsp. pneu-
moniae L4-FAAS (Hoyles et al. 2015). In the current study, we suc-
cessfully identified seven new representatives of the genus We-
bervirus using L4-FAAS and multidrug-resistant (MDR) clinical iso-
lates of Klebsiella spp. as isolation hosts. These hosts included K.

pneumoniae PS_misc6, which encodes the carbapenem-degrading
metallo-g-lactamase NDM, and Klebsiella variicola PS_misc5, a
carbapenem-resistant clinical isolate that encodes the class D g-
lactamase OXA-48 (Shibu 2019).

As of 19 January 2025, the genus Webervirus encompassed 100
different phage species [International Committee on Taxonomy
of Viruses (ICTV)]. With the exception of Webervirus BUCT705 (iso-
lated on Stenotrophomonas maltophila), all weberviruses described
to date have been isolated on Klebsiella hosts, and have proven
easy to recover from sewage, wastewater and, occasionally, in-
testinal contents (Herridge et al. 2020). Although Webervirus F20
was originally described as being isolated on Enterobacter aerogenes
(Mishra et al. 2012), this bacterium has subsequently been reclas-
sified as Klebsiella aerogenes. Their high burst sizes (~80 pfu/cell
with a reported range between 27 and 142 pfu/cell) (Fang et al.
2022, Gilcrease et al. 2023, Zurabov and Zhilenkov 2021, Li et al.
2024, Senhaji-Kacha et al. 2024, Ziller et al. 2024) and long shelf
life make weberviruses ideal phages to work with for biotechno-
logical and clinical applications (Herridge et al. 2020, Fang et al.
2022).
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Currently, more than 130 different capsule types (K types) have
been identified for K. pneumoniae by genetic analysis (Follador et
al. 2016). Specific K. pneumoniae capsule types are strongly associ-
ated with virulence. For example, hypervirulent K. pneumoniae iso-
lates are typically associated with capsule types K1, K2, K16, K28,
K57, and K63 (Mizuta et al. 1983, Kabha et al. 1995, Yu et al. 2008,
Lee et al. 2016, Marr and Russo 2019). Additionally, capsule pro-
duction by Klebsiella spp. has been implicated in protection from
complement-mediated lysis and is recognized to play an impor-
tant role in biofilm formation (Alvarez et al. 2000, Jensen et al.
2020). Capsule type has also been shown to be a major determi-
nant of host tropism in Klebsiella phages (Beamud et al. 2023). Bac-
terial capsules are known to prevent phage attachment by mask-
ing cell-surface-associated receptor proteins (Scholl et al. 2005,
Dunstan et al. 2021). To overcome this physical barrier, phages en-
code enzymes—frequently referred to as depolymerases—that se-
lectively degrade polysaccharides or polypeptides that comprise
the bacterial capsule (Hoyles et al. 2015, Majkowska-Skrobek et
al. 2016, Dunstan et al. 2021, Pertics et al. 2021, Cai et al. 2023).
Weberviruses tend to have narrow host ranges (Hoyles et al. 2015,
Pertics et al. 2021). However, our previous (and ongoing) work has
suggested that their depolymerases can degrade the capsules of
non-host Klebsiella spp. (Hoyles et al. 2015). Depolymerase activ-
ity is common to weberviruses, and is being actively investigated
as a tool to hydrolyse capsules of Klebsiella spp. that often hin-
der or make treatment with antimicrobials difficult (Majkowska-
Skrobek et al. 2016, Cai et al. 2019, Pertics et al. 2021). For example,
the webervirus depolymerase Depo32 has been shown to protect
mice from otherwise lethal K. pneumoniae infections in a mouse
model of disease (Cai et al. 2023). In addition, a webervirus (P39)
has recently been used in combination with another lytic phage
(P24, Przondovirus) to decolonize mice of carbapenem-resistant K.
pneumoniae (Fang et al. 2022).

Here, we describe our new webervirus phages and their lytic
and depolymerase activities against clinical MDR Klebsiella spp.,
and compare their genomes with those of their closest rela-
tives. The increased ease with which metagenome-associated
viruses can be interrogated via PhageClouds (Rangel-Pineros et al.
2021) and NCBI also led us to determine whether weberviruses
are readily detectable within recent metagenome-derived phage
datasets.

Methods

Bacterial strains

Details of all Klebsiella strains included in this study are given
in Table 1. The antimicrobial resistance profiles of the isolates,
determined according to EUCAST guidelines as described previ-
ously (Shibu et al. 2021), can be found in Supplementary Table
1.

Generation of sequence data for bacterial isolates

Genomes for clinical strains included in this study were generated
as described previously (Shibu et al. 2021). Illumina and Oxford
Nanopore Technologies sequence data for K. pneumoniae L4-FAAS
were generated by microbesNG (Birmingham, UK) as described
previously (Newberry et al. 2023). CheckM2 v0.1.3 (Chklovski et al.
2022) was used to confirm the quality (in terms of completeness
and contamination) of all assembled genomes. Kleborate v3.1.2
(Wyres et al. 2016, Lam et al. 2021) was used to assign sequence
types (STs), and capsule (K) and lipopolysaccharide (O) types to
genomes.

Isolation and propagation of phages

Filter-sterilized sewage samples were screened for phages as de-
scribed previously (Smith-Zaitlik et al. 2022) using Klebsiella strain
L4-FAAS, PS_misc5 or PS_miscé as inoculum (Table 1). Pure phage
stocks were prepared from phage-positive samples as described
previously (Hoyles et al. 2015).

Isolation of phage DNA

Phages vB_KpnS-KLPN2, vB_KpnS-KLPN3, and vB_KpnS-KLPN4
were precipitated from 100 ml of each lysate as described pre-
viously (Hoyles et al. 2015). Phages vB_KvaS-KLPN5, vB_KvaS-
KLPNG6, vB_KvaS-KLPN7 and vB_KpnS-KLPN8 were concentrated
and DNA extracted as described previously (Smith-Zaitlik et al.
2022).

Transmission electron microscopy

Transmission electron micrographs (TEMs) of phages vB_KpnS-
KLPN2, vB_KpnS-KLPN3, and vB_KpnS-KLPN4 were generated
as described previously (Hoyles et al. 2015). TEMs for phages
vB_KvaS-KLPN5, vB_KvaS-KLPN6, vB_KvaS-KLPN7, and vB_KpnS-
KLPN8 were generated and analysed as described previously
(Smith-Zaitlik et al. 2022).

Phage genome sequencing, assembly, and
annotation

Assembled genomes (from Illumina short-read sequences) for
phages vB_KpnS-KLPN2, vB_KpnS-KLPN3, and vB_KpnS-KLPN4
were generated by microbesNG (Shibu et al. 2021). For phages
vB_KvaS-KLPNS5, vB_KvaS-KLPN6, vB_KvaS-KLPN7, and vB_KpnS-
KLPNS, sequence data were generated on an Illumina MiSeq at
Nottingham Trent University (Smith-Zaitlik et al. 2022). Quality of
raw sequence data was assessed using FastQC v0.11.9. Reads had
a mean phred score above 30 and no adapter contamination, so
data were not trimmed.

All genomes were assembled using SPAdes v3.13.0 (default set-
tings) (Bankevich et al. 2012), and visualized to confirm circular-
ization of genomes using Bandage v0.8.1 (Wick et al. 2015). CheckV
v1.0.1 (checkv-db-v1.5; Nayfach et al. 2021a) was used to deter-
mine contamination and completeness of the genomes. Genes in
all phage genomes included in this study (Supplementary Table
2) were predicted and annotated using Pharokka v1.6.1 (v1.4.0
databases) (Bouras et al. 2023).

Comparison of webervirus genomes

ViPTree v4.0 (Nishimura et al. 2017) was used to determine
whether the seven phage genomes were closely related to pre-
viously described double-stranded DNA viruses. Based on our
initial findings (not shown), we curated a list of all known we-
bervirus sequences available from NCBI GenBank on 19 January
2025. We also identified unclassified weberviruses and closely re-
lated phage in NCBI using the INPHARED database (1 January 2025
dataset; Cook et al. 2021) and vConTACT v2.0 (Supplementary
Table 2).

Identification of weberviruses in metagenomic
datasets

We used PhageClouds (Rangel-Pineros et al. 2021) to identify
relatives of weberviruses in metagenome-assembled genome
(MAG) datasets. PhageClouds is an online resource that allows
researchers to search a reference dataset of ~640000 phage
genomes for phages with genomes related to query sequences.
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The genome of Webervirus KLPN1 was searched against the
PhageClouds database with a threshold of 0.15, as we had
previously looked for relatives of this phage in metagenomic
datasets and are interested in gut-associated phage communi-
ties (Hoyles et al. 2015). The nucleotide sequences of the rele-
vant phage MAGs (from Gregory et al. 2020, Camarillo-Guerrero
et al. 2021, Tisza and Buck 2021) were recovered from the relevant
datasets.

Additionally, webervirus MAGs were identified using a search
of the NCBI nucleotide database for Bacteriophage sp. [search term:
(txid38018) AND MAG]; the sequences (n = 8138) were filtered for
genomes of between 30 Kbp and 60 Kbp in length (n = 2540):
genes were predicted using Prodigal v.2.6.3 (Hyatt et al. 2010),
and the proteomes added to the INPHARED database and anal-
ysed using vCONTact2. CheckV was used (as described above) to
determine contamination and completeness of the MAG dataset
(Supplementary Table 3).

The MAG sequences were analysed using ViPTree v4.0 to con-
firm their affiliation with the genus Webervirus. They were also
annotated with Pharokka and included in a vConTACT?2 analy-
sis with our curated set of webervirus genomes. The genomes
of all weberviruses were compared with one another using
taxmyPHAGE v0.3.3, which uses a Python implementation of the
VIRIDIC algorithm to calculate intergenomic genomic similarities
(Millard et al. 2024). The matrix created from the similarity values
was visualized using tidyheatmaps v0.2.1 (Mangiola and Papen-
fuss 2020).

Phylogenetic relationships among weberviruses

Nucleotide sequences of the large-subunit terminase (terL) genes,
predicted by Pharokka, were used to create a multiple-sequence
alignment (Clustal Omega 1.2.2 implemented in Geneious Prime
v2024.0.5; options—group sequences by similarity, 5 representa-
tive iterations). This alignment was used to create a bootstrapped
(100 replicates) maximume-likelihood tree (PhyML v3.3.20180621,
JC69 algorithm).

Distribution of weberviruses

The distribution of weberviruses was determined by identifying
the source and geographical location information for the GenBank
genomes (including our seven new genomes; Supplementary
Table 2) and the MAGs (Supplementary Table 3). Data were ag-
gregated based on isolation source or geographical location, with
these latter data visualized using the R package rworldmap v1.3.8
(South 2011).

Host prediction for MAGs

The CRISPR Spacer Database and Exploration Tool (Dion et al.
2021) and HostPhinder 1.1 (Villarroel et al. 2016) were used to
predict hosts for the weberviruses recovered from metagenomic
datasets. MAGs were also subject to a BLASTN search against the
Unified Human Gastrointestinal Genome (UHGG) CRISPR spacer
database according to Nayfach et al. (2021b). For this, a BLASTN
database was created from 1846441 spacers from 145053 CRISPR
arrays from 79735 UHGG genomes (Nayfach et al. 2021b). Spac-
ers were searched against viral genomes using BLASTN from
the blast+ package v.2.12.0 (options: -dust=no; -word-size=18);
a maximum of one mismatch or gap was allowed over >95% of
the spacer length. iPHoP v1.3.3 (Roux et al. 2023), an automated
command-line pipeline for predicting host genus of novel bacte-
riophages and archaeoviruses based on their genome sequences,
was also used to analyse the MAGs.

Identification of potential depolymerases among
weberviruses

A BLASTP database was created using amino acid sequences
from experimentally validated webervirus depolymerases, and a
BLASTP search was run versus all webervirus genomes. Sequences
used to build the BLAST database are available from figshare
(d0i:10.6084/m9.figshare.28603070). Clustal Omega v1.2.2 align-
ments were created in Geneious Prime (default settings; 2024.0.5).
RAXML v 8.2.11 (-m PROTGAMMABLOSUMS62 -f a -x 1 -N 100 -p 1)
was used to generate a bootstrapped (100 replicates) maximum-
likelihood tree from the multiple-sequence alignment.

Results

Seven new weberviruses lyse a range of clinically
relevant Klebsiella spp.

Seven phages were isolated on two different strains of K. pneu-
moniae subsp. pneumoniae (L4-FAA5-vB_KpnS-KLPN2, vB_KpnS-
KLPN3, vB_KpnS-KLPN4; PS_misc6-vB_KpnS-KLPN8) and one
strain of K. variicola subsp. variicola (PS_misc5-vB_KvaS-KLPN5,
vB_KvaS-KLPN6, vB_KvaS-KLPN7). All our sewage samples yielded
Klebsiella-infecting phages. Strain L4-FAAS (K2: Olab, ST380) was
originally isolated from human caecal effluent along with We-
bervirus KLPN1 (Hoyles et al. 2015), while strains PS_misc5 (K81:
013, ST1737-1LV) and PS_misc6 (untypeable: O2a, ST716) were
part of a collection (n = 36) of clinical MDR and/or carbapenem-
resistant Klebsiella isolates currently being used in our laboratory
in phage-related and other studies (Shibu 2019) (Supplementary
Table 1).

TEM showed the seven phages had a mean capsid diameter of
57.5 nm and a mean tail length of 157.5 nm (Supplementary Fig. A
). Host-range analysis showed the seven phages had different
infection profiles (Table 1). KLPN1, our original webervirus iso-
lated on K. pneumoniae L4-FAAS (Hoyles et al. 2015), was included
in analyses for comparative purposes. KLPN1, vB_KpnS-KLPN2,
vB_KpnS-KLPN3, and vB_KpnS-KLPN4 completely lysed some, but
not all, clinical isolates of K. pneumoniae with capsule: O antigen
types K52: 013 and K64: Olab. K2: Olab isolates alone were in-
fected by KLPN1 and vB_KpnS-KLPN2 to vB_KpnS-KLPN4, though
vB_KpnS-KLPN4 was unable to infect one of the K2: Olab strains
(PS_Kpn13). Only on strain L4-FAAS (K2: Olab), isolated from hu-
man caecal effluent, was strong depolymerase activity observed
with phages KLPN1 and vB_KpnS-KLPN2. Hazy lysis of strain
PS_Kpn24 (K2: Olab) was observed with phages vB_KvaS-KLPNS5,
vB_KvaS-KLPN6 and vB_KvaS-KLPN7. Phages vB_KvaS-KLPN5 to
vB_KvaS-KLPN7 showed strong lytic and depolymerase activity on
K. variicola PS_misc5 (K81: O13) alone, while vB_KpnS-KLPN8 lysed
K. pneumoniae PS_miscé (untypeable capsule: O2a) with depoly-
merase activity on this host.

Genome-based analyses of publicly available
sequence data triples the number of
authenticated webervirus genomes

Bandage (data not shown) and CheckV (Supplementary Table 2)
analyses confirmed the genomes of vB_KpnS-KLPN2, vB_KpnS-
KLPN3, vB_KpnS-KLPN4, vB_KvaS-KLPN5, vB_KvaS-KLPNG6,
vB_KvaS-KLPN7 and vB_KpnS-KLPN8 were circular and complete.
None of the genomes was contaminated. An initial online ViPTree
analysis showed vB_KpnS-KLPN2, vB_KpnS-KLPN3, vB_KpnS-
KLPN4, vB_KvaS-KLPNS, vB_KvaS-KLPN6, vB_KvaS-KLPN7, and
vB_KpnS-KLPN8 belonged to the genus Webervirus (data not
shown). All publicly available webervirus genomes (available as
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Figure 1. ViPTree-generated phylogenetic analysis of the family Drexlerviridae. The genus Webervirus is represented by 330 genomes. The names of our
seven newly identified weberviruses are shown in white bold text. A potentially novel genus (Defiantjazzvirus) was identified during the curation of our
dataset. The colours covering the virus names represent taxa within the family Drexlerviridae; the outgroup has been collapsed to aid visualization. The

tree (ViPTree bionj) was rooted at the midpoint.

of 19 January 2025) were downloaded from GenBank to allow
comparison with our newly sequenced phages and for inclusion
in the INPHARED vCONTact2 database if not already included in
the 1 January 2025 release. Among the other 264 genomes from
phage isolates included in this study, 226 were of high quality, 43
were complete and two were of medium quality; none of these
genomes was contaminated.

In addition, we used PhageClouds to identify potential we-
bervirus MAGs. Fifty-four of the PhageClouds hits represented
MAGs derived from the Gut Phage Database (GPD) (Camarillo-
Guerrero et al. 2021), six were from the Cenote Human Virome
Database (CHVD) (Tisza and Buck 2021), and two were from
the Gut Virome Database (GVD) (Gregory et al. 2020). MAG
Ma_2019_SRR413710_NODE_378_length 50715_cov_48.086538
from the GVD was identical to uvig 330395 from the GPD
(Camarillo-Guerrero et al. 2021) so was removed from further
analyses [PhageClouds scores identical, 100% pairwise identity
as assessed using VIRIDIC; an unsurprising finding as both MAGs
are derived from the same dataset (Ma et al. 2018)]. Similarly, two
MAGs from the GPD were also found to be identical: uvig 314 355
and uvig 315584 were high-quality genomes both derived from
the same four samples [SRR1952259, SRR1162648, SRR1162662,
SRR1162654 (Tisza and Buck 2021)]; only uvig 314355 was re-

tained for further analyses. Our inclusion of NCBI genomes
listed as Bacteriophage sp. in a vCONTact2 analysis with the
INPHARED database identified a further five potential webervirus
MAGs recovered from faecal samples in Japan (Nishijima et
al. 2022). In total, our dataset included 65 MAGs. The MAGs
ranged from 10230 to 55276 nt (mean 42392 nt) in length
(Supplementary Table 3). Forty-seven of the 65 MAGs were
determined to be complete or of high-quality (CheckV). Eight
were of medium-quality and 10 were low quality, representing
genome fragments (Supplementary Table 3). None of the MAGs
was contaminated.

In addition to the 100 recognized weberviruses included in the
ICTV and our seven new weberviruses, we identified 158 more
webervirus genomes in NCBI and 65 webervirus MAGs. The 265
weberviruses isolated on bacteria mostly infected K. pneumoniae
(Supplementary Fig. B). A ViPTree analysis confirmed the affilia-
tion of our 330 genomes with the genus Webervirus (Fig. 1). The
webervirus genomes often clustered based on geographical origin,
irrespective of whether they came from phage isolates or MAGs
(Fig. 1).

The monophyletic nature of the genus Webervirus was con-
firmed by phylogenetic analysis of terL gene sequences (99% boot-
strap support; Fig. 2A). A gene-sharing network was created with
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Figure 2. Further analyses of Drexlerviridae sequence data. (A) Phylogenetic relationships (maximume-likelihood tree) of members of the family
Drexlerviridae based on analysis of large-subunit terminase (terL) nucleotide sequences encoded in phage genomes. Bootstrap values are expressed as a
percentage of 100 replications; scale bar, mean number of nucleotide substitutions per position; the tree is rooted at the midpoint. (B)
Gene-network-based analysis of proteomic data for members of the genus Webervirus and their nearest relatives. Full network shown in
Supplementary Fig. C. (A and B) The legend shown applies to both figures, with isolate and MAG proteomes differentiated in (B). Names of our seven

newly identified weberviruses are shown in bold white text.

all webervirus genomes included in this study (Supplementary
Table 2and Supplementary Table 3) using vConTACT v2.0 (Bolduc
et al. 2017, Bin Jang et al. 2019) and the INPHARED database
(Supplementary Fig. C). The network was filtered based on first
and second neighbours of webervirus proteomes (Supplementary
Fig. C, Fig. 2B). The vConTACT-based analysis confirmed findings
from the ViPTree- and terL-based analyses with respect to affilia-
tion of weberviruses included in this study.

VIRIDIC analysis split the weberviruses into eight different
clusters at the genus level, with most weberviruses affiliated with
Cluster 1 (Supplementary Fig. D, Supplementary Table 4). Clus-
ters 3 (uvig_338855, uvig 63295), 4 (uvig_346479, uvig 474 523), 5
(SAMNO5826713_al_ct6131_vs1), 6 (uvig_63387), 7 (uvig_340901),
8 (uvig_334913), and 9 (SAMNO05826713_al_ct12717_vs 1) were all
associated with low-quality MAGs (Supplementary Table 3). MAGs
in these clusters shared <70% identity with Cluster 1 phages (iso-
late and MAG genomes). The only other low-quality MAG included
in the analysis (uvig_311634) was affiliated with Cluster 1 phages,
sharing 33%-72% identity with them and highest similarity with
a MAG (uvig_141073) in this cluster (Supplementary Table 4).

Identification of a novel genus within the family
Drexlerviridae

Our ViPTree analysis also identified a potential novel genus (re-
ferred to as Defiantjazzvirus) comprising six representatives within
the family Drexleviridae and closely related to the genus Webervirus
(Fig. 1). Analysis of terL gene sequences showed this genus to be
monophyletic (97% bootstrap support; Fig. 2A). vConTACT-based
analysis demonstrated that the six genomes associated with Defi-
antjazzvirus clustered together but separately from all other phage
groups included in the analysis (Fig. 2B). VIRIDIC analysis showed
defiantjazzvirus genomes to share 81%-97% genome identity with
one another and 27%-42% identity with members of the genus
Webervirus (Supplementary Fig. D, Supplementary Table 4). Based
on current recommendations, the six genomes (sharing >70%

nucleotide identity across their full-length genomes) represent
a novel genus comprising five species (Supplementary Table 4)
(Turner et al. 2021). Comparison of the defiantjazzvirus genomes
with non-webervirus Drexleviridae genomes confirmed the genus
Deflantjazzvirus represents a novel genus within the family Drexle-
viridae, with the six defiantjazzvirus genomes sharing between
0.2% and 35% genome identity with their closest non-webervirus
relatives (Supplementary Table 5). Representatives of the genus
Deflantjazzvirus infect K. pneumoniae, K. michiganensis, and K. oxy-
toca (Supplementary Table 2).

Webervirus MAGs are predicted to infect
Klebsiella

To confirm the MAGs were weberviruses that infected Klebsiella
spp., we attempted to predict their bacterial hosts. CRISPR spacers
can be used to predict hosts of unknown phages, as spacers repre-
sent biological records of past phage-bacteria interactions. Each
of the seven new phage genomes (nt sequences) we generated
was uploaded to CRISPR Spacer Database and Exploration Tool
(Dion et al. 2021). None of the phages could be assigned to known
hosts using this tool. Using the BLASTN approach of Nayfach et al.
(2021b) with the MAG sequences, only SAMEA2737751_al_ct5309
had sufficient coverage; this MAG had two hits to Klebsiella species
(K. pneumoniae and K. variicola). iPHoP predicted hosts for 84/330
of the webervirus genomes included in this study; Escherichia was
predicted to be the host for 21 of the MAGs and 59 of the isolates
at the genome and genus levels (Supplementary Table 6). Only
NC_049845.1, OR532813.1, OR532891, PQ337355, and PQ519586—
all representing isolated phages (Supplementary Table 2)—were
predicted to have a Klebsiella host at the genus level. HostPhin-
der 1.1 (Villarroel et al. 2016) was able to predict hosts for our
KLPN phages, with all assigned to Klebsiella pneumoniae. Conse-
quently, this tool was used to predict hosts for the Webervirus
MAGs (Supplementary Table 7). All were predicted to infect Kleb-
siella.
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Figure 3. Distribution of weberviruses (A) Stacked bar graph showing the sources of the 330 webervirus genomes (n = 265 isolated phages; n = 65
MAGs). (B) Geographical distribution of 329 of the webervirus genomes included in this study (the location information was not available for one

isolated phage, namely Klebsiella phage 5899STDY8049225).

Depolymerases are readily detected in
webervirus genomes

As our newly isolated phages all displayed apparent depoly-
merase activity against one or more hosts, we aimed to iden-
tify potential depolymerases encoded within the genomes of
weberviruses. Detection and characterization of these enzymes
may identify standalone therapeutics or help inform on host
tropism. Currently, four experimentally validated depolymerases
from weberviruses have been reported in the literature: depoKP36
(Majkowska-Skrobek et al. 2016), Depo32 (Cai et al. 2023), DpK2
(Dunstan et al. 2021), and Bldep (Pertics et al. 2021). These four de-
polymerases were used to create a BLASTP database to interrogate
the 330 webervirus genomes for similar amino acid sequences.
Using thresholds of >50% coverage, >50% identity and se-
quence length >800 aa, 33/330 webervirus proteomes returned
hits against the validated depolymerases (Fig. 4; Supplementary
Table 8). Phylogenetic analysis and amino acid identity values
revealed that the depolymerases clustered into three distinct

groups, each with high bootstrap support (85%-100%; Fig. 4).
Group 1 comprised four sequences and did not contain an exper-
imentally validated depolymerase sequence. Group 2 contained
four sequences, including the functionally characterized depoly-
merase depoKP36. Group 3 contained most of the sequences
(26/33 predicted depolymerases) and included the characterized
depolymerases DpK2, Depo32 and Bldep, and depolymerases en-
coded by four MAGs. Sequences belonging to Group 3 had a high
level of conservation, as indicated by short branch lengths and se-
quence alignments (Supplementary Fig. E). Amino acid alignment
of all 33 predicted depolymerases also revealed a high level of N-
terminal sequence conservation.

Discussion

Studies from a diverse range of geographical locations have re-
ported the isolation or detection of weberviruses from samples
associated with the human gut (e.g. wastewater, sewage, fae-
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Figure 4. Phylogenetic analysis of depolymerases predicted to be encoded by weberviruses. The tree (maximum likelihood) is rooted at the midpoint.
Bootstrap values are presented as a percentage of 100 replicates. Names of experimentally validated (i.e. functional) depolymerases are shown in bold
black text; depolymerases predicted to be encoded by MAGs are shown in white text. Scale bar, mean number of amino acid substitutions per position.

ces, caecal effluent) (Herridge et al. 2020). To date, the major-
ity of weberviruses have been isolated using K. pneumoniae as a
host (Supplementary Fig. B). However, weberviruses have been re-
ported to infect other Klebsiella spp., including K. oxytoca (Brown
et al. 2017, Park et al. 2017) and K. aerogenes (Hudson et al.
2021). In the present study, we isolated seven new weberviruses
from sewage samples, including three phages (vB_KvaS-KLPNS5,
vB_KvaS-KLPNG6, vB_KvaS-KLPN7) that were isolated using a strain
of K. variicola as the host (Fig. 1, Fig. 2, Supplementary Fig. A). To
our knowledge, this is the first report of weberviruses infecting
K. variicola, a recognized emerging human pathogen (Rodriguez-
Medina et al. 2019) increasingly associated with carbapenem and
colistin resistance (Kim et al. 2023; Li et al. 2024).

As the majority of the Klebisella spp. sensitive to lysis by our we-
bervirsues are MDR strains, the lytic phages isolated as part of this
study represent attractive future therapeutics for the treatment
of drug-resistant isolates belonging to the K. pneumoniae species
complex.

In agreement with previous work (Hoyles et al. 2015, Pertics et
al. 2021), the weberviruses described herein exhibited relatively
narrow host ranges when screened against a panel of Klebsiella
(including 36 clinical MDR) isolates representing a range of STs
and capsule (K) types (Table 1). Phage host range is very much
related to isolation host rather than phage phylogeny, with ly-
sis appearing to be restricted based on K type. Phage-encoded
depolymerases, therefore, contribute to host tropism, and previ-
ous studies have identified that weberviruses encode function-
ally active depolymerases (Majkowska-Skrobek et al. 2016, Dun-

stan et al. 2021, Pertics et al. 2021, Cai et al. 2023). While per-
forming our host-range analysis, we observed the presence of
haloes indicative of depolymerase activity for a small number of
phage-host combinations and we, therefore, undertook a bioin-
formatic analysis (Fig. 4) to identify potential depolymerase en-
zymes encoded within webervirus genomes. Our BLASTP search
identified 33 potential depolymerases which clustered into three
distinct groups. The lack of an experimentally validated depoly-
merase sequence in Group 1 and the overall low amino acid iden-
tity shared with characterized webervirus depolymerases (<21%)
make it difficult to draw conclusions related to the biological ac-
tivity of these four proteins. Sequences OP978314.1_CDS_0059 and
0OP978315.1_CDS_0001 belong to a phage, and its evolved variant,
respectively, which were characterized as part of the same study
in Australia (Ngiam et al. 2024). These phages were propagated
on K. pneumoniae 52 145 (K2: O1). According to NCBI, the isolation
host of phage OP413832.1, which encodes predicted depolymerase
OP413832.1_CDS_0043, is K. pneumoniae BS317-1 (K57: O1) (assem-
bly accession GCF_015290145.1). No information is available for
the isolation host of the phage OR532859.1, which encoded the
remaining predicted Group 1 depolymerase. These data suggest
that, if active, Group 1 depolymerases may hydrolyse K2 and/or
K57 capsules. However, experimental validation is required.
Group 2 depolymerases are likely to be hydrolyse the K63 cap-
sule as these sequences clustered with the experimentally vali-
dated depolymerase depoKP36, previously shown to degrade the
K63 capsule of K. pneumoniae (Majkowska-Skrobek et al. 2016).
Group 3 contained the majority of the predicted depolymerases,
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and all shared high sequence similarity with the webervirus de-
polymerases Depo32, DpK2, and Bldep (Supplementary Table 8).
These enzymes have been shown to selectively degrade the K.
pneumoniae K2 capsule (Dunstan et al. 2021, Pertics et al. 2021,
Cal et al. 2023) and are highly likely to be specific for this cap-
sule type. The high level of sequence identity observed at the
N-terminal of all the identified depolymerases is likely due to
this region being responsible for anchoring the baseplate of the
phage virion, and as such it is often highly conserved (Knecht et
al. 2019, Latka et al. 2019). Structural analysis of Depo32 from
phage GH-K3 has revealed that, in addition to the N-terminal do-
main, Depo32 contains a short neck helix and connection domain
(residues 186-271), a B-helix domain (residues 272-642), a con-
nection helix domain (residues 643-666), a carbohydrate-binding
module (residues 667-846), and a C-terminal domain (residues
847-907) (Cai et al. 2023). It is the B-helix domain that is respon-
sible for hydrolysis of the polysaccharide capsule. Given the high
level of amino acid identity between Depo32 and the amino acid
sequences comprising Group 3, it is highly likely that these poten-
tial depolymerases are structurally similar.

We were unable to identify any coding sequences in the
genomes of our isolated KLPN phages sharing high similar-
ity to the four experimentally validated webervirus depoly-
merase sequences used to create our BLASTP database. Thus,
it is likely that any depolymerase activity associated with the
phages isolated in our study is due to enzyme(s) that remain
to be characterized experimentally. As part of our previous
analysis of the genome of phage KLPN1, we hypothesized that
ORF34 and/or ORF35 may encode the depolymerase activity of
phage KLPN1, as these sequences include a predicted endo-N-
acetylneuraminidase/endosialidase domain (Hoyles et al. 2015).
Further experimental work is required to determine whether
these are functionally active depolymerases. As most of the
plaques we observed had no discernible haloes, it may be that al-
ternative mechanisms are used by weberviruses for penetrating
the bacterial capsule. Depolymerase-independent penetration of
the capsule by Klebsiella phages has been reported in the literature
(Beamud et al. 2023).

A ViPTree proteome-based analysis of publicly available se-
quence data showed 330 genomes derived from isolated phages
(n = 265) and MAGs (n = 65) belonged to the genus Webervirus,
family Drexlerviridae (Fig. 1). Our gene-sharing network analysis
supported this finding (Fig. 2B). Taxonomic assignment of phages
using whole genome gene-sharing profiles has been shown to
be highly accurate; a recent study showed that vConTACT?2 pro-
duces near-identical replication of existing genus-level viral tax-
onomy assignments from the ICTV (Bin Jang et al. 2019). It has
been suggested that genomes comprising a genus should be eval-
uated by phylogenetics with the use of ‘signature genes’ that
are conserved throughout all members (Turner et al. 2021). Such
analyses should always produce trees that are monophyletic. Us-
ing terL as a ‘signature gene’, we were able to show that the
genus Webervirus is indeed monophyletic (Fig. 2A). To assess the
number of different species present within the genus, we used
VIRIDIC to determine the intergenomic similarity between phage
genomes (Supplementary Fig. D; Supplementary Table 4). Guide-
lines suggest any two phages belong to the same species if they are
more than 95% identical across their entire genome (Turner et al.
2021). Genus-level separation occurs when phage genomes share
<70% nucleotide identity across their genome length (Turner et
al. 2021). Based on these criteria, our results show that only we-
berviruses belonging to Cluster 1 represent species of Webervirus
sensu stricto. Clusters 3-9, although identified as weberviruses
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using ViPTree and vConTACT2, do not represent species of We-
bervirus. The phage sequences associated with these clusters were
derived from low-quality MAGs. As such, we recommend caution
when using low-quality MAGs to determine taxonomic affiliations
of in silico-generated phage sequences.

Cluster 2 phages were found to represent a novel genus (Defi-
antjazzvirus) of phage within the family Drexlerviridae (Figs 1 and
2, Supplementary Tables 4 and 5), with the genus Defiantjazzvirus
most closely related to the genus Webervirus. All members of
this novel genus reported to date infect a range of Klebsiella spp.
(Supplementary Table 2).

As phages are among the most abundant biological entities on
Earth, it is important to gain knowledge on their presence within
different environments. We determined that weberviruses are dis-
tributed globally and predominated by phages associated with hu-
man faeces or water supplies contaminated with human faeces
(Fig. 3). Lack of detection in most of South America and Africa
is likely due to the absence of metagenomic datasets from these
parts of the world rather than weberviruses not being represented
in faecal samples from individuals living in countries within these
regions. Compared with shotgun metagenomic datasets charac-
terizing the total microbiota found in faeces, there are very few
studies—worldwide—examining solely the intestinal virome, and
PhageClouds is populated with phage genomes derived from vi-
rome datasets.

It was notable when curating our MAG dataset that none of
the studies describing these data were able to predict hosts for
the webervirus MAGs we have identified. Nor was the recently re-
leased tool iPHOP, specifically designed for use with MAGs (Roux
et al. 2023). Our analysis using HostPhinder predicted webervirus
MAGs infect K. pneumoniae. HostPhinder predicts the host species
of a phage by searching for the most genetically similar phages in
a database of reference phages with known hosts (Villarroel et al.
2016). Although the authors have shown that this whole-genome
similarity-based approach is highly accurate, host range can be al-
tered by a relatively low number of mutations, especially those lo-
calized to tail fibre proteins which are often determinants of host-
cell specificity (Latka et al. 2021, Taslem Mourosi et al. 2022). In the
present study, we used a strain of K. variicola to isolate three we-
berviruses, and phages of this genus have also been isolated on K.
oxytoca and K. aerogenes. Although it is highly likely that 329/330
weberviruses discussed herein are phages of Klebsiella spp., deter-
mination of host range via plaque assays is still informative, es-
pecially when determining therapeutic utility.

Summary

We successfully characterized seven novel weberviruses that in-
fect clinically relevant MDR Klebsiella spp. We have trebled the
number of authenticated webervirus genomes through combin-
ing genomic data from isolated phage and MAG datasets. In do-
ing so, we have demonstrated the importance of interrogating
MAG datasets to expand the availability of curated phage genome
sequences for use in genomic and ecological studies, and high-
lighted the need to exercise caution when assigning low-quality
MAGs to taxa.
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