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Abstract

Background: An early warning tool to predict attacks could enhance asthma management and reduce the likelihood of serious
consequences. Electronic health records (EHRs) providing access to historical data about patients with asthma coupled with
machine learning (ML) provide an opportunity to develop such a tool. Several studies have developed ML-based tools to predict
asthma attacks.

Objective: This study aims to critically evaluate ML-based models derived using EHRs for the prediction of asthma attacks.

Methods: We systematically searched PubMed and Scopus (the search period was between January 1, 2012, and January 31,
2023) for papers meeting the following inclusion criteria: (1) used EHR data as the main data source, (2) used asthma attack as
the outcome, and (3) compared ML-based prediction models’ performance. We excluded non-English papers and nonresearch
papers, such as commentary and systematic review papers. In addition, we also excluded papers that did not provide any details
about the respective ML approach and its result, including protocol papers. The selected studies were then summarized across
multiple dimensions including data preprocessing methods, ML algorithms, model validation, model explainability, and model
implementation.

Results: Overall, 17 papers were included at the end of the selection process. There was considerable heterogeneity in how
asthma attacks were defined. Of the 17 studies, 8 (47%) studies used routinely collected data both from primary care and secondary
care practices together. Extreme imbalanced data was a notable issue in most studies (13/17, 76%), but only 38% (5/13) of them
explicitly dealt with it in their data preprocessing pipeline. The gradient boosting–based method was the best ML method in 59%
(10/17) of the studies. Of the 17 studies, 14 (82%) studies used a model explanation method to identify the most important
predictors. None of the studies followed the standard reporting guidelines, and none were prospectively validated.

Conclusions: Our review indicates that this research field is still underdeveloped, given the limited body of evidence, heterogeneity
of methods, lack of external validation, and suboptimally reported models. We highlighted several technical challenges (class
imbalance, external validation, model explanation, and adherence to reporting guidelines to aid reproducibility) that need to be
addressed to make progress toward clinical adoption.
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Introduction

Background
Asthma is a chronic lung illness characterized by reversible
airway blockage caused by inflammation and narrowing of the
small airways in the lungs that can lead to cough, wheezing,
chest tightness, and breathing difficulties [1]. It is a common
noncommunicable disease that affects children and adults alike.
In 2019, asthma affected an estimated 262 million individuals,
resulting in 461,000 fatalities [1,2]. Asthma attacks occur
particularly in those with poorly controlled diseases [3]. An
asthma attack is a sudden or gradual deterioration of asthma
symptoms that can have a major influence on a patient’s quality
of life [4]. Such attacks can be life-threatening and necessitate
rapid medical attention, such as an accident and emergency
department visit or hospitalization, and can even lead to
mortality [5]. Asthma attacks are prevalent, with >90,000 annual
hospital admissions in the United Kingdom alone [6]. Early
warning tools to predict asthma attacks offer the opportunity to
provide timely treatments and, thereby, minimize the risk of
serious outcomes [4].

Machine learning (ML) offers the potential to develop an early
warning tool that takes different risk factors as input and then
outputs the probability of an adverse outcome. So far, logistic
regression (LR) has been the most common approach in building
an asthma attack risk prediction tool [7-9]. However, the
predictive performance of this method may be inferior to more
advanced ML methods, especially for relatively
high-dimensional data with complex and nonlinear relationships
between the variables [10,11]. The use of ML has been
investigated in a wide range of medical domains by using
various data such as electronic health records (EHRs), medical
images, genomics data, and wearables data [12-14]. However,
to the best of our knowledge, there is still no widely used
ML-based asthma attack risk prediction tool in clinical practice.

Objective
Previous recent systematic reviews have discussed the choice
of models used for asthma prognosis [15,16]. An ML pipeline,
however, has several components besides modeling choice (eg,
feature engineering [17]), which can profoundly influence the
performance of the algorithms. Owing to the lack of consensus
about what constitutes best practices for the application of ML
for predicting asthma attacks, there is considerable heterogeneity
in previous studies [15,16], thereby making direct comparisons
challenging. In this scoping review, we aimed to critically
examine existing studies that used ML algorithms for the
prediction of asthma attacks with routinely collected EHR data.
Besides data type and choice of models, we have reviewed
additional ML pipeline challenges. These include customizing
off-the-shelf algorithms to account for domain-specific subtleties
and the need for the model to be explainable, extensively
validated (externally and prospectively), and transparently
reported.

Methods

Overview
The scoping review was conducted based on the 5-stage
framework by Arksey and O’Malley [18]. This framework
includes identifying the research question; searching and
collecting relevant studies; study filtering; data charting; and
finally, collating, summarizing, and reporting the results. The
research questions in this scoping review were the following:

1. What methods are commonly used in developing an asthma
attack prediction model?

2. How did the authors process the features and outcome
variables?

3. Are there any of these prediction models that have been
implemented in a real-world clinical setting?

We then translated these 3 questions into the patient or
population, intervention, comparison, and outcomes model
[19,20], as shown in Table 1.

Table 1. The patient or population, intervention, comparison, and outcomes structure.

KeywordsExpansionItem

People with asthmaPatient, populationP

Machine learningIntervention, prognostic factor, or exposureI

N/AaComparison of interventionC

Asthma attackOutcomeO

aN/A: not applicable.

Search Strategy
We used the patient or population, intervention, comparison,
and outcomes model in Table 1 as our framework for defining
relevant keywords. This approach led us to include clinical
terms associated with asthma attacks, encompassing concepts

such as asthma exacerbation, asthma control, asthma
management, and hospitalization. In addition, we integrated
technical terminology related to ML, incorporating terms such
as artificial intelligence, supervised methods, and deep learning
(DL). All the keywords that we used in the search strategy can
be found in Multimedia Appendix 1 [4,11,21-35]. Overall, 2
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databases, PubMed and Scopus, were chosen as the sources of
papers. The search period was between January 1, 2012, and
January 31, 2023, and the search was limited to the title, abstract,

and keywords of each paper but without any language
restriction. The complete query syntax for both databases is
listed in Textbox 1.

Textbox 1. Query syntax.

Scopus

• ((TITLE-ABS-KEY(“asthma”) AND (TITLE-ABS-KEY(“management”) OR TITLE-ABS-KEY(“control”) OR TITLE-ABS-KEY(“attack”)
OR TITLE-ABS-KEY(“exacerbation”) OR TITLE-ABS-KEY(“risk stratification”) OR TITLE-ABS-KEY(“risk prediction”) OR
TITLE-ABS-KEY(“risk classification”) OR TITLE-ABS-KEY (hospitalization”) OR TITLE-ABS-KEY (“hospitalisation”) OR TITLE-ABS-KEY
(“prognosis”))) AND (TITLE-ABS-KEY(“machine learning”) OR TITLE-ABS-KEY(“artificial intelligence”) OR TITLE-ABS-KEY(“supervised
method”) OR TITLE-ABS-KEY(“unsupervised method”) OR TITLE-ABS-KEY (“deep learning”) OR TITLE-ABS-KEY (“supervised learning”)
OR TITLE-ABS-KEY (“unsupervised learning”))) AND PUBYEAR > 2011

PubMed

• ((asthma[Text Word]) AND ((Management[Text Word]) OR (Control[Text Word]) OR (Attack[Text Word]) OR (Exacerbation[Text Word])
OR (Risk Stratification[Text Word]) OR (Risk Prediction[Text Word]) OR (Risk Classification[Text Word]) OR (hospitalization[Text Word])
OR (hospitalisation[Text Word]) OR (prognosis[Text Word])) AND ((machine learning[Text Word]) OR (Artificial Intelligence[Text Word])
OR (supervised method[Text Word]) OR (unsupervised method[Text Word]) OR (deep learning[Text Word]) OR (supervised learning[Text
Word]) OR (unsupervised learning[Text Word]))) AND (“2012/01/01”[Date - Publication] : “2023/01/31”[Date - Publication])

Eligibility Criteria and Study Selection
Overall, 2 authors (AB and KCHT) performed the 2-step study
selection process. During the first selection step, we focused
on the abstract. In the second step, we conducted a thorough
reading of the full text of the manuscript. We only included
papers that met our inclusion criteria: (1) used asthma attack as
the outcome, (2) included an ML-based prediction model, and
(3) used EHR data as the main data source. We defined the
concept of EHR-derived data as structured, text-based,
individual-level, and routinely collected data gathered within
the health care system. In cases of unclear information extracted
from the abstract, the reviewers decided to retain the studies for
the next iteration (full-text review). We excluded nonresearch
papers, such as commentary and systematic review papers
because of the insufficient technical information. We also
filtered out papers that did not provide sufficient details about
the ML approach and the result, including protocol papers.

Data Extraction
From each of the eligible papers, we extracted data from the
full text and web-based supplements. We then summarized these
data under different categories such as data set (whether publicly
available or not), population characteristics (source, size, age
range, and region), year of data, outcome definition and how it
was represented in the model, number of features, feature
selection method, imbalance handling strategy, ML prediction
methods, performance evaluation metric, evaluation result,
external validation, explainability method, and real-world
clinical setting implementation. The data extraction and

summarization for each paper were conducted independently
by 2 authors (AB and KCHT). In case of any discrepancies, the
2 authors discussed them in detail during face-to-face meetings
to reach an agreement. If the 2 reviewers could not resolve the
disagreement, we had a further discussion with the whole team.
For each study, we have reported both the performance
evaluation result of the prediction models and the most important
predictors where available.

Results

Overview
In total, 458 nonduplicated, potentially eligible papers were
identified. At the end of the selection process, 3.7% (17/458)
of the papers were included based on the inclusion criteria (refer
to the PRISMA [Preferred Reporting Items for Systematic
Reviews and Meta-Analyses] diagram in Figure 1). The earliest
study that was included in the full review was published in 2018.
In the abstract filtering stage, most of the studies (353/458,
77.1%) were excluded because the prediction outcome was not
an asthma attack. We included 10.5% (48/458) of the studies
in the full-text filtering stage. Eventually, 3.1% (14/458) of the
studies were excluded because they did not meet our inclusion
criteria. Then, 2.6% (12/458) nonresearch papers were also
excluded. In addition, we excluded 0.9% (4/458) of the studies,
which were a follow-up for 2 main papers that we included in
the extraction stage. All the summary points in these follow-up
studies were identical to the ones in the main studies. We also
excluded 0.2% (1/458) of the studies owing to insufficient
information.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram. EHR: electronic health record; ML: machine
learning.

Asthma Data Sets
Table 2 summarizes the basic information about each included
study. Only 6% (1/17) of the studies used routinely collected
data from primary care alone [21]. Of the 17 studies, only 8
(47%) used data from secondary care, and the remaining 8 (47%)
used routinely collected data from both primary and secondary
care. All studies used data sets hosted either at the author’s
institution or their collaborators’ institution, except a study [22]
that used publicly available data (the Medical Information Mart
for Intensive Care III data set [36]) as one of their data sets.
Overall, 76% (13/17) of the studies used only EHR data to build
the prediction model. Of the 17 studies, 4 (24%) studies

integrated EHR data with additional modalities, including
radiology images (chest computed tomography scans) [23] and
environmental data [11,24,25], aiming to enhance predictive
accuracy. The study populations varied across the studies, with
most of them involving adults (8/17, 47%), followed by the
general population, both children and adults (5/17, 29%), and
children (4/17, 24%). Of the 17 studies, 14 (82%) had study
populations from the United States. The other countries studied
included Japan, Sweden, and the United Kingdom. All studies
incorporated >1000 samples, except a study [23] that trained
the prediction model on <200 samples. Among the studies, the
biggest data set had data from 397,858 patients [26].
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Table 2. Summary of studies’ basic information.

Sample sizeData yearRegionData sourcePublicly available
data set

Health care settingStudy, year

30572003-2020United StatesSingle modalityNoSecondary careInselman et al [27], 2022

59822014-2019United StatesMultimodalityNoBothHurst et al [25], 2022

18,4892013United StatesSingle modalityNoSecondary careHogan et al [28], 2022

60,3022010-2018United StatesSingle modalityNoBothZein et al [29], 2021

90692009-2013United StatesSingle modalityNoSecondary careSills et al [30], 2021

42,6852016-2017JapanSingle modalityNoSecondary careHozawa et al [31], 2021

29,3962000-2013SwedenSingle modalityNoBothLisspers et al [32], 2021

2002018-2020United KingdomMultimodalityNoSecondary careAnanth et al [23], 2021

82,8882011-2018United StatesSingle modalityNoBothTong et al [33], 2021

10,0002013-2017United StatesMultimodalityNoSecondary careMehrish et al [24], 2021

31,4331992-2015United StatesSingle modalityNoBothXiang et al [4], 2020

28,1012007-2011United StatesSingle modalityNoBothCobian et al [34], 2020

315,3082005-2018United StatesSingle modalityNoBothLuo et al [35], 2020

38,5972001-2012United StatesSingle modalityYesSecondary careRoe et al [22], 2020

397,8582012-2018United StatesSingle modalityNoBothLuo et al [26], 2020

40131997-2002United StatesSingle modalityNoPrimary careWu et al [21], 2018

29,3922012-2015United StatesMultimodalityNoSecondary carePatel et al [11], 2018

Data Preprocessing
There was considerable heterogeneity in the definition of the
prediction outcome used in the models, including asthma
exacerbation [4,25,27,29,31,32,34], asthma-related
hospitalization [11,24,26,30,33,35], asthma readmission [28],
asthma prevalence [24], asthma-related mortality [22], and
asthma relapse [21].

The time horizon used to define the prediction outcome also
varied across studies. Of the 17 studies, 6 (35%) studies defined
the model task as a 1-year prediction [4,23,26,31,33,35]. Other
variations in the time horizon for the outcome were 180 days
[28], 90 days [34], 28 days [29], and 15 days [32]. A study
compared the prediction model performances across 3 time
horizons: 30, 90, and 180 days [25]. Of the 17 studies, 2 (12%)
studies undertook a different approach, where the aim was to
predict asthma attack–related hospitalization within 2 hours
after an accident and emergency department visit [11,30]. Of
the 17 studies, 3 (18%) studies did not report the prediction time
horizon [21,22,24].

There was an obvious class imbalance in 76% (13/17) of the
studies (Table 3). Class imbalance is a problem where the
distribution of samples across the classes is skewed [37].
Ignoring this problem during model development will produce
a biased model. Among the selected studies, the smallest
minority class ratio accounted for as little as 0.04% [32]. Among
these 17 studies, only 5 (29%) [4,21,30,32,33] explicitly
mentioned their strategies to appropriately handle imbalanced
data. Synthetic minority oversampling technique [38],
oversampling [39,40], and undersampling [39,40] were the

methods reported in these studies. The objective of these 3
methods is to balance the proportion of samples in each class
by either generating synthetic data from the minority class or
omitting a certain number of samples in the majority class. Of
the 17 studies, only 2 (12%) studies used a balanced data set
[22,23], whereas 2 (12%) other studies did not report the class
ratio of their data set [24,34]. Various feature selection methods
were explicitly mentioned as part of the data preprocessing step,
including backward stepwise variable selection [28], light
gradient boosting method feature importance [32], and Pearson
correlation [32]. Of the 17 studies, 5 (29%) studies
[4,26,30,33,35] implemented the feature selection process as
the built-in method in the model development phase, whereas
the remaining studies did not mention the feature selection
method in their report. The smallest feature set used in the study
was 7 variables [24], and the biggest set was >500 variables
[32]. The handling of missing values varied across the studies.
In most cases (9/17, 53%), missing values were treated either
as a distinct category or assigned a specific value
[21,23,25-27,29,32,33,35]. However, some studies opted to
exclude data containing missing values [4,11,28,30], whereas
others did not specify their approach for addressing this issue
[22,24,31,34]. Notably, more than half of the studies (11/17,
65%) did not describe their methods for data normalization.
This step is particularly critical for certain ML algorithms such
as LR and support vector machine to prevent uneven weighting
of features in the model. In contrast, 35% (6/17) of the studies
[11,22,23,26,33,35] used a standard mean normalization
technique to standardize the continuous features, ensuring
uniform scaling across the data set.
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Table 3. Summary of the data preprocessing step.

Number of
features

Feature selec-
tion methods

Data imbalance han-
dling methods

Class imbalance ratio (%)Prediction time
horizon

OutcomesStudy, year

21UnknownUnknown180 dAsthma exacerbationInselman et al
[27], 2022

• 22.60

41UnknownUnknown30, 90, and 180 dAsthma exacerbationHurst et al [25],
2022

• 37

21Backward step-
wise variable
selection

Unknown180 dAsthma readmissionHogan et al
[28], 2022

• 5.70

82UnknownUnknown28 dAsthma exacerbationZein et al [29],
2021

• Nonsevere=32.80
• Severe=2.90

13Automated fea-
ture selection

OversamplingAdmission after

A&Ea depart-
ment visit

Asthma-related hospi-
talization

Sills et al [30],
2021

• 22.50

25UnknownUnknown365 dAsthma exacerbationHozawa et al
[31], 2021

• 13.70

>500Correlation and

LGBMb model

Undersampling and
weighting method

15 dAsthma exacerbationLisspers et al
[32], 2021

• 0.04

17UnknownUnknown365 dAsthma exacerbationAnanth et al
[23], 2021

• 50

234Automated fea-
ture selection

WEKAc365 dAsthma-related hospi-
talization or A&E de-
partment visit

Tong et al [33],
2021

• 1.66

7UnknownUnknownUnknownAsthma prevalence,
asthma-related hospi-
talization, or hospital
readmission

Mehrish et al
[24], 2021

• Unknown

UnknownAutomated fea-
ture selection

SMOTEd365 dAsthma exacerbationXiang et al [4],
2020

• 7.20

>25UnknownUnknown90 dAsthma exacerbationCobian et al
[34], 2020

• Unknown

235Automated fea-
ture selection

Unknown365 dAsthma-related hospi-
talization

Luo et al [35],
2020

• 3.59

42UnknownUnknownUnknownAsthma-related mortal-
ity

Roe et al [22],
2020

• 49

337Automated fea-
ture selection

Unknown365 dAsthma-related hospi-
talization

Luo et al [26],
2020

• 2.30

60UnknownRandom undersam-
pling

UnknownAsthma relapseWu et al [21],
2018

• 32.89

100UnknownUnknownAdmission after

EDe visit

Asthma-related hospi-
talization

Patel et al [11],
2018

• 17

aA&E: accident and emergency.
bLGBM: light gradient boosting method.
cWEKA: Waikato Environment for Knowledge Analysis.
dSMOTE: synthetic minority oversampling technique.
eED: emergency department.

ML Methods and Performance Evaluation
Table 4 describes the ML and performance evaluation methods
used in the selected studies. We found a wide range of ML
methods in the selected studies. Most (14/17, 82%) used
conventional ML methods such as support vector machine [41],
random forest [42], naïve Bayes [43], decision tree (DT) [44],

K-nearest neighbor [45], and artificial neural network [46]. LR
and its variations (ie, Ridge, Lasso, and Elastic Net) [47] were
found to be the most common baseline model among the studies
(10/15, 67%) [4,11,22-25,27-30,32,34]. Some studies developed
the prediction model with more advanced ML algorithms such
as gradient boosting DT (GBDT)–based methods
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[11,22,25-27,29,31-33,35] and DL-based methods [4,21,34]. A
few studies [26,30,35] also used automated model selection
tools, such as Waikato Environment for Knowledge Analysis
[48] and autoML [49]. GBDT-based methods including extreme
gradient boosting (XGBoost) [50] were the common
best-performing models (area under the curve scores ranging
from 0.6 to 0.9). The model performances in all studies were
evaluated using the area under the receiver operating
characteristic curve score, except in a study [21] that used
F1-score as the only performance metric. Half of them (9/17,
53%) included additional evaluation metrics such as accuracy,

precision, recall, sensitivity, specificity, positive predictive
value, negative predictive value, F1-score, area under the
precision-recall curve, and microaveraged accuracy
[21,23,25-27,30,32,33,35]. Owing to different data sets and the
heterogeneity in the definitions of the outcome, prediction time
horizon, and preprocessing across the studies, we considered a
direct comparison across studies based on the reported
evaluation metric to be inappropriate. Only 18% (3/17) of the
studies included external validation using retrospective studies
in their analysis pipeline [21,26,33].
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Table 4. Summary of machine learning (ML) methods.

External validationBest performance metricsBest modelsML methodsStudy, year

NoGBMGLMNeta, RFb, and GBMcInselman et al [27],
2022

• AUCd=0.74

NoXGBoostLasso, RF, and XGBoosteHurst et al [25], 2022 • 30-d AUC=0.761
• 90-d AUC=0.752
• 180-d AUC=0.739

NoANNCox proportional hazard, LRf, and

ANNg

Hogan et al [28], 2022 • AUC=0.636

NoGBDTLR, RF, and GBDThZein et al [29], 2021 • Nonsevere AUC=0.71
• Hospitalization AUC=0.85
• EDi AUC=0.88

NoAutoMLAutoML, RF, and LRSills et al [30], 2021 • AUC=0.914

NoXGBoostXGBoostHozawa et al [31],
2021

• AUC=0.656

NoXGBoostXGBoost, LGBMj, RNNk, and LR
(Lasso, Ridge, and Elastic Net)

Lisspers et al [32],
2021

• AUC=0.90

NoLRLR, DTl, and ANNAnanth et al [23],
2021

• AUC=0.802

YesXGBoostWEKAm and XGBoostTong et al [33], 2021 • AUC=0.902

NoLRGLMn, correlation models, and LRMehrish et al [24],
2021

• AUC=0.78

NoLSTM with an attention
mechanism

LR, MLPo, and LSTMp with an at-
tention mechanism

Xiang et al [4], 2020 • AUC=0.7003

NoLR with L1 (Ridge)LR, RF, and LSTMCobian et al [34],
2020

• AUC=0.7697

NoXGBoostWEKA and XGBoostLuo et al [35], 2020 • AUC=0.859

NoXGBoostXGBoost, NNq, LR, and KNNrRoe et al [22], 2020 • AUC=0.75

YesXGBoostWEKA and XGBoostLuo et al [26], 2020 • AUC=0.820

YesLSTMLSTMWu et al [21], 2018 • Binary classification F1-
score=0.8508

• Multiclass classification F1-
score=0.4976

NoGBDTDT, Lasso, RF, and GBDTPatel et al [11], 2018 • AUC=0.84

aGLMNet: Lasso and Elastic-Net Regularized Generalized Linear Models.
bRF: Random Forest.
cGBM: gradient boosting method.
dAUC: area under the curve.
eXGBoost: extreme gradient boosting.
fLR: logistic regression.
gANN: artificial neural network.
hGBDT: gradient boosting decision tree.
iED: emergency department.
jLGBM: light gradient boosting method.
kRNN: recurrent neural network.
lDT: decision tree.
mWEKA: Waikato Environment for Knowledge Analysis.
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nGLM: Generalized Linear Model.
oMLP: multilayers perceptron.
pLSTM: long short-term memory.
qNN: neural network.
rKNN: K-nearest neighbor.

Model Explainability and Implementation
We then compared how model explainability was handled across
studies. Model explainability refers to the degree of transparency
and the level of detail a model can provide to offer additional
information about its output, facilitating a better understanding
of how the model operates [51]. We grouped the studies into 2
categories based on their best model’s transparency. In the first
group, we included 18% (3/17) of the studies in which the
best-performing model can be considered as a transparent model
[51], including LR [23,24,34]. However, only 67% (2/3) of
them provided a report on this model explanation in the form
of LR coefficient values for each variable [23,34]. We grouped
the remaining studies into an opaque model category where a
post hoc analysis was needed to explain the model prediction
mechanism [51]. In this group, all studies [4,11,22,26,28-33,35]
used a model-specific method for explaining the prediction
mechanism, except for 14% (2/14) of the studies [27,29] that
used a model-agnostic method called the shapely additive
explanation (SHAP) method [29]. Overall, 14% (2/14) of the
studies in this group did not include any model explanation
approach [21,25]. Although model-specific explanation methods,
such as those used in DT-based models, gauge the impact of
each feature on a model’s decision through specific metrics
developed during training, the SHAP method takes a more
comprehensive approach. SHAP conducts a deductive
assessment by exploring all the potential combinations of

features to determine how each one influences the final
prediction.

None of the studies followed any specific reporting guidelines.
Furthermore, despite promising performances in some studies,
none were implemented in a real-world clinical setting for
prospective evaluation. In each of the studies reviewed, various
limitations were identified, encompassing both clinical and
nonclinical factors. One of the common limitations in these
studies was the issue of generalizing their findings to different
health care settings and patient groups [22,25,26,29,33,35]. This
difficulty often arose because they lacked important information
such as medication histories [35], environmental factors [25,30],
and social determinants of health [28], which are known to play
significant roles in health outcomes. Data-related limitations
were also prevalent, with some studies dealing with the
drawbacks of structured EHR data [4,26,33,35], potential of
data misreporting [32], and missing data that could affect the
reliability of their models [29,35]. In addition, from a clinical
perspective, certain studies faced limitations owing to the lack
of standardized definitions for specific outcomes
[11,22,23,27,28], emphasizing the importance of consistent
criteria in health care research such as in asthma management.
The model explanation and implementation information are
summarized in Table 5. All data extraction results can be found
in Multimedia Appendix 1. We have also depicted some of the
important principal findings in Multimedia Appendix 2.
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Table 5. Summary of model explainability and implementation.

Study limitationsClinical imple-
mentation

Follow reporting
guidelines

Model explanation
methods

Best model transparencyStudy, year

NoNoSHAPaOpaque modelInselman, et al [27],
2022

• Missing relevant variables
• Limited data about different bio-

logics
• Diverse primary uses of biologics
• Heterogeneity in patient character-

istics

NoNoNo model explana-
tion

Opaque modelHurst et al [25],
2022

• Missing relevant variables
• Single-center study
• Location-dependent model perfor-

mance
• Limited environmental data

NoNoEstimated weightsOpaque modelHogan et al [28],
2022

• Missing relevant variables
• Lack of longitudinal outcomes
• Use of ICD-9b (older clinical

coding)
• Hospital differentiation
• Absence of demographic data and

social determinants

NoNoSHAPOpaque modelZein et al [29], 2021 • Limited generalizability
• Reliance on diagnostic codes
• Limited clinical information
• Exclusion of anti-IL5c therapy
• Cross-sectional nature
• Quality of clinical information
• Limited PFTd and FeNOe data
• Handling missing data

NoNoautoML methodOpaque modelSills et al [30], 2021 • Retrospective nature
• Patient selection criteria
• Limited clinical information
• Exclusion of home and environ-

mental factors
• Timing of posttriage variables

NoNoExtracted risk fac-
tors

Opaque modelHozawa et al [31],
2021

• Age distribution discrepancy

• Limitations of claim data
• Prevalent user design
• Causality estimation

NoNoLGBMf gain scoreOpaque modelLisspers et al [32],
2021

• Data misreporting
• Applicability to other settings
• High false-positive rate
• Performance of shortlist model

NoNoLRg coefficientsTransparent modelAnanth et al [23],
2021

• Lack of formal asthma control as-
sessment

• Limited longitudinal outcomes
• Lack of comorbidity information

NoNoXGBoosth feature
importance

Opaque modelTong et al [33],
2021

• Lack of relevant variables
• Nonuse of deep learning and un-

structured data
• Expansion of data sources
• Generalizability across health care

systems and diseases

NoNoNo model explana-
tion

Transparent modelMehrish et al [24],
2021

• Lack of relevant variables
• Limited method explanation
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Study limitationsClinical imple-
mentation

Follow reporting
guidelines

Model explanation
methods

Best model transparencyStudy, year

• Absence of complex interactions
among clinical variables

• Limitations of structured EHRi

data
• Challenges in distinguishing

symptoms and risk factors
• Opportunities for model enhance-

ment

NoNoAttention mecha-
nism

Opaque modelXiang et al [4], 2020

• Limited samplesNoNoLR coefficientsTransparent modelCobian et al [34],
2020

• Lack of medication claim data
• Limitations of structured EHR

data
• Opportunities for additional fea-

tures
• Data completeness and generaliz-

ability

NoNoXGBoost feature
importance

Opaque modelLuo et al [35], 2020

• Intensive care setting exclusivity
• Exclusion of routine intensive

care features
• Generalizability to outpatient set-

tings

NoNoXGBoost feature
importance

Opaque modelRoe et al [22], 2020

• Potential unexplored features
• Nonuse of deep learning and un-

structured data
• Limited generalizability assess-

ment

NoNoXGBoost feature
importance

Opaque modelLuo et al [26], 2020

• Suboptimal neural network config-
uration

• Limited scope
• Clinical relevance and feature

weighting

NoNoNo model explana-
tion

Opaque modelWu et al [21], 2018

• Single institution data
• Pragmatic definition of the asthma

population
• Lack of model validation
• Data limitations
• Lack of weather and CDCk in-

fluenza data

NoNoGBDTj feature im-
portance

Opaque modelPatel et al [11], 2018

aSHAP: shapely additive explanation.
bICD-9: International Classification of Diseases, Ninth Revision.
cIL-5: interleukin 5.
dPFT: Pulmonary Function Tests.
eFeNO: Fractional Exhaled Nitric Oxide.
fLGBM: light gradient boosting method.
gLR: logistic regression.
hXGBoost: extreme gradient boosting.
iEHR: electronic health record.
jGBDT: gradient boosting decision tree.
kCDC: Centers for Disease Control and Prevention.
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Discussion

Principal Findings
Our review indicates that this research field is still
underdeveloped, given the limited body of evidence,
heterogeneity of methods, lack of external validation, and
suboptimally reported models. There was considerable
heterogeneity in the specific definition of asthma outcome and
the associated time horizon used by studies that sought to
develop asthma attack risk prediction models. Class imbalance
was also common across studies, and there was also considerable
heterogeneity in how it was handled. Consequently, it was
challenging to directly compare the studies.

The GBDT-based methods were the most reported
best-performing method. DL methods such as long short-term
memory (LSTM), a relatively more complex and advanced
method, were also found in a few studies [4,21,34]. However,
none of the studies compared the performance of the DL-based
models with that of GBDT-based models. Moreover, none of
the studies was prospectively evaluated or followed any
reporting guidelines, and most studies (3/17, 18%) were not
externally validated.

Strengths and Limitations
The key strengths of our study include undertaking a systematic
and transparent approach to ensure reproducibility. Overall, 2
independent reviewers followed a clear framework during the
study selection and data extraction stage. Furthermore, the
interpretation of the result was supported by a multidisciplinary
team consisting of both technical and clinical experts.

A further strength is that most systematic reviews about the use
of ML methods in asthma research have focused on either
diagnosis or classifying asthma subtypes [52-56]. Although
there have been 2 previous reviews about the use of ML in
predicting asthma attacks [15,16], our review is the first to focus
on several key considerations in an ML pipeline, from data
preprocessing to model implementation for asthma attack
predictions.

However, this review also has 3 key limitations. First, this
scoping review provided broad coverage of various technical
challenges, but it cannot ascertain how feasible and effective
an ML-based intervention can be in supporting asthma
management. Second, we were not able to directly compare
studies owing to the heterogeneity across studies, and that
prohibited us from identifying the best algorithm or approach
for solving the technical challenges highlighted in this review.
Finally, this review only focused on the technical challenges
without taking into account additional, crucial, sociocultural
and organizational barriers to the adoption of ML-based tools
in health care [57-59].

Interpretation in the Light of the Published Literature
The heterogeneity of outcome definitions found in this paper
was also uncovered in previous non-ML asthma attack prognosis
studies [16,60]. This heterogeneity includes both the indicators
they used to define asthma attacks and the prediction time
resolution. Recent systematic reviews also highlighted the wide

range of outcome variations in ML-based prognostic models
for ischemic stroke [61] and brain injury [62].

GBDT methods, especially XGBoost, have become a
state-of-the-art method, especially for large and structured data
in several domains [63-65]. Among the DL methods, LSTM
has also shown potential in several previous studies [66,67].
LSTM is one of the most popular methods for analyzing
complex time series data. Its capability to learn the sequence
pattern makes it very powerful to build a prediction model by
representing the data as a sequence of events. EHR data consist
of a sequence of historical clinical events, which represent the
trajectory of each patient’s condition over time. Incorporating
the temporal features into the model, rather than just
summarizing the events, can potentially boost the model’s
performance.

Most of the studies (14/17, 82%) in this review incorporated
some form of model explainability that aimed to provide an
accessible explanation of how the prediction is derived by the
model to instill trust in the users [68]. Previous studies in various
domains showed that an ML model can output a biased
prediction caused by latent characteristics within the data [69].
Model explainability is therefore crucial to provide model
transparency and enhance fairness [70], especially in high-stake
tasks such as those in health care [71].

Model validation and standard reporting are some of the
important challenges that can influence adoption into routine
practices [72]. An ML model should be internally, externally,
and prospectively validated to assess its robustness in predicting
new data [73]. In addition, a standard guideline needs to be
followed in reporting an ML model development [74] such as
the Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis [75] or the Developmental
and Exploratory Clinical Investigations of Decision Support
Systems Driven by Artificial Intelligence [76]. It will facilitate
an improved and objective understanding and interpretation of
model performance. However, our review found a lack of
external validation and adherence to reporting guidelines among
the selected studies. These points resonated with the findings
in other reviews of different cases [77,78].

Implications for Research, Policy, and Practice
This review highlighted several technical challenges that need
to be addressed when developing asthma attack risk prediction
algorithms. Further studies are required to develop a robust
strategy for dealing with the class imbalance in asthma research.
Class imbalance has been a common problem when working
with EHR data [79,80]. However, there remains a notable gap
in the literature regarding a systematic comparison of the
effectiveness of existing methods, particularly in the context of
asthma attack prediction. Several simple ML algorithms, such
as linear regression, LR, and simple DTs, are easily interpretable
[81]. In general, however, there is a trade-off between model
interpretability and complexity, and most advanced methods
are difficult to interpret, which then influences the users’
perception and understanding of the model [82]. We believe
that the black box nature of the more complex methods, such
as XGBoost and LSTM, is likely a technical barrier to
implementing such models in a real-world clinical setting.
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Consequently, there is a need to continue exploring model
explainability methods such as the attention mechanism
approach recently developed for LSTM [83-85] that can
augment complex “black box” algorithms.

There is a need for developing a global or at least a nationwide
benchmark data set to facilitate external validation and to test
the model’s generalizability [86]. Such validation is needed to
ensure that the model will not only perform well under the data
used in the model development but also can be reproduced to
predict new data from different settings [87]. In addition, to
maintain the transparency and reproducibility of the ML-based
prediction model, adherence to a standard reporting guideline
such as the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis [75] should be
encouraged. Both good reproducibility and clear reporting are
key points to facilitate critical assessment of the model before
its implementation into routine practices. This effort is pivotal
in addressing ethical concerns associated with data-driven
prediction tools and in guaranteeing the safety and impartiality
of the prediction [88]. Ensuring the ethical aspects of integrating
a data-driven model into routine clinical practice is becoming
a great challenge. This task demands substantial resources and

relies on a collaborative effort involving experts from various
disciplines [89].

Finally, to ensure that the ML-based model meets the
requirements of the practices, a clear use case must be
articulated. We found that almost all studies follow a clear
clinical guideline to define asthma attacks, but there is a wide
range of prediction time horizons across the studies. These
variations are the result of distinct needs and goals from different
practices. It is impossible to make a one-size-fits-all model.
Therefore, a clear and specific clinical use case should be
defined as the basis for developing an ML-based model.

Conclusions
ML model development for asthma attack prediction has been
studied in recent years and includes the use of both traditional
and DL methods. There is considerable heterogeneity in ML
pipelines across existing studies that prohibits meaningful
comparison. Our review indicates several key technical
challenges that need to be tackled to make progress toward
clinical implementation such as class imbalance problem,
external validation, model explanation, and adherence to
reporting guidelines for model reproducibility.
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