
Chemical 
Physics 

ELSEVIER Chemical Physics 198 (1995) 35-51 

Polarisation analysis of bimolecular excitations 
mediated by energy transfer: 

A common theoretical framework for fluorescence migration and 
sequential Raman scattering 

David L. Andrews, Philip Allcock 
School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK 

Received 23 January 1995; in final form 21 February 1995 

Abstract 

When polarised light interacts sequentially with two independently mobile molecules or chromophores, radiation of a 
longer wavelength and a changed polarisation state is commonly detected. One well-known example is the case where 
energy migrates from a molecule initially excited by input radiation to another which fluoresces. Another such process is 
sequential Raman scattering by two separate molecules. In this paper a theoretical framework is developed that formally 
establishes the link between these two processes. The theory encompasses the most general case; the intermolecular energy 
transfer can be either radiative or non-radiative, and the transition dipole moments, for the upward and downward processes 
within each chromophore, can be either parallel or non-parallel. For the Raman processes, resonance features are also 
accommodated. Results for the fluorescence anisotropy and Raman depolarisation ratio are explicitly presented as well as 
more general rate equations applicable to arbitrary polarisation conditions. 

1. Introduct ion 

The fluorescence anisotropy associated with energy transfer between molecules is a phenomenon that has 
significant diagnostic applications in many systems, such as photosynthetic complexes, polymers, laser dyes etc. 
As such it has been the subject of a considerable body of  experimental and theoretical work in recent years 
[1-11]. A process that has received rather less attention, primarily because of  the rather lower levels of intensity 
with which it is associated, is the polarisation anisotropy resulting from bimolecular Raman scattering, generally 
expressed in terms of  depolarisation [12,13]. Although there are a number of significant differences between 
these processes, principally connected with the timescales over which they operate, they have certain features in 
common (see Fig. 1). Each involves the sequential interaction of polarised light with two separate molecules or 
chromophores, both of  which acquire some energy of  excitation as a result of the process, and as such the term 
'bimolecular excitation' is an appropriate generalisation. Moreover both fluorescence migration and sequential 
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Fig. 1. Features common to both fluorescence migration and sequential Raman scattering. The incident radiation has frequency ~o and the 
emergent radiation a lower frequency ~o', with ~5 intermediate. 

Raman scattering generate doubly Stokes-shifted radiation 1 with a changed polarisation state. These two 
processes have hitherto always been considered as completely separate types of interaction. It is the purpose of 
this paper to show that both processes can be accommodated within a common theoretical framework. The 
individual interactions are shown to be the limiting cases of a single all-embracing theory that can also be 
applied to processes in which Raman scattering is followed by absorption and fluorescence, or absorption and 
fluorescence followed by Raman scattering. Results are derived for systems comprising independently mobile 
(or randomly oriented) chromophores, allowing for the two species involved to be either of the same or of a 
different type. To save undue repetition, the term 'molecules' in the following may be understood as applying 
equally to chromophores within independent, orientationally uncorrelated molecular units. 

The theory encompasses the most general case, where the intermolecular energy transfer that represents the 
intermediate stage of the overall process can be either radiative or non-radiative, or even a combination of both. 
When the intermolecular distance R is less than the reduced wavelength ~ = A/2'rr (where A is the wavelength 
corresponding to the energy being transferred) then the transfer is commonly termed a non-radiative or 
radiationless process and treated as a longitudinal (Coulombic) interaction [14]; alternatively it may be 
understood to be mediated by virtual photon coupling [15-24]. From either viewpoint, although it may occur at 
some interval after initial molecular photoexcitation, each individual transfer of energy is essentially instanta- 
neous, subject to the obvious constraint of causality. In a radiative transfer process, where R is considerably 
longer than the reduced wavelength g, a real photon is emitted by the primary interaction and captured by the 
second molecule. 

The terms of reference for this study allow for the transition dipole moments, for the upward and downward 
radiative processes within each molecule, to be either parallel or non-parallel. In the case of molecular 
fluorescence this allows for the possibility of relaxation from a highly excited electronic state, as for example by 
internal conversion, to occur prior to radiative emission from a lower energy level (see Fig. 2). In the detailed 
calculations it is assumed that rotational relaxation may be neglected over the fluorescence lifetime - an 
assumption that is commonly valid for photobiological systems, as well as for certain laser dyes, and for 
fluorophores in viscous media. Resonance features are accommodated for the sequential Raman process, and it 
is these which ultimately establish the link with bimolecular fluorescence. 

The paper is organised as follows. Section 2 yields results previously established for the fluorescence 
anisotropy and Raman depolarisation in the common case where signals derive from individual molecules. 
Irreducible tensors are introduced for the formulation of the Raman scattering process. Although there are no 
new results presented in this section it provides a background that establishes a framework for the subsequent 
treatment of bimolecular excitations. Section 3 introduces the virtual photon coupling tensor as the basis for 
dealing with the sequential processes. Section 4 provides the formal derivation of the fluorescence anisotropy 
resulting from a single-step energy transfer process between free molecules. A similar treatment of the 

1 The term 'doubly Stokes-shifted' signifies that the radiation suffers two consecutive shifts in frequency, one at each of the participating 
molecules. 
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Fig. 2. Modified Jablonski diagram showing the essential energetics of both fluorescence migration and sequential Raman scattering. Here 
S o represents the ground electronic state and its associated manifold; Si, S. denote higher electronic states of the same spin multiplicity 
(normally though not necessarily these are all of singlet designation). 

bimolecular Raman process is presented in Section 5. Finally in Section 6 it is shown, by considering the 
resonance limit of  the Raman process, how the results of Sections 4 and 5 fit into one general structure. Thus we 
reach a position in which it is possible to employ a common theory yielding concise formulae for bimolecular 
interactions, irrespective of  their nature. 

2. Common framework for fluorescence and Raman scattering 

2.1. Fluorescence 

The combined process of absorption and fluorescence for a single molecule A (so labelled with a view to its 
later distinction from another species B) can be described by a quantum probability amplitude M A whose 
modulus square will determine the rate. Specifically, M A takes the form 

MA ( ~ . e l ) (  p ~  . - a '  = ek ,) ,,a;x' ,t  ~*,~*~ ~Ai P'A~j ' (2 .1)  

where /.tA ~ and /.tA ~ respectively represent the transition dipole moments for absorption and emission, with e l 
and - x  the unit polarisation vectors of  the incident and fluorescence signal radiation. Although it is eventually e k , 
intended to focus on the case of  plane polarisations, the inclusion of the overbar here to represent a complex 
conjugate encompasses other possibilities, such as elliptical polarisations [25]. The expression on the right-hand 
side of equation (2.1) is cast in terms of vector components through use of the convention of implied summation 
over repeated indices, a utility that we shall find it convenient to exploit in the following. As the indices i and j 
in Eq. (2.1) are both repeated, the quantity on the left is a scalar. Since we shall ultimately be concerned only 
with polarisation ratios, the constants of proportionality in such equations need not concern us. 

From (2.1) it follows that the rate of signal generation is given by 

F ~  A-A'-A A' I" e,, e,, e, e,$ I~a, I~ +A, P'*a, ~ ~a," (2.2)  

TO consider the common case in which molecules are randomly oriented with respect to the incident radiation, 
an orientational average has to be performed upon the rate. This involves decoupling the molecular parameters 
from the laboratory (or radiation) frame, and can be represented as 

( F )  ~ ° x T " * ' a a ° x ' '  "r I,** ~,* ~ l A ( l i x l j ~ l k ~ l t o )  (2.3)  ~ki~k'sWkk~k~ I'~AA A u A~ o 

Here the transition moments are referred to a molecular frame (denoted by the greek indices) and the averaging 
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need only be performed on the product of direction cosines lix . . . .  in the angular brackets. Again summing over 
repeated indices yields a scalar quantity for the rate (2.3). With the assumption that rotational relaxation can be 
neglected over the timescale for fluorescence decay, then the appropriate result for the fourth rank rotational 
average required by Eq. (2.3) is [26] 

6ij6kl]T[ ) 6AIx6v°] 

( lialjulkvllo) = ~ --1 4 --1 

where the a are Kronecker deltas. The rate for the fluorescence process can thus be expressed as below, where 
in order to accommodate the possibility of non-parallel upward and downward transition dipole moments (since 
as shown in Fig. 2 these transitions may connect different electronic levels) we introduce an angle 0 A to 
represent their mutual orientation: 

( F )  f P'2 [21 /ZA + 12 ( e ' g ) ( ~ ' . e ' )  w 
1 - 1  4 - 1  (2.5)  

30 (e  e ' ) ( ~ ' . ~ )  1 - 1  4 /COS20A 

The general result (2.5) can be further reduced for our immediate purposes. If plane (linearly) polarised light is 
employed, the real and conjugated unit vectors of the incident radiation are equivalent, as are the unit vectors for 
the emitted radiation denoted by the primes. Consequently each polarisation scalar product can be written in 
terms of the angle d~ = cos l(e • e') between the polarisation vectors for the incident and emitted light. Thus 
we have 

l i,~ 121~A * 12 
( F ) 15 [(3 cos2q~ - 1) COS20A + 2 -- cos24q. (2.6) 

To determine the fluorescence anisotropy, as commonly defined by 

( Fj, ) - ( F ±  ) 
r =  ( F , ) + 2 ( F ± ) '  (2.7) 

we can write down the results for an emergent signal whose polarisation is parallel to the incident radiation, i.e. 

] ],ZA? [2] I[/~A ~ ]2 
(Vl ' )  15 (2 COS20A + 1) (2.8) 

and, in the case of perpendicular incident and signal polarisations 

] jtgA~ ]2 ] /,.~A ~ ]2 
( F± ) 15 (2 -- COS20A). (2.9) 

Hence for the fluorescence anisotropy of a system comprising freely independent molecules we obtain the 
well-known Perrin's result: 

3 COS20A -- 1 
r 0 -- , (2.10) 

5 

where the subscript on r o denotes fluorescence without energy transfer. 

2.2. The Raman process 

In conventional (i.e. unimolecular) Stokes Raman scattering the radiation field once again experiences the 
annihilation of one photon and the creation of another with a longer wavelength. For this process a probability 
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amplitude can be derived which shows the explicit dependence upon the unit vectors of the incident and 
scattered light, ek x and e k, -a' respectively, and the Raman polarisability O/A, ,,' 

MA ~ -~' (2.11) ekiek) O/Aij • 

The t ensor  O/Aq ~: ~ i  m( -- O)s, too ) represents a transition I m) -+ I n) associated with annihilation of a photon 
with frequency to o and emergence of a scattered photon tos, and is concisely expressible in the following form 
[27]: 

,r izrm ,r rm ) 
I'ZAj A i ]&A i ]'ZA, 
. . . .  1 .  (torm-------'" O/AiJ (torm -- toO -- 2-l"Yr) -~ ~- tos -}- 2l'Yr) ' (2.12) 

in which Yr represents the damping that is necessary in order to accommodate resonance behaviour. The rate is 
again dependent upon the square of the probability amplitude (2.11), i.e. 

a - a ' - x  a' - ( 2 . 1 5 )  F ~ ek, ek~ ekkek, ~ O/A i j  OIA kt" 

Upon isotropic rotational averaging, again using the fourth rank rotational result (2.4), we obtain a rate result 
initially expressible as follows: 

1 
( F )  ~ ~ - { [ 4 ( e  • ~ ' ) ( [  • e ' )  - 1 - ( e .  e ' ) (~ , '  • ~ ) ]  

+ [ - ( e .  ~")(~'. e ') + 4 - ( e .  e ' ) ( ~ ' .  ~)10tA,~A," 

+ [ - - ( e .  ~")(~'. e ') --1 + 4 ( e .  e ' ) ( ~ ' .  ~)] aA, ~A,,}. (2.16) 

TO facilitate application of the selection rules for the Raman process, it is nonetheless helpful to rewrite the 
above result in irreducible Cartesian tensor notation [28]. The formal basis for this formulation, together with its 
relationship to the more familiar Raman parameters, ~, y and 6 [29] is given in Appendix 1. For our present 
purposes (2.16) can first be rewritten as 

1 
( F )  ~ ~ ( [ 1 0 ( e  • g ) ( ~ -  e"d O/(0) ~(0) + 3[5 - 5 ( e .  e ' ) ( g  • ~)1 t~ (1) ~(1) /J A~, x A~# Ax~ A~,¢,. 

O/(2) ~(2) \ (2.17) + 3 [ - 2 ( e . ~ " ) ( ~ ' . e ' ) + 3 + 3 ( e . e ' ) ( ~ ' . ~ ' ) ]  A,~ A,d 

and by considering plane polarisations the Raman depolarisation ratio p can now be evaluated from its defining 
equation, 

( r l  ~ II ) 
P o -  ( F ±  _~ z ) '  ( 2 . 1 8 )  

where ± and II denote directions referred to the scattering plane, and the subscript zero again denotes the 
generation of a signal from individual molecules, i.e. without intermolecular energy transfer. Hence we obtain 
the result 

3( 5°t(U'~(A1~"+ 3°e12~"-~12)'** ) (2.19) 

In non-resonant Raman scattering the weight 1 antisymmetric part of the tensor is equal to zero and hence the 
depolarisation ratio lies in the range 0 ~ P0 ~< ¼; in the resonance case the upper bound of Po is infinite. 
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3. Theoretical framework for bimolecular excitation 

As an introduction to the bimolecular processes to be studied in the following sections a formal framework 
for the intermolecular transfer of energy has to be established. In order to embrace both radiative transfer 
(long-range, R >> ~ where ~ = k -1) and non-radiative transfer (short-range, R << ~) we here adopt a theory 
that is applicable to both. In this way it is possible to highlight the link between a process in which molecule A 
emits a real photon that is subsequently captured by a second molecule B, and another process in which 
apparently radiationless energy transfer in fact proceeds via virtual photon coupling [19]. Such a description of 
molecular interactions in terms of virtual photons has found extensive applications in other areas of chemical 
physics. It has, for example, a pivotal role in the description of chiroptical behaviour associated with 
intermolecular interactions, as in induced circular dichroism [30-32], and it has recently enjoyed extensive 
application in the theory of intermolecular energy transfer per se [20-25] - areas in which Craig and 
Thirunamachandran have made a number of important contributions. Such considerations here form the basis for 
a common representation of bimolecular probability amplitudes in terms of the photophysical interactions of the 
individual molecules A and B, as will be detailed in Sections 4 and 5. The coupling between molecules, which 
in the long range may be regarded as mediated by the emitted fluorescence or the Raman-scattered photon, is 
accommodated within the appropriate probability amplitude expressions by a fully retarded dipole-dipole 
interaction expressible through the following index-symmetric tensor ~k, [25]: 

Vjk(k, R)  exp(i kR) : 
4,rreoR3 [ ( 1 - i k R ) ( f i j k - 3 / ~ j / ~ k ) - ( k R ) ( 6 j , - / ~ j / ~ k ) ] .  (3.1) 

For the applications in which the above coupling is to be employed, it is expedient to rewrite Eq. (3.1) as a 
product of two separate functions, 

Vj, = f (  k,  R )  &k( kR, 17). (3.2) 

One of these functions, gjk, is dimensionless and alone embodies the tensorial behaviour: 

gjk(kR, /~) = ( 6jk + y(kR)/~j/~k}, (3.3) 

with the real and imaginary parts of y given by 

- 3 + 3kZR 2 - k a R  4 - 2k3R 3 

9 ] ( y ) =  l _ k Z R Z + k 4 R  4 , ~ ( y ) =  l _ k 2 R Z + k a R  4 . (3.4) 

For the other function featuring in Eq. (3.2) we have 

z(kR) exp(ikR) 
f ( k ,  R) = 4xrs°R 3 , (3.5) 

likewise with the real and imaginary parts of z given by 

~ ( z )  = (1 - k2R2), ~ ( z )  = - k R .  (3.6) 

Whilst the above results hold over an unrestricted range of intermolecular distances (beyond the extent of 
wavefunction overlap), it is easy to see the form that each of the new functions will take in both the short- and 
long-range limits, kR << 1 and kR >> 1 respectively. 

Short range: 

1 
f ( k , R ) =  ~ ( y ) = - 3 ,  ~ ( y ) = 0 ,  gjk(kR /? )=(6 jk - -3 /~ j /~k) .  

4rre0R3 ' 

Long range: 

k 2 exp(ikR) 
9 ~ ( y )  - 1 ,  ~ ( y )  O, gjk(kR, 1~) (~ j k - - l~ jRk} .  f ( k ,  n )  = = = 

4,rreo R ' 
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The two limits lead to the well-known short-range R -3 dependence of the probability amplitude, as associated 
with the classical Coulombic interaction of dipole-dipole coupling (cf. the R -6 dependence of the FiSrster 
energy transfer rate), and a long-range inverse proportionality to R associated with the familiar R : inverse 
square radiative transfer rate. 

In the rotationally averaged rate equations to be examined in later sections, each term proves to contain a 
product of components of the coupling tensor with components of its complex conjugate, of the general form 
Vjk~',o = ffgjk g,,o. With this in mind, it is instructive to examine the form of each part of the result. Firstly the 
general result for the scalar f (k ,  R) multiplied by its complex conjugate can be written as 

Iz I  2 1 
i f =  16rrZeZR 6 167rZe~Rg(1 - kZR 2 + k4R4), (3.7) 

where the denominator is later to be incorporated in the constant of proportionality. For the tensorial part of the 
coupling function we can then write the result as 

gjk~,,o = ( fjk + yI~jl~k)( 6,o + ~I~,t~o), (3.8) 

and three different forms emerge according to the different kinds of index pairing that arise: 

gjkg,o = 6jk6,o + ~jkyl~,l~o + 6,oyl~jl~ + I Y  I:/~j/~k/~,/~o, (3.9) 

gjkg,k = 6j, + 29~(y)/~j/~,  + I Y  I2/~j/~,, (3.10) 

gjk ~'jk = 3 + 2,~1l ( y )  + l y  12. (3.11) 

The first of these, (3.9), evidently has terms calling for second and fourth rank rotational averages to be 
performed to separate the molecular displacement vectors from the laboratory frame; the result (3.10) requires a 
second rank average and the last, (3.11), is a rotation-invariant scalar. 

To summarise, employment of the coupling formalism described above enables both the quantum probability 
amplitudes and the ensuing rate equations for each entire bimolecular process to be expressed by factorisable 
expressions. Conceptualisation in terms of two separate processes (as normally considered in the case of 
radiative energy transfer) will be embraced within each expression and specifically manifest at the limit of large 
molecular separation. 

4. Fluorescence migration 

In the specific two-centre case now to be considered, the absorption of light by molecule A is the first step in 
a process within which a significant part of the excitation energy is exchanged between the two molecules A 
and B, and it is the fluorescence from molecule B that gives rise to the detected signal. In order for this process 
to be physically distinguishable from direct fluorescence by A, it may be supposed that A and B are chemically 
different 2, and that the fluorescence spectrum of B covers a range of appreciably longer wavelengths than A, 
ideally with no overlap between the two emission spectra. Under such circumstances it may also be assumed 
that there is no further redistribution of energy between A and B, i.e. energy transfer occurs in one direction 
only. 

2 It is also possible to entertain cases where A and B have the same chemical composition, but different electronic states are involved. 
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The quantum probability amplitude for the process now under consideration is a scalar product of the 
molecular transition dipole moments, the radiation unit vectors and the virtual photon tensor introduced in 
Section 3: 

o3.5a', ~ /x* /x* /x~,~k" (4.1) m ~ ~ki~k~ PVAi A )  B k 

The rate can be expressed as the square of the probability amplitude as 

3.-3.'-3. ~' ~T tz+ tz~,lx+ vi~ ~A~°--~ --~ -- F~ eke~eke G A, aj B~A,  /XBo IXBVj~V,o, (4.2) 

where once again there is implied summation over all Cartesian indices. In allowing for the free rotation of the 
respective molecules, two independent orientational averages are required to decouple each molecule from the 
fixed laboratory frame. This procedure again entails two fourth rank isotropic averages of the form given by 
(2.4) 

3. - 3 . ' - 3 .  3.' - -  - -  F~ ek ek~e~ e G lx2~lx~A~lx~.tx~otx t ~x* Tz + 

× (l,fljflm~l,v)(lk,llolo~lp,). (4.3) 

The result of performing these averages carries expressions of the form (3.7)-(3.11), and at this stage relates to 
a system in which the intermolecular displacement vector R still has a fixed orientation relative to the laboratory 
frame. To complete the rate calculation, further rotational averages have to be taken to decouple the radiation 
vectors e and e' from the R-dependent virtual photon coupling tensor, since the vector displacement of 
molecule B relative to A can also assume an arbitrary orientation. This calculation will nonetheless allow for 
any (fixed) angle between the absorption and emission transition moments within each molecule. Where no 
constraint is placed on either the incident or emergent polarisation, the derivation produces a lengthy expression, 
although for the purposes of obtaining the fluorescence anisotropy a substantially simpler expression will 
emerge. Nonetheless, dealing first with the most general case, the fully averaged rate can be expressed in the 
following compact form, taking out a common factor of 9~5~1 ~A ~ 121 /XA + 121 ~ 12[ IX~ 12: 

9 

( F ) -  Y'. (F , ) ,  (4.4) 
n = l  

and five distinct kinds of rate contribution can be identified: 

I212 (3COS20A--1)(3COS20B--1)[15p1+10~)t(y)p1+ly12(1+pl+P2)] ,  n = l , 9 ,  <r .>~ - i3-  
(4.5) 

(F . )~  -~lZl2(3CoS2OA--1)(3Cos2OB--1)[15p2 + lO~(y)p2 +l yl2(l +pl +p2)], n = 3 , 7 ,  

(4.6) 

I zl2 "4 "(In)~--~---( --2COS20A)(3COS20, - 1 ) [ 3 + 2 9 1 ( y ) + [ y 1 2 ] ,  n = 2 , 8 ,  (4.7) 

lZ12(3COS20A--1)(4--2CoseOB)[3+291(y)+Iy12], n = 4 , 6 ,  (4.8) <r.> ~ 

<F,,)~lz[2(4--2COS20A)(4--2COS20B)[3+291(y) + l y l 2 ] ,  n = 5 .  (4.9) 
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The polarisation parameters, Pl and P2, introduced for convenience in the preceding equations, are here defined 
as  

Pl = ( e .  ~ ' ) (~  • e ' ) ,  (4.10) 

P2 = (~'" ~")(e  • e ' ) ,  (4.11) 

and y, z are as given in Section 3. 
In calculating the concomitant fluorescence anisotropy only plane polarisations are of  interest, and the 

polarisation vectors of  the incident and emergent radiation are real. In this case the above rate contributions 
simplify considerably, and can again be written in terms of the angle th between these vectors. Hence we obtain: 

Izl= 12 [15 + 1 0 9 ] ( y )  + 21 y ( F ) ~  ---~- [4({1 y + IZ](cos2~b)}(3 COS20A - 1)(3 COS20B- 1)) 

+ 5[3 + 2 9 ] ( y )  +[  y I 2 ] [2(4 - 2 coSZ0A)(3 COS20, -- 1) 

+ 2(3 coSZ0A - 1 ) (4 - -  2 COS20,) + 3 (4 - -  2 COS20A)(4 - 2 COS20,)]]. (4.12) 

From the above perfectly general result it is possible to derive explicit expressions for the fluorescence 
anisotropy, r 1 = (1 - so)/(1 + 2~ )  where ~ = ( F± ) / ( F i i ) ,  the subscript on r 1 denoting single-step energy 
transfer. The result is as follows: 

rl = 4(3 COS20A - 1)(3 COS20n - 1)[15 + 1 0 ~ ( y )  + 21 yl2] [3 + 2 ~ ( y )  + l  yl2] - '  

× [4(3 COS20A - -  1)(3 cos20B - 1) + 6(4 - 2 COS20A )(3 COSe0B -- 1) 

2 -1  + 6 ( 3  COS20A -- 1 ) (4 - -  2 COS20B) + 9 (4 - -  2 COS20A)(4 - 2 COS 0B) ] (4.13) 

and the short- and long-range behaviour follows from the limits of y as given in Section 3. It is readily shown 
that, in the case where the absorption and emission transition moments within each molecule are parallel, i.e. 
0 A = 0 B ---0, the resulting anisotropy has precisely the range dependence found previously [3]; however the 
present result accommodates the case of non-parallel moments. Again, with 0 A = 0 B = 0 the specific results for 
the short- and long-range anisotropy are: 

Short range 

( F ) ~ 4 COS2(~ qt_ 82, (4.14) 

giving the following relation between the anisotropy associated with single-step transfer and transfer-free 
fluorescence: 

1 - ~c 2 r 0 
rl -----  1 + 2~: 125 25 '  0A 0 B 0, (4.15) 

consistent with the non-radiative result of Galanin [33]. 
Long range 

( F ) ~ 14 COS2~) q- 37, (4.16) 

from which the following result ensues in accordance with a relation previously reported [3]: 

14 7r 0 
rl =- 125 2 5 '  0A 0B 0. (4.17) 
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5. Sequential two-molecule Raman scattering 

The theory of bimolecular Raman scattering can be developed in a similar manner to the two-molecule 
fluorescence process examined in Section 4. This process involves a double Stokes shift in frequency, associated 
with the sequential Raman excitation of molecules A and B. In the current context, and with a view to 
establishing in Section 6 a relationship with bimolecular fluorescence, we shall here restrict consideration to the 
case where excitation of A precedes that of B - a more general theory allowing for the reciprocal process has 
been presented previously [12,13]. As developed here, the theory can address cases where both molecules are of 
the same chemical type. Experimentally, the appearance in the Raman spectrum of a single-component system 
of frequency shifts attributable to pairwise vibrational excitations ought, as a result of their different degrees of 
anharmonicity, to be distinguishable from the slightly lower frequency corresponding overtones. As we shall 
observe, such bimolecular scattering events can also be characterised by unusual depolarisation behaviour. 

The quantum probability amplitude for the entire process can again be cast as a single factorisable expression 
in terms of the virtual photon tensor. The probability amplitude involves the transition polarisability tensors for 
the individual molecules and the incident and scattered radiation vectors (cf. Section 2) 

eX~  ' M ~  ki kPlO~Aij~BklVjk, ( 5 , 1 )  

and the rate is once more obtained through multiplication by the complex conjugate 

A -A'-A A' F ~ ek, ek~ e k e G a  A,j aB, ' a A.aBopVjkV,, o , (5.2) 

giving a rotationally averaged result: 

F ~ e~i e~i e'~.e~i°tAa,a B.o ~A ~pOl BeTVjk ~t o ( li,~ lj ~ I m ~r ln o ) ( lkv lto lo~ lpr >" (5 .3 )  

Here the result is not directly factorisable in terms of transition dipole moments as in the case of fluorescence, 
essentially because non-resonant intermediate states (incorporated within the structure of the transition tensors) 
are included in the quantum amplitudes for transition from the initial to the final state of each molecule. After 
implementing the full orientational average procedure as described in Section 4, and extracting from each term 
the common factor of 1 ~ ,  we then have for arbitrary polarisation conditions a result expressible as 

9 

( F )  ~ E ( F . ) ,  (5.4) 
n = l  

whose contributions are explicitly as follows: 

I z l 2 ~  r 
(FI> ~ - ~  ]17115pa + 10p, Ol(y) + l y  12(1 +P l  +P2)] 

-8[15P2 + lOp291(Y) +1Yl2(1 +P ,  +P2)] 

-- 1513 + 2 ~ ( y )  + l yl 2] (5.5) 

I z 1 2 ( - 3 1 1 5 p 1 + l O p 1  l y l2 ( l  + p l  (F2> ~ - ~  ~tl(y) + +P2)] 

-3[15p2 + 10p291(Y) +[Y12( 1 +P l  +P2)] 

+ 1013 + 291(y) + [ y[Z])(aa . -~a, . ) (aB.f iaoo)  ' (5.6) 
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(/~3) ~ ~ { - 8 [ 1 5 P l  + 1 0 p l ~ ( y )  +l  yl2(1 + Pl + P2)] 

+ 17[15p2 + 10p2~(Y)  +[ yl2( 1 + P l  +P2)]  

-1513 + 2Dt(y) d-lylZ])(OlAa-~A~a)(OtBwOlBoo), (5.7) 

( F s ) ~  ~ { 2 [ 1 5 p l  + 10p lY(Y)+1  y12(1 +P l  +P2)]  

+2[15p2 + 10p29t(y) +1yl2(1 +P l  +P2)]  

+ 16013 + 2Dt(y)  + Jr 12 ] )(OlA;~-~Axu)(OlB~o'~B.o). (5.8) 

For n = 9 an expression of similar structure to the n = 1 result arises, the only difference being the form of the 
transition tensor products; the corresponding result is expressed by the right-hand side of Eq. (5.5) but with 
tensor product (ag~ ~g ~)(°ea aBo )" For n = 4, 6 and 8 the results are as given by Eq. (5.6), but with 

• ~ ~ vo v . . . . .  
corresponding product tensors ( a  A a A )(a B a B ), ( a  A a A )(or B a B ) and  (a  A a A )(a B aB )respec- Xa /.1. ~o vo X,~ ~th vo ~o X Art v ov 
tively. Finally, the n = 7 result has the form of (5.7), with a tensor product (or g ~g ~(aa ~a J" 

AA /~/t t.o ol, 
In order to facilitate application of the Raman selection rules it is more convenient to recast the rate in a 

form, similar in structure to (5.4), expressed in terms of irreducible tensors (see Appendix 1). This representa- 
tion necessarily yields another nine terms; though not individually identifiable with those given above, their 
sum is of course the same in either representation. Here we can write 

2 
( F ) =  E (Fjj,),  (5.9) 

j , j ' =  0 

with 

(Foo)~ I~5 {IOO[15pa + IOpl~(Y)+IYI2(I +pl +P2)]}( "~(°)-~(°) ~ A ~ ]  ~ ~ B ~ B o o ] '  (5.10) 

(Fll) "~ ~{25115p1  + 10pl~(y)+1 y12(1 +Pa +p2)] 

+ 12513 + 2 ~ ( y ) + 1 Y  12]}(aO) ~(I)A,~ A,~I,~B.o~n.ol,](~"l)~O)] (5.11) 

I Z12 {13[15pl + 10pa~(Y)  +1 y12( 1 +Pa + P2)] 
~ - i g -  

- 12115p2 + 10pEDt(Y) +1 y12(1 +P l  +P2)]  

+ 16513 + 2{)/(y) + I y 121}( ct (AZ: a(A2~,)( Ot (a2]o~ ~2o} ), (5.12) 

I Zl 2 [_50[15p2 + 10p29t(Y) +1 y12(1 +PI  +P2)]  < r 0 , >  ~ 

+ 250[3 + 2 Dt(y) +l  Y 12] }( '~(°)~Axa ~-v(0)~A,~ 1 ] [ ' a ' ( l '  ~ ( 1 ) '  ~ B v o ~ B v o  1 '  ] (5.13) 
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] z f2 {--20[15Pt + 10ptg](Y) +l  y12(1 +Pl +P2)] < t o 2 )  - 

+30[15p2 + 10p29](Y) +1yl2(1  +P l  +P2)] 

+ 15013 + 29 ] (y )  +1 y 12 ] ~[ O~(0) ~(0) ][ ,w(2)~(2) ] (5.14) 

I z l  2 
(F12) ~ ~ - -  { -  15[15Pl + 10pI9](Y) +l  Y12(1 +Pl  +P2)]  

+10[15p2 + 10P29](y) +1yl2(1  +Pa +Pz)]  

+ 17513 + 29 ] (y )  + [ y 121 \ [  a (t) ~0) ~[ 0t,(2)~(2) ~ (5.15) ] J~  AX/* Aa/*}~ Bvo Bo~]" 

For (F,o) ,  Eq. (5.13) is applicable upon reversal of the molecular tensor products, i.e. (aA(t) ~(A t) )(a(B0)~'(B0 ) ). 
Similarly for (F2o) we can employ (5.14) with (a~2]fi'A(2),)(a(B0]fi~0o)o), and for (Fzt )  Eq. (~..15)~applies w°ath 

,a,(2) ~,(2) ](,a,(1)g(l)"~ 
~Aa~,~A~a -''- ~Buo~B~o j" 

The polarisation parameter most of interest for bimolecular Raman scattering is the depolarisation ratio as 
given by (2.18), here denoted by Pa to signify the involvement of energy transfer. For the evaluation of this 
ratio we again need only consider plane polarisations, and a result applicable for all intermolecular distances is 
directly obtainable from the above. In view of its complexity we report the general result in Appendix 2 and 
concentrate here on the limiting short- and long-range behaviour. 

Short range 
Here the complete bimolecular Raman depolarisation ratio, to be denoted below by fit, may be expressed as 

Pa = 3{100(a(A0]fiAm~),)/a(°)a(°) ~ ,  uo~ ,oo1 + 975(a(A1]fd(Aa]~l(a~1)-d~ ') . . . .  ) +  999( a(2, a(2)A,. A~,x] ,~/Og(2,~(2,B~o Bo~ ] ~ 

+ 350[ a(o) ~(o) "~/a(1)~(1) ] -'I- 350/a  (t) ~0) ][a(o)~(o) "I + 330/a(o) ~(o) "1/a(2)~(2) ] 
A,, A,~lt  B~o S~o! ~ A,, A~I  t 8~ Bool t A** A,~lt  B~o Bo~l 

.4_ ,~.'~(i/ ,.~(2 ) 7u(2) ](,,.~(0)7u(0) ] liqaR/,,a,(l) 7v(1) ]/,,v(2)~(2) ] .~_ 1005[ Or(2) ~(2) ](O¢(1)~(1) ]~ 

× {400(,~(o)z(o)][.(o)a(o, ] +  3150(oe~,]fdXt].)(o~O)a¢t)] 3006(.~¢2)a,¢2, ][..a,(2)~(2) 

+ 900( Ot (A0~, a'A(0}~,)( °t(1)~(l,B~o a~o] ] + 900(OtA(1)~fi'A(I~,)/Ot(0)~(O), "~,Boo] + ~ 1020( OtA(0~, a'(°)&,,], ~/a(2)~(2'B,o to,} ] 

+ 1020(a(2)~(2)][ a(o)~(o)] 2970(a0,  ~(,)'~(O,(2)~(2)~ 2970(a(2)a(2)]/" oe(t)a(t)~-1 

(5.16) 

In off-resonance applications all terms involving weight 1 effectively disappear and the result simplifies further. 
Here we find that for excitation of 'polarised', i.e. totally symmetric, bands in each molecule, PI values must 

333 ~ If both A and B undergo vibrational transitions involving non-totally symmetric lie in the interval (3, 334-. 
'depolarised' bands, the upper limit on Pl applies, reflecting almost completely unpolarised scattering 3. The 
result is noteworthy in establishing a possible mechanism for the appearance of depolarisation values above the 
normal (0, 3) range without necessary involvement of resonance. 

3 3 The short-range result Pl = ~ which applies for polarised transitions in both A and B reflects the overall weight 2 character of the pair 
response tensor ot • V. or, since V is weight 2 and both ot tensors weight 0. For this reason the result is the same as applies for a pure weight 
2 transition in conventional Raman scattering. 
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Long range 
In the long range limit Pl is as follows; 

Pl = {100("~'(°) ~(o)][,~(o)~(o, "l-q- 2475(0~(A1), ~(A1))(a(a)~(1) '~ 2979(~(2)~(2) ](,~(2)~(2)] 

+ 1350 (°~ ~A0~)~ aA~0). )( a ~1) ~ ~1) . . . . .  ) +  1350( °t'l)A~. ~(1)A~.],]/at(0' ~ ¢0'B~ Boo ! ] + 930( '~'°)~Aa~ ~A.. 1'~(0)] (,,v (2)Tw (2, ~ B~o~Bo~ J) 

+930(c~(2) ~(2) ][a(°)~(°) ] 3105(0¢(A1)~(A1))(O;(2)~ (2) ] 3105(a(2) ~(2) ] (of( l '~(1)  ] \  A~.v. A,),]~ Bvv Boo ] "~ Bvo Boy ] -~- ~ A~.v. Av.A] ~ Bvo Bvo]J 

× {800(Ot(A0),~A(°))(ot(0)~ ( ° ) ~  Boo) + ]  4050(Ot(A~fff(A1),~)(Ot(~I)~(B~:o)~o ~ + 3042(a(A2),~(A2~a)(o~'2)a,(2), ~o Bo~,] 

+ 1140(a(A2)~(A2))(a(~0)~(~ °) ) +  2790(O~A(1), ~(AI))/O~(2' ~(2)] 2790(O~(2) ~(2) ]( O~(1)~(1) ] \ - 1  

(5.17) 

Again where terms involving weight 1 disappear in off-resonance studies we have for pairwise excitation of 
331 -~ polarised bands pa values in the interval (½, 3-3~-, the upper limit obtaining for excitation of depolarised bands. 

6. Unified formulation 

A unification of theory for the two bimolecular processes studied in the previous sections can be established 
by reference to the limiting behaviour of the Raman process in the case where both molecules exhibit resonance 
scattering. This invokes Raman polarisability tensors dominated by the 'classical' time-ordering in which 
absorption precedes emission 4, and in which the intervening state is physically realisable in the sense that it can 
persist over measurable times 5. Although anywhere near resonance the Raman tensors must be regarded as 
complex, their imaginary parts arise from the damping in the energy denominators (see 2.12), and the transition 
dipole moments may still be assumed real. Each tensor product can thus be expressed as follows: 

O % ~ g ~  ~ I #A ~ " g,A ~ I 2 = I tZA ~ I=1 tZA ~ 12 COS20A , (6.1)  

O/Ax. ~AA u ~ I ~LA ~ ° ][~I['A~ I)'(I jI~AT u • /,re% I= ]/ZA ~ [2 /XA~ 12, (6.2) 

O/AA~A,,A ~ I ]l.t~ " jI.gA ~ 12= I /./,A ~ 12 ] jtgAT ] 2 COS20A (6 .3 )  

Equally, for the irreducible form of the results of Section 5 we can express the individual product weights, using 
the results of Appendix 1, as 

oz(O) ~(o) ~ ]/ZA ~ 121 /XAr 12 COS20A, (6.4) AAA ~A~,u 

O¢(1) ~(1) ~ I [-g~ 121 jLgA ~ 121(1 - COS20A), (6 .5 )  Ax,~ Aa~ 

Or(2) ~(2) ~ I ].L~ 121 p~A r 12½(1 + ½ COS20A). (6 .6 )  

4 It is to be understood that even under resonance conditions there is a small contribution from the 'anti-resonant' second term in Eq. 
(2.12), as discussed in a more general context elsewhere [27,34]. 

5 For detailed discussions of the relationship between resonance Raman scattering and resonance fluorescence, both from theoretical and 
experimental viewpoints, see Refs. [35,36]. 
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The final results can now be calculated using either the reducible form, (5.4), or the irreducible form, (5.9), of 
the Raman result. By either route the following result is obtained: 

/ ~  I z12[ (36{ l  y l 2 +  [15 + I O N ( y )  + 2[ y 12](cos2~b)}-60[3 + 2 ~ ( y )  +1 y[2])(CoS2OA)(Cos2OB) 
15 

+ ( - - 1 2  0 y]2+ [15 + 1 0 ~ ( y )  + 21 yl2] (COS2th)} + 20[3 + 2 ~ ( , )  +1 y I2I)(cos20~) 

+ ( - -12 ( I  y]2+ [15 + 1 0 ~ ( y )  + 21 y 12] (cos2~b)} + 20[3 + 2 ~ ( y )  +l  y I2])(cos20A) 

+(4{]y12+[15+lOgi(y)+21Y12](cos2qb)}+16013+2~(y)+ly]2])], (6.7) 

which, by simple regrouping of the terms, can be seen to be identical to the two-molecule fluorescence result as 
given by Eq. (4.12). Therefore it is proven that in the exact resonance limit the result for the bimolecular Raman 
process fully embraces the case of two-molecule fluorescence. Thus it transpires that, by re-interpreting the 
polarisation ratio ~= ( F ± ) / ( F I I ) =  (1 - r l ) / ( 1  + 2r  1) as the depolarisation Pl, we obtain from (4.15) and 
(4.17) the results: 

Short range 
41 

plres= --43 ' kR << 1. (6.8) 

Long range 
37 

Pl . . . . .  - 51 '  kR>>a.  (6.9) 

The former result reveals a possible contributory role for bimolecular scattering, under resonance conditions, in 
producing a depolarisation ratio exceeding the off-resonance limit of 3 z. 

7. Conclusion 

A theoretical framework has been developed to formally establish the link between two bimolecular 
processes hitherto always regarded as completely separate types of interaction. The theory encompasses energy 
transfer between independently mobile chromophores across arbitrary distances, accommodating resonance 
features, and allowing for the transition dipoles for the upward and downward processes within each moiety to 
be either parallel or non-parallel. Explicit results for the degree of fluorescence anisotropy and Raman 
depolarisation ratio have been presented, as well as more general rate equations applicable to arbitrary 
polarisation conditions. Both at and away from resonance a Raman depolarisation ratio exceeding the normal 

3 off-resonance limit of ~ is shown to be a possible consequence of bimolecular scattering. Although the foci of 
attention in our theory have been processes in which either both molecules undergo Raman transitions or both 
absorb and fluoresce, the results can also accommodate processes in which Raman scattering is followed by 
absorption and fluorescence, or vice versa. 
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Appendix A. Second rank irreducible Cartesian tensors 

It is possible to reduce any tensor into a sum of parts (weights) transforming under irreducible representations 
of the full rotation group. Using the methods of Coope et al. [28] it can be shown that second rank tensors, such 
as the Raman tensors used throughout this paper, can be expressed in this form as a sum of three separate 
weights expressed as 

OL}O) 1 = 30LkkSij,  (A.1) 

~}]) = 1 ( % )  _ aj,) ,  (A.2)  

OLd2)= 1( Olij ..~ Ogji ) -- l OLkkaij. (A.3) 

The properties of these irreducible forms are as follows. The weight-zero term (A.1) acts like a scalar and gives 
a non-zero trace, whereas both the weight-one (A.2) and the weight-two (A.3) terms are traceless. The 
weight-one term transforms like a pseudo-vector and the weight-two as a deviator (i.e. a symmetric traceless 
second rank tensor), carrying three and five individual components respectively; as in angular momentum theory 
the number of terms for weight j is (2j  + 1). Although working directly in terms of irreducible weights offers a 
certain advantage of clarity [37], much existent Raman theory is expressed in terms of parameters which are 
directly related to the products of the above irreducible tensors; the relationships necessary to express our results 
in such terms are the following: 

[ a}°): a} °)1 = 3D 2, (A.4) 

[a})):ag)],, 1=3822, (A.5) 

[ @}2): OL~2)]L/J = 32")/2" (A.6) 

Appendix B. General depolarisation ratio for sequential Raman scattering 

The general result for the depolarisation ratio associated with sequential Raman scattering, from which the 
limiting long- and short-range results given in Section 5 are obtained, is as follows: 

pl---{[1001 y 12] ( a ( ° )~  (°) ~ (a~° )~  °) ] 

+ 22s[i yl + + +l y 12)1 ( < ' . < ' . ) (  . . ,  

+911 yl  2 4- 165(3 + 2 9 ] ( y )  +1Y 12)1 (a(2)~ (2) ~[ O/(2)~(2) '~ 

"~ 150[ --I Y [ 2 -~ 5(3 Jr- 2 9 ] ( y )  "~1Y 12)] ("(0) ~(0) ~(0~(1)7v(1)~ I,~A** A,.,)l B,o~Soo) 

+ 150[ -1 y 12 -t- 5(3 -/- 2 9 ] ( y )  +l  Y 12)] ( ' ' 0 )  ~,o) ](.(o)a(o) ] 

+ 30[I y[ 2 + 15(3 + 29](y) + [ y 12)] (,~(O,~aa~a~,]~(o) ~t 0~(2, ~,(2,B,o Bo~J ~ 
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+ 30[[ y [2 ._[_ 15(3 + 2N(y)  + [ y  [ 2"1] / rv(2) ~,(2) ](rv(0)~(0) ] 

+45[-I  y [ 2 +  35(3 + 2N(y)  + l  Y[2) ] (0 / (1 )  ~(I)AA. A,~,]~ ] (  O/(2)~(2)B~o Bo, ] ] 

+45[-I y[2+ 35(3 + 2N(y)+l y 12)] (a (2) ~(2) ]/0~(1)0:(1) ]\ 

× { [100(15 + ION(y) + 31 y 12)] (~,(o)~A,* ~A.~''=(0)]( M0)a(o)~B.,~Uoo, 

+ 225[(15 + ION(y) + 31 yl 2) + 5(3 + aN(y)  +l YI2)](~(A°.-~) [-~(1)~O)t B.,, B,,,/] 

12~] [ 0.(2) ~(2) ~(@(2)~(2) ] +9t,15+10N,y,+3'y '2j+165~ 3 + 2 N , y , + I y  Ilk a,~ A~,I~ <,o Bo~! 

+ 150[ - (15 + ION(y) + 31y [ 2) -}- 5(3 + 2N(y)  +l y J2)]/a(0) ~(0) ][ Ol(1)~(l) ] A~ A,.,/t B .... <.o1 

+ 150[ - 0 s  + 1oN(y)  + 31 y I + 5(3 + 2N(y )  + l y  12)] 1 ~ "XA a.a t*A ap. ] ~ ~B~v--Bo,,] 

+ 30[(15 + 10N(y) + 31 y 12) + 15(3 + 2 5 ( y )  + I y 1221[ c¢ °~ ~0) ]¢ ~2)~2) ] l ]~  AA, A~,,,J~ B,. o Bo, ] 

2tl (,.v(2) ~,(2) ][  n,(O) ~(0) + 3 0 [ ( 1 5 + 1 0 N ( y ) + 3 1 y l  2 ) + 1 5 ( 3 + 2 N ( y ) + l y  Jl~--A~A.,IK--...~Boo) 

+45[ - (15  + 10~R(y) + 31 y[2)-F- 35(3 + 2N(y)  +1 yl2)](Ol(Al)u~g(A1)u.)(Ot(2?o'~(2?~ ) 

+45[--(15 + ION(y) + 31 y]2)+ 35(3 + 2N(y)  +1 y 12)1 (0¢A(2~ ~A(2)x) ( Of(Bl?o~(l?o)} -1 ' (B.1) 

with the appropriate y values as given in Section 3. 
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