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We introduce metaMDBG, a metagenomics assembler for PacBio HiFi
reads. MetaMDBG combines a de Bruijn graph assembly in a minimizer

space with aniterative assembly over sequences of minimizers to address
variations in genome coverage depth and an abundance-based filtering
strategy to simplify strain complexity. For complex communities, we
obtained up to twice as many high-quality circularized prokaryotic
metagenome-assembled genomes as existing methods and had better
recovery of viruses and plasmids.

Shotgun metagenomics, the sequencing of DNA from a mixed sample
of genomes in a community', provides a high-throughput means to
survey microbial population genomic diversity. A critical first step in
metagenomics analyses is the assembly of shotgun reads into longer
contiguous sequences or contigs. Genome assemblies that are derived
from short reads can be highly fragmented into potentially millions
of contigs per sample, particularly if they are from diverse commu-
nities. The difficulty in assembling metagenomes is a consequence
of intra- and inter-genome sequence repeats, low coverage of some
species and strain diversity**. Many complete genomes are, neverthe-
less, recovered by clustering (binning) short contigs using features
such as sequence composition or differential coverage across mul-
tiple samples®, creating metagenome-assembled genomes (MAGs).
Although MAGs have resulted in thousands of bacterial genomes being
addedtoreference databases, MAGs from short-read metagenomes are
often fragmented, contaminated and missing key regions such as the
16S rRNA gene operon.

Third-generation long-read sequencing technologies have
greatly improved the quality of metagenome assemblies and MAGs.
Thefirstapplications, using reads generated by the Oxford Nanopore
Technologies (ONT) platform (which, at that point, had a relatively
high error rate) typically only resolved a small fraction of the com-
munity as complete circularized contigs’. More recent ONT studies
have generated hundreds of MAGs but only a relatively small number
of closed circularized genomes®’. An alternative long-read technol-
ogy, HiFi PacBio, combines long reads with very high accuracies
(=99.9%). This has enabled hundreds of MAGs to be retrieved from

metagenomes with a substantially larger fraction as circularized
contigs'. Animportant caveat is that platform comparisons cannot
easily be made across studies owing to variations in sequencing depth
and community complexity®.

Existing algorithms for metagenomics assembly of HiFi PacBio
reads are effective but have limitations. Firstly, both low-abundance
and high-abundance organisms with strain diversity may not be assem-
bled" and, hence, the majority of the community by abundance will not
be resolved as high-quality MAGs'®. Secondly, even typical metagen-
omes require long processing times (days) and high-end computing
infrastructure (>500 GB to 1 TB of memory), and therefore scaling
to larger data sets from more complex communities is prohibitive.
Thirdly, they do not allow the easy incorporation of contextual data
such as depth of coverage, which is a critical component in metagen-
ome reconstruction.

There are two generally accepted paradigms for sequence
assembly: string graph methods that operate with individual reads,
which consider pair-wise overlaps and construct graphs to represent
them'?, and de Bruijn graph (DBG) assemblers, in which reads are first
decomposed intoshort, fixed-length sequences (k-mers)'>. The former
requires all-versus-all read comparisons, which scales poorly with read
numbers and hence is too inefficient for short-read metagenomics. It
hasbeen applied to long reads, specifically HiFi PacBio metagenomics,
in hifiasm-meta *, using minimizers to efficiently find read overlaps.
String graphs, although they are effective, will always scale poorly with
large read numbers, and the complex graphs that are generated make
coverage estimation difficult because of ambiguous read mapping.
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The decomposition to k-mers in DBG assemblers enables them
to reduce the volume of data that is being processed and efficiently
detect overlaps; consequently, they are now the default for short reads.
However, there are two challenges in applying DBGs to long reads.
Firstly, they effectively assume exact overlaps. Secondly, for long
reads, the required overlap (and therefore k-mer size) becomes large
and the number of unique k-mers required (and therefore memory
required) becomes prohibitive. A hybrid approach has been developed
(Flye®) that uses a form of sparse DBG'® to assemble noisy disjointigs,
which are then used to create a repeat graph that is further resolved
through read mapping. This works for both Nanopore and HiFi PacBio
sequences and has been adapted to metagenomics; however, it also
doesnotscale particularly well and produces inferior results compared
to hifiasm-meta on HiFi data'®".

A fundamentally different approach to the problem of adapting
DBGstolong reads wasintroduced with rust-mdbg'®. This implemen-
tation uses a minimizer-space DBG (MDBG) in which the k-mers are
replaced by sequences of universal minimizers, which are k-mers that
map toaninteger below afixed threshold and are ameans of reproduc-
ibly subsampling k-mers. The resultis agraph thatis more sparse and
lightweight: for example, just 12 million nodes are required to assem-
ble acomplete human genome. It can also deal better with noise than
long-nucleotide k-mer DBGs because exact matches are only required
forthe small selected minimizers. The rust-mdbg algorithmis, however,
not designed for metagenomics. In particular, it cannot cope well with
variable genome coverage depths.

We introduce metaMDBG (see Methods and Fig. 1a), which takes
the principle of minimizer-space assembly and engineers it specifically
for metagenomics from high-fidelity long reads. Each read is first
converted into a minimizer-space read (mRead), which is an ordered
list of minimizers. Eachiteration of the assembler then comprises the
construction of a DBG using lists of minimizers of fixed length ('),
denoted k’-min-mers. Followingfiltering of low-frequency k’-min-mers,
thegraphis constructed and simplificationis performed using stand-
ard methods (for example, tip clipping and bubble popping).

We exploit the ease with which abundance estimates can be
obtained for k’-min-mers tointegrate abundance informationdirectly
inside the assembly algorithm. This ‘local progressive abundance filter’
removes complex errors, inter-genomic repeats and strain variability
(Fig.1c). It starts by identifying long seed unitigs and then increments
anabundancethreshold fromone up to 50% of the seed coverage depth.
Ateachstep, unitigs with coverage equal to or lower than the threshold
areremoved, thegraphisre-compacted and unitig coverage estimates
arerefined (Fig. 1b).

These algorithmicadvances areintegrated within a highly efficient
multi-kapproachthatis entirely in minimizer space, and they address
the variable coverage depths found in metagenomes. The minimizer-
space contigs (mContigs) from the last iteration are added to the set
ofinput mReadsin the nextiterationand these steps are repeated after
incrementing k'. At the end of the multi-k process, reads are mapped
to the final mContigs to determine their base-space sequence. This is
followed by a low-memory re-implementation of the racon”
contig-polishing strategy and purging of strain duplicates.

Benchmarking setup

We compared metaMDBG with two other state-of-the-art assemblers
for HiFi metagenomics data, metaFlye (v.2.9-b1768) and hifiasm-meta
(v.0.2-r058), on two mock communities and three real metagenomes
(Supplementary Table S1). The commands that were used are provided
inSupplementary Table S2 and all assembly results are summarized
inSupplementary Table S3. A comparisonto rust-mdbgis also given,
although only on a subset of the data sets as explained below. The
two mock communities, ATCC* and Zymo, contain 20 and 21 spe-
cies, respectively, for which abundances and reference genomes are
known (see Supplementary Table S4). The first real metagenome,

‘human gut’, is a PacBio HiFi-generated data set composed of four
human fecal samples from omnivore and vegan donors™. The second
metagenome, ‘AD-HiFi’, is a time series of three samples that were
extracted from anaerobic digester sludge and generated for this study.
For these two projects, where multiple samples were available, we
present results from the co-assemblies of all samples together. The
third data set, ‘sheep rumen’, is a single deeply sequenced sample
from the sheep rumen'®.

Improved recovery of complete circularized genomes

Wefirst evaluated the assemblers on two mock communities, Zymo-HiFi
and ATCC, by aligning contigs to references and computing average
nucleotide identity (see Methods). The results are summarized in Sup-
plementary Table S4. Rust-mdbg was not competitive with the other
assemblers. Thisis not surprising, as rust-mdbg performs no polishing
and is designed specifically for rapid and draft-level genome assem-
bly; therefore, we will exclude it from the further comparisons below.
MetaMDBG performed similarly to hifiasm-meta and metaFlye, both
interms of the number of species obtained as circularized contigs and
the average nucleotide identity to reference sequences (>99.99% in
most cases). The Zymo-HiFi mock community contains 21 genomes,
but five have very low coverage and five are strains of E. coli. In this
case, metaMDBG and hifiasm-meta both obtained ten circularized
genomes and metaFlye obtained nine; however, metaMDBG addi-
tionally generated two almost complete (>99.8%) genomes as linear
contigs. No assembler could correctly resolve all of the E. coli strain
diversity; however, metaMDBG and hifiasm-meta each succeeded in
circularizing one strain, and the latter had all the other strains present
asfragmented contigs, whereas metaFlye produced only fragmented
genomes. The mock ATCC community contains 20 species, but only 15
were obtained by any of the assemblers, probably because the others
lacked sufficient coverage depth. Of these species, each assembler
obtained 12 as circularized contigs, although not the same 12, and each
assembler assembled one species uniquely.

For the real communities, we used CheckM (v.1.1.3) to obtain
the level of genome completeness and contamination of each contig
and determine whether they are MAGs. These were then grouped as
‘near-complete’ (completeness > 90%, contamination < 5%), ‘high
quality’ (completeness > 70%, contamination < 10%) and ‘medium
quality’ (completeness > 50%, contamination <10%). For all three real
communities, we observe asignificantimprovementin the number of
circularized near-complete MAGs (CMAGs) longer than1 Mb generated
by metaMDBG compared to the state-of-the-art algorithms (Fig. 2a).
MetaMDBG assembled 75 cMAGs from the human gut microbiome
data set (13 more than hifiasm-meta), 114 from the AD-HiFi data set
(61 more than hifiasm-meta) and 266 from the sheep rumen data set
(three more than hifiasm-meta). MetaFlye produced significantly
fewer cMAGs than the other two assemblers. As a further validation of
the quality of the cMAGs, we predicted the presence of rRNA and tRNA
genes (see Methods). This step confirmed that HiFi cMAGs usually do
contain the expected complement of RNA genes (96.0%, 96.6% and
98.5% of metaMDBG, hifiasm-metaand metaFlye MAGs, respectively)
andthatall three assemblers generate cMAGs of similarly high quality.

To investigate differences between the cMAGs generated by the
assemblers, we aligned the assemblies against each other with wfmash
(Supplementary Tables S5and S6) and computed their coverage depth
andsingle-nucleotide variant (SNV) density (see Methods). In the sheep
rumen data set, metaMDBG and hifiasm-meta combined found atotal
of 356 distinct near-complete circular contigs. Among them, 176 were
found by bothassemblers (49%), with 90 specific to metaMDBG and 87
specificto hifiasm-meta. The majority (91%) of these specific cMAGs are
still presentin the other assemblies but as one or more linear contigs.
The cMAGs missed by metaMDBG were less fragmented, with amedian
of one contig (mean, 1.3) necessary to cover acMAG reconstructed by
another assembler, compared to a median of three contigs for both
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Fig.1| Overview of the algorithmic steps of metaMDBG. a, Overview of the
multi-k’ assembly strategy. Processes in blue are performed at the level of
nucleotide sequences and those in green are performed only at the level of
minimizers. b, Components for estimating and refining k’-min-mer abundance
as k' isincreased and for filtering errors before graph construction. ¢, lllustration
of the 'local progressive abundance filter' algorithm that simplifies complex
graphregions generated by errors, inter-genomic repeats and strain variability.
Each node represents a unitig (unitigs in green and blue belong to two distinct
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species and unitigs in red represent errors). The long unitig (with abundance = 4)
ischosenas the seed (step c.1). Itsabundance is used as areference to apply a
'local progressive abundance filter' from 1x to 0.5x its abundance (steps c.2 and
c.3). Ateach step, unitigs with abundance equal to the cutoff value are removed
and the graphis re-compacted to simplify fragmented unitigs. Note that
fragmented green unitigs with abundance = 2 would have been removed without
theintermediate step c.2.

hifiasm-meta (mean, 10.7) and metaFlye (mean, 5) (see Extended Data
Fig.1).Inthe human gut microbiome and AD-HiFidata sets, we observed
similar results in terms of reduced linear contig fragmentation for

metaMDBG. MetaMDBG and hifiasm-metawere able to generate cMAGs
acrossarange of SNV densities (Extended Data Fig. 2A), but we found a
highly significant negative relationship between SNV density and the

Nature Biotechnology | Volume 42 | September 2024 | 1378-1383

1380


http://www.nature.com/naturebiotechnology

Brief Communication

https://doi.org/10.1038/s41587-023-01983-6

a 800 1
. Near-complete circular contigs > 1 Mb
[ Near-complete non-circular MAGs 103
| High-quality MAGs
600 ium- i
Medium-quality MAGs 125
[%2)
e
g w
© 400
[
e}
E I
p=l
z
200
O .
(©) <2 @
M &,& &é\*
&® .&\‘77% <
Q
Human gut AD-HiFi Sheep rumen
[+

sainojwil4

= “m‘\cutes

~

e / \
i i : )
T & §
i LG W
o, i U R
U TR
,.'. ¥ xe *
T :
'.. N .“*‘ Xx xx e®
ol

......=-i-l‘:““‘\

Fig.2| Assembly results on three HiFi PacBio metagenomic projects.

a, CheckM evaluation. AMAG is considered 'near-complete'if its completeness
is >90% and contamination is <5%; 'high quality'if its completeness is >70%

and contamination is <10%; and 'medium quality'if its completeness is >50%
and contamination is <10%. b, The percentage of mapped HiFi reads on MAGs.
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probability that metaFlye would assemble a cMAG (logistic regression
coefficient, -1.35, P=2.18 x10™", n = 575). For intermediate coverage
depths, metaMDBG and hifiasm-meta had similar success at resolving
cMAGs; however, at higher coverages, more than twice as many cMAGs
were obtained by metaMDBG (Extended Data Fig. 2B).

Improved reconstruction of phages and plasmids

We used viralVerify? to identify the circular components that were
potentially plasmid or phage genomes (Supplementary Table S7). Meta-
MDBG identified substantially more circularized plasmids and phages
than hifiasm-meta, which was second best for all three metagenomes
(sheep rumen, 70% more circularized plasmids and 25% more phages;
human gut coassembly, 42% more plasmids and 55% more phages;
AD-HiFicoassembly, more than twice as many plasmids and 78% more
phages). For the circularized phages, we used CheckV* to determine
predicted completeness. We found that 39.4% and 45.2% of the genomes
were judged as high quality for metaMDBG and hifiasm-meta, respec-
tively, but we still obtained substantially more (25.8%) high-quality
phage genomes with metaMDBG because of the greater number of
initial predictions.

Recovery of amajority of communities as near-complete MAGs
To date, no HiFi PacBio assembler has succeeded in recovering
the majority of a complex microbial community by abundance as
near-perfect MAGs. To reconstruct non-circular MAGs, we binned
contigs from each assembler with MetaBAT2, using sequence com-
position and coverage after first subtracting all circularized contigs
of 21 Mb (see Methods). The contigs that are removed before binning
will include the cMAGs identified above, as this ensures that bins are
constructed only from genome fragments'*. We then evaluated these
bins with CheckM (see Supplementary Table S8 for the list of MAGs).
MetaMDBG reconstructed 23 (34%) more near-complete non-circular
MAGs than hifiasm-meta in the human gut coassembly, 127 (270%)
morein the AD-HiFitime series and 44 (32%) more in the sheep rumen
data set (Fig. 2a). MetaFlye produced fewer near-complete circular
contigsthanthe other assemblers but anequivalent or higher number
of near-complete or high-quality MAGs compared to hifiasm-meta
across all data sets and an equivalent or lower number compared to
metaMDBG. The non-circular near-complete MAGs from all assemblers
typically contained less than ten contigs (Extended Data Fig. 3).

The improvement in the number of near-complete non-circular
MAGs produced by metaMDBG is mainly a result of better recovery of
low-abundance organisms (Extended Data Fig. 4). This, combined with
the higher number of abundant cMAGs, means that for the AD-HiFiand
sheep rumen datasets, metaMDBG succeeds in obtaining a collection
of near-complete MAGs that can map over 50% of reads (Fig. 2b). This
was not the case for the human gut data set, which may be a conse-
quence of the relatively lower depth of sequencing. The assemblers
also differ in the nucleotide divergence of the near-complete MAGs
that theyresolve (Extended DataFig. 5).Inthe sheep rumen and human
gut datasets, agreater proportion of the hifiasm-meta MAG diversity
isat the strainlevel.

To summarize the microbial diversity from the AD-HiFi coassem-
bly, we constructed a phylogenetic tree at the genus level (see Methods)
forall near-complete MAGs from all assemblers (Fig. 2c). Theimproved
MAG recovery by metaMDBG translates into a more representative
picture of microbial diversity at all levels of evolutionary divergence.
Intotal, we observed 114 genera that wererecovered from the AD-HiFi
datasets by metaMDBG but are missing from the near-complete MAG
collections of the other programs. When the other assemblers did
recover MAGs from the same genus, in all but one case metaMDBG
found more MAGs. Finally, we can see large parts of the tree in Fig. 2c
that are represented by only metaMDBG MAGs; indeed, six phyla
(46 families) were found only by metaMDBG, compared to one phy-
lum (4 families) specific to metaFlye and four families specific to

hifiasm-meta (see Fig. 2d and Supplementary Table S9). The phyla that
are unique to the metaMDBG near-complete MAGs include recently
discovered phyla, with no cultured representatives (forexample, OLB16
(ref.23) and Riflebacteria®*).

Efficient large-scale assembly

MetaMDBG is highly scalable, both in terms of execution time and
memory footprint (Supplementary Table S3). MetaMDBG took 36 h
to complete the human gut data set, which is 20% faster than the other
assemblers. This gain increased substantially with the more complex
sheep rumen and AD-HiFi data sets. MetaMDBG took about 3 days to
assemble the AD-HiFi data sets compared to 8 days for metaFlye and
39 days for hifiasm-meta. We observed a similar trend with the sheep
rumen data set. With regards to memory usage, metaMDBG required
only 14 GBto assemble the human gut data set, whereas metaFlye and
hifiasm-meta used more than 130 GB. The memory consumption of
metaMDBG for the AD-HiFi and sheep rumen samples spiked at only
16 GB and 22 GB, respectively, despite the larger diversity detected
in those data sets. The memory usage of MetaFlye (650 GB) and
hifiasm-meta (800 GB) was many times this amount.

Evaluation of metaMDBG for ONT metagenome assembly

MetaMDBG is optimized for HiFi PacBio reads but the accuracy of the
more cost-effective ONT reads is continuously improving; therefore, we
alsoevaluated metaMDBG on two recently generated Oxford Nanopore
R10.4 datasets® (Supplementary Table S1). The first data set, Zymo-ONT
(asimplified version of the Zymo-HiFi mock considered above, compris-
ing seven bacterial species and one fungus) sequenced to high depth
with an estimated per-base accuracy of 99.14%. Both metaMDBG and
metaFlye assembled all the bacterial species as circularized contigs at
high average nucleotide identity (median, 99.99%) and completeness
(median, 99.97%). Hifiasm-meta produced only fragmented genomes;
however, itis not designed for ONT reads and therefore we will not
discussits results further (see Supplementary Table S10). The second
data set, AD-ONT (from an anaerobic digester) had effectively much
lower coverage, asonly 14 Gbp of reads were generated from a far more
complex community at an observed accuracy of 98.11%. Here, on raw
reads, metaFlye outperformed metaMDBG in terms of MAGs, obtain-
ing 42 near-complete or high-quality MAGs as opposed to just seven.
The results were more comparable after polishing with the Nanopore
reads themselves. Using VeChat before assembly?, we then obtained
28 near-complete or high-quality MAGs from metaMDBG versus 34
for metaFlye (see Supplementary Table S11). Furthermore, using short
reads from the same community to polish the Nanopore reads with
Ratatosk”, we saw a clear performance benefit with metaMDBG, obtain-
ing 52 near-complete or high-quality MAGs versus 32 for metaFlye. In
addition, eight of the near-complete MAGs generated by metaMDBG
were circularized compared to just one generated by metaFlye.

Summary

We have introduced metaMDBG, an assembler for long and accurate
metagenomics reads based on the MDBG. Our aim was to develop a
scalable assembler for high-fidelity long reads. We succeeded in this
goal, as metaMDBG, tested on a range of HiFi PacBio data sets, was
1.5to 12 times faster than the state of the art and required between
one-tenth and one-thirtieth of the memory. Moreover, we achieved
this result with substantially better assembly results, particularly in
strain-diverse communities such as the AD-HiFi data set, and we suc-
ceeded inreconstructing the majority of communities by abundance
as near-complete MAGs. We also demonstrated improved results for
phages and plasmids. We could not demonstrate animprovement for
raw ONT reads; however, if short reads are available to error-correct
before assembly, then we can obtain more high-quality MAGs and, in
particular, more circularized MAGs. In summary, we have demonstrated
the power of MDBGs for the assembly of highly accurate long reads from
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metagenomes. We believe that further advances in our methodology
coupled with larger data sets will greatly contribute to achieving com-
plete genome-scaleresolution of even the most complex metagenomes.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41587-023-01983-6.
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Methods

Overview of metaMDBG

We present metaMDBG, a method for assembling metagenomes from
accurate long reads (for example, PacBio HiFi). MetaMDBG takes as
inputasetofreadsand outputs a FASTA file with contigs. The overall
assembly strategy is summarized in Fig. 1a. The universal minimizers,
which are k-mers that map to aninteger below a fixed threshold (see
below), arefirstidentifiedineach read. Eachreadisthus represented
asanorderedlist of the selected minimizers, denoted an mRead. Each
iteration of the assembler then comprises the construction of aDBG
using lists of minimizers of fixed length, k' (denoted k’-min-mers),
starting with k. = 4. We count k-min-mers across the whole data
set, and those with a frequency below a set threshold are filtered
(Fig. 1b). The graph is then constructed and graph simplification is
performed. This process includes classical methods for contig gen-
eration, such as tip clipping and bubble popping. Following this step,
a‘local progressive abundance filter’ is performed to remove poten-
tial inter-genomic repeats, strain variability and complex error
patterns (Fig. 1c), beginning by identifying long seed unitigs
(long, non-branching paths in the graph). We then increment an
abundancethreshold starting at one up to 50% of the coverage depth
ofthis seed. At each step, unitigs with coverage equal to or lower than
thethreshold areremoved and the graph is re-compacted. This strat-
egy, coupled with techniques for refining unitig coverage estimation
(Fig. 1b), enables the seed unitig to converge conservatively on its
longest possible form as complexity is removed from the graph. At
this stage, one iteration in our multi- k¢’ approach in this minimizer
space is complete. The resulting mContigs are added to the set of
input mReadsin the nextiteration, and these steps are repeated after
increasing k' by anincrement of one. At the end of the multi-k’ process,
when k' equals k' ,,.,,, reads are mapped to the final mContigs in order
toextracttheirbase-space sequence. Thisis followed by alow-memory
re-implementation of the racon' polishing strategy and purging of
strain duplicates.

Preliminaries
We start with alexicon of some terms and concepts related to MDBGs
and genome assembly.

Minimizer. Inthis work, we adopt the concept of a universal minimizer
as previously defined'®. Recall that in the original definition of minimiz-
ers”, awindow is used to compute minimizers. Universal minimizers
are pre-determined and do not require awindow to be defined. Specifi-
cally,letfbe afunction that takes asinput a k-mer (string of size k) and
outputs an integer value within the range [0, H [, where H is typically
equalto2®*. Given 0 <d <1and k > 0,auniversal minimizer is any string
moflength kover the DNA alphabet such that f{im) < dH. The value of d
represents the density of k-mers that will be considered as minimizers
over the space of all possible k-mers.

Minimizer-space read. Before MDBG construction, each read is
scanned and its minimizers are identified. Each read is therefore rep-
resented as an ordered list of minimizers. We call this minimizer rep-
resentation of aread the mRead.

k'-min-mer. A k-min-merisalist of kK’ successive minimizers. They are
collected by sliding a window of size k' over the mReads.

MDBG. The MDBG is constructed from the set of k-min-mers. An
MDBG is adirected graph in which the nodes are k’-min-mersand an
edge exists between two nodes x and y if the suffix of x of size k' — 1
(thatis, its k' — 1first minimizers) is equal to the prefix of y of size k' — 1
(thatis, its ¥ —1 last minimizers). We defer details about reverse
complementation to the ‘Assembler implementation details’
section.

Unitig. A unitig (or simple path) is a maximal-length sequence of dis-
tinctnodesinthegraphsuchthat, givenaunitiglengthn, forallnodes
except thefirst and the last one, the in- and out-degrees of each node
are equal to1, and if n > 1, then the out-degree of the first node is 1
and the in-degree of the last node is 1. Singleton nodes (n = 1) are also
considered to be unitigs.

Unitig abundance. We define the unitig abundance as the median
abundance of its constituent £-min-mers.

mContig. Contigs have the same definition as unitigs, except that they
are unitigs obtained after graph simplification. Contigs are first
extracted as ordered lists of k’-min-mers (a path in the graph). The
mContigis constructed by concatenating the first ¥ — 1 minimizers of
its first k’-min-mer and the last minimizer of each following k’-min-mer
(that is, the sequence of k’-min-mers without their k' — 1 overlapping
region). The mContig representation will be used to extract
(k" +1)-min-mers in the multi-k’ algorithm.

Contig. Atthe end of the assembly process, the mContigs are converted
to base-space by concatenating the base-space sequence spanned
by the minimizers (see ‘Converting to base-space and assembly
post-processing’ for more details).

Algorithmic components

The overall assembly workflow is given in Fig. 1. Input reads are first
converted into their minimizer-space representation (mReads). We
theninitiate amulti-k’ assembly algorithm in minimizer space. The fol-
lowing operations are performed during eachiteration. The abundance
of k-min-mersis determined, and low-abundance k-min-mers, deemed
aserroneous, are discarded. An MDBG graph is then constructed, and
classical assembly graph simplification steps such as tip clipping and
bubble popping are performed. Then an algorithm, termed ‘local pro-
gressive abundancefilter’,is applied to remove potential inter-genomic
repeats, strain variability and complex error patterns. The resulting
mContigs are added to the set of mReads for the next iteration. At the
end of the multi-k’ process, reads are mapped to the final mContigs in
order tooutput their polished sequencesinbase-space. In the following
sections, we describe in more detail each of the major steps.

Multi-k’ MDBG assembly

In classical DBG metagenome assembly, the choice of the k-mer size is
critical. Smaller k-mers increase sensitivity, as they recover overlaps
between reads from rare species and are less sensitive to sequencing
errors. By contrast, larger k-mersyield higher-contiguity assemblies by
resolvinglonger repeats as well as avoiding spurious overlaps between
close strains. In order to retain the best of both worlds, multi-k strate-
gies have been introduced®. The assembler typically iterates over
kvalues from values k,;, to k.., by fixed increments. In each iteration,
aDBGis constructed fromthe input reads and the contigs are generated
fromthe previous iteration.

In minimizer space, there are three ways to increase the base-
equivalentlength of a k-min-mer: decrease the density d, increase the
minimizerlength or increase the value of k. Werule outincreasing the
minimizer length kunder the hypothesis that doing so would increase
sensitivity to sequencing errors. Changing the density is, in principle,
interesting because it affects only the distance between consecutive
minimizers; however, this would require the recomputation of all
minimizers within the mReads and mContigs for each iteration of the
assembler, which would be computationally costly. Therefore, we
decided to increase only the k' parameter (the length of the
k’-min-mer), as this does not require minimizers to be recomputed.

In metaMDBG, we iterate over k' from values k. _to k;,,, by incre-
ments of 1 (see ‘Choice of parameters’ for the values and a discussion
of (k' ,ki.x)- Theinputreadsare parsed only once to generate mReads,

min
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using fixed minimizer kand d parameters. Eachiteration then extracts
k'-min-mers from the mReads. Another advantage of this approach s
that the base-space sequence of the contigs never needs to be con-
structed during theintermediateiterations; only the union of mContigs
and mReads is used to construct the next graph.

Estimating k’-min-mer abundance and filtering errors

We aimtorefine the abundance of each k’-min-mer, thatis the number
of times a k-min-mer is seenintheinputreads. Generally, abundance
informationisusedin DBG assemblers to detect and filter outerrone-
ous k-mers before graph construction to reduce its complexity and
memory consumption. Here, the same philosophy is adapted and
further elaborated for k-min-mers. Refined abundances are estimated
in two steps. First, before the first graph construction, k-min-mer
abundances are collected from raw k-min-mer countsin mReads. Then,
ateach k’iteration after graph construction, long mContigs, whichare
unlikely to be erroneous, are examined to refine the abundances of
k’-min-mers and better detect erroneous k'-min-mers. Refined
abundances are then propagated to the k'-min-mers of the next
multi-k’ iteration.

Initial K’-min-mer counting and filtering. Even though the MDBG is
alightweight datastructure, inserting all erroneous k’-min-mers would
dramatically increase graph memory consumption and complexity,
making its traversal computationally challenging. Therefore, before
constructing the graph for the first value of k', we apply anabundance-
based filter on K-min-mersto remove the majority of erroneous values.
In metagenomics, detecting erroneous k’-min-mers is non-trivial, as
low-frequency k-min-mers could correspond either to real genomic
sequences coming from rare species or to errors. Our ideain this first
stepisto consider the k-min-mersinthe context of the read fromwhich
they have been extracted: an estimate of a long read ‘abundance’ is
determined and those k-min-mers with very low ‘local’abundance are
filtered out.

More precisely, we first perform k’-min-mer counting, which is
similar to classical k-mer counting in that the number of occurrences
ofeachdistinct k-min-meris determined. Theneachreadis processed
sequentially. We define the read coverage (R.,,) as the median of abun-
dances of allits constituent k-min-mers. We then determine aminimum
abundance cutoff R, = R.,, X B (Where = 0.1, empirically determined).
A k'-min-mer is discarded if the following two criteria are satisfied: its
abundance =1anditsvalueislower thanR,,;,. Thisremoves k-min-mers
thatareseenonly once, whichrepresents the vast majority of erroneous
k’-min-mers, but only within reads in which R, is greater than 1/ 8.
It is a conservative filter to prevent high memory usage on deeply
sequenced data sets. Other potentially erroneous k-min-mers will be
detected during the contig-generation process by the ‘local progressive
abundance filter’ method described in the next subsection.

Refining k'-min-mer abundances. After mContigs have been
generated (see next section), k-min-mer abundances are refined.
We introduce two techniques: abundance smoothing and long
contig k’-min-mer rescuing. The smoothing step is performed first.
The abundance of an mContig C,,, is computed as the median abun-
dance ofits constituent k’-min-mers. Inthe mContig, the abundance of
each k-min-mer is then set to the refined abundance C_,. Long
mContigs (having >2k’ k'-min-mers) are unlikely to contain any errone-
ous k-min-mers. If a k-min-mer with an abundance of 1is presentina
long mContig, it is rescued by incrementing its refined abundance by
1sothatit will pass the pre-filtering performed in the next iteration.

Propagating refined abundance to the next k' iteration and filtering.
Atthebeginning of each subsequent multi- k' iteration except the initial
one (k' > k. ), weestimate k'-min-mersbased onthe refined abundance
of (k' —1)-min-mers determined in the previous iteration. A k-min-mer

contains two overlapping (k' — 1)-min-mers for which the refined abun-
dance is known. We define the refined abundance of a k’-min-mer as
the minimum of its two (k' — 1)-min-mer abundances. We use the mini-
mum instead of the average becauseif one of the two (k' - 1)-min-mers
is erroneous, we do not wish its abundance to be raised by the other
potentially correct one. This refined abundance propagation technique
has several advantages. Firstly, it improves k'-min-mer abundance
estimation over using abundances determined from reads alone.
Secondly, it prevents k'-min-mer abundances from collapsing to one
(or even zero) when determined from reads alone as we increase k’;
indeed, long k-min-mers tend to be underrepresented because they
are more likely to contain a sequencing error or to be longer than the
mReads themselves. Finally, refined abundances allow us to assignan
abundance estimate to k’-min-mers that exist only in mContigs and not
inmReads.

After the k-min-mer refined abundances have been determined,
all k-min-merswithasingle occurrence are discarded. As we progress
in the multi-k’ process, we notice that erroneous k-min-mers tend to
occur only once, whereas correct k'-min-mers tend to be rescued and
refined to abundances of two or more.

Local progressive abundance filtering

Inthissection, weintroduce a key component of our contig-generation
process that performs progressive abundance filtering to simplify
parts of the assembly graph corresponding to abundant organisms
(typically above 10-20x coverage). We first explain the rationale and
then present the algorithmic details.

We generate contigs by examining the abundances of organisms
inthe assembly graph through the abundances of unitigs. Recall that
a unitig is a maximal-length, non-branching path in the assembly
graph. Nearly all unitigs of abundant organisms cluster together into
asingle large connected component of the assembly graph owing
to inter-genomic repeats and chimeric reads in HiFi samples. These
two effects increase the complexity of the graph and make assembly
challenging. By performing graph simplifications using abundance
information, we are able to sidestep both issues.

In principle, some abundant organisms could be separated in
silico from the large component of the assembly graph by using an
abundancefilter; forinstance, by removing allnodes withanabundance
lower than halfthat of the organism’s abundance. This is because most
of the erroneous overlaps have low coverage: chimeric reads are rare
and most inter-genomic repeats are spanned by rare species, so remov-
ingthe corresponding low-abundance graph nodes will remove those
repeats. Filtering using alocal abundance criteria has additional advan-
tages: it canremove large stretches of sequencingerrors as well as strain
variability. However, designing such afilter is not straightforward.

In complex areas of an assembly graph, unitigs tend to be frag-
mented and their abundances may be under-estimated, resulting in
correct unitigs being filtered out whenever removalis based on length
or, more critically, absolute abundance. The abundances of chimeric or
rare species unitigs in complex areas also tend to be under-estimated?.
Our solutionis tofilter out unitigs by iterating over abundance cutoffs,
from low to high. At some point in the iterative process, fragmented
but correct unitigs will be linked to longer ones and thus successfully
rescued.

An unpractical but simple algorithm that illustrates our contig-
generation process is as follows. Sort the MDBG unitigs u;, ..., u, from
the most abundant (u,) to the least abundant (u,). Iterate the following
procedure fromi=1...n.Consider theabundance, a,, of u;andfixalocal
abundance cutoff U, = a; x # (with S values in the range of 0.1-0.5; in
the real algorithm we will set it to 0.5). Create a copy, G, of the MDBG.
Fort=1tot=U,.,, repeatthe procedure of removingall unitigs withan
abundancelessthan¢from G’and thenre-compact G'. Finally,att=U,.,,,
collect the unitig v’ in G’ that contains u. If «’ does not contain any
k'-min-mer from a previously returned contig, thenreturnit asacontig.
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Performing assembly with the above procedure for every unitig
would be costly and redundant. Instead, in this work, a progressive
abundance filter is applied once to the whole graph from thresholds
t=1tot=t,, (see ‘Progressive abundance filtering’) instead of per
unitig. At each step, we collect the set of unitigs from the graph. This
resultsin multiple sets of unitigs (S;. ..., S, ), each corresponding toa
single threshold, t. A subsequent algorithm iterates over the sets (S,)
and non-redundantly outputs all unitigs that are above a well-chosen
abundance threshold at each step (see ‘Generating mContigs’).

Progressive abundance filtering. This process (Algorithm1) iterates
over abundance thresholds, simplifying and compacting the graph and
thenremovingunitigs that are below the current threshold, saving the
remaining unitigs.

Specifically, the algorithm iterates from abundance threshold
t=1to t=t,,, (line 3), where t,,,, is the abundance of the most abun-
dant unitig in the initial graph. The graph is simplified (line 4, see
‘Graphsimplification’ below for details). The graphis then compacted
(line5) and unitigs are collected into aset, S, (line 6). Finally, unitigs with
anabundance<tarediscarded (line 7) from the graph and we move to
the nextiteration of t.

Graph simplification. The simplification stepincludes two processes:
tip clipping and superbubble popping. Tips of 50 kbp or smaller are
disconnected from the graph. We do not remove them here as they may
either be erroneous orbelongto arare species. These tips are removed
at the end of the assembly process if they have a high identity with
another contig. Superbubbles of length 50 kbp or smaller are detected
in O(|Edges| + |Nodes|) average time following a previously defined
algorithm?, and the path with maximum abundance is retained.

Algorithm 1Progressive abundance filtering.
Input: MDBG G
Output: §;,..,5, sets of unitigs along with their abundance
information
1:S<§}
2:t<l
3:whilet<¢,, do
4. G < Simplify(G) > Tip clipping, bubble popping
5. G < Compact(G) > Compact the graph and calculate median
k'-min-mer abundance of unitigs
6: S, < Unitigs(G)
7. Remove unitigs withabundance <tfrom G
8 t<t+l
9:end while
10:return S

Generating mContigs. This processiterates over all sets of unitigs (S,)
starting from the one with the highest abundance cutoff, s, .Foreach
set, unitigs and their abundances are scanned in no particular order
and a unitig, u, is returned if its abundance, a, is greater than some
threshold. We call mContigs the set of returned unitigs (in line with
typical genome assembly usage, where a contig is generally a unitig
within the simplified assembly graph). The complete process is
described in Algorithm 2.

Specifically, at each iteration, a unitig, u, from S, along with its
abundance, g, is added to the final set of mContigs if it does not share
any k-min-mer with any other unitig already in mContigs and also if its
abundance, a,isgreaterthana x t/ B (line 6). The k’-min-mers withinu
are recorded in a set of outputted nodes to prevent redundancy
(lines 7 and 8).

Here, the sets of unitigs (S,) areiterated from the large abundance
threshold to the low-abundance threshold rather than the opposite.
Thisis done to ensure that we always output unitigsin their longest pos-
sible form. Toillustrate, consider what would happenif we had started

with the lowest threshold. There would be no way of knowing whethera
given unitig has been maximally merged with some other unitig(s) after
our abundance-filtering and graph-simplifications steps. For example,
attheabundance threshold of three, all unitigs withan abundance of six
would be output because they pass the local abundance threshold of
3/0.5=6.However,among them, there may also be fragmented unitigs
thatbelongtoamoreabundant species (for instance, of abundance ten)
thatare ‘waiting’ to be merged with other unitigs after more substantial
simplifications (for instance, at ¢ =4 or t =5). Iterating from the large
threshold to the low threshold solves this issue.

Algorithm 2 Generating mContigs.
Input: s, ....S, _setsofunitigs
Output: mContigs
1t € b
2: C < {} >Cis the set of k'-min-mersin the mContigs
3:8<0.5
4:whilet>1do
5. foreachunitigu (withabundancea)inS,do

6: if Cnnodes(u) = ganda >t/ then
7: Outputu

8: C < Cunodes(u)

9: endif

10: endfor

1I: t<t-1

12: end while

Converting to base-space and assembly post-processing

At the end of the multi-k’ process, the base-space representation of
mContigs (that is, the actual nucleotide sequences and not their
minimizer-space representation) is constructed by gathering the base
sequences corresponding to allmContigs k-min-mers fromthe original
reads. This is followed by two post-processing steps. A contig polishing
step fixes sequencing errors in contigs (mostly homopolymers), and
an optional duplication-purging step removes similar contigs corre-
spondingto close strains.

Constructing contig base sequences. This step converts mContigs
(that is, the minimizer-space representation of contigs) to actual
nucleotide-space contigs. The idea is to choose a particular k' value,
collect k¥-min-mer nucleotide sequences from the original reads and
then reconstruct contig nucleotide sequences by aggregating the
k'-min-mer nucleotide sequences. This is a generalization of
the method presented ina previous work'® to the multi- k' setting, made
more accurate by using read mapping. Indeed, a k¥-min-mer can be
generated by multiple different nucleotide sequences. Hence, collect-
ingthe ‘wrong’ nucleotide sequence could yield errorsincontigs. Large
values of k' yield more specific k’-min-mers, minimizing such errors.
However, some of these long k’-min-mers may exist only in mContigs
and not in mReads; therefore, their nucleotide sequences cannot be
constructed with certainty. We use k' = k. to ensure that all contig
k'-min-mersareindeed presentin the reads. To collect the ‘true’nucleo-
tide sequence of each contig k’-min-mer, mReads are first mapped to
mContigs. The k-min-mer sequences are then collected from the reads
that best match the contigs. The read mapping strategy in minimizer
space is described as follows.

The mContigs are firstly indexed to create a set of k-min-mer
seeds: each mContig k-min-mer is stored as a key in a hash table with
the associated values being a list of contig positions, represented as
pairs {c; c,}, where ¢; is the contig identifier and c, is the k'-min-mer
position in ¢, Then, mReads are scanned, and for each mRead
k’-min-mer found in one or more mContigs, its mContig position(s)
areretrieved as seeds for potential mappings. The seeds are extended
maximally: we iterate over the mRead k’-min-mers (to the left and
to the right of the seed) and extend mappings as long as subsequent
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k'-min-mers continue to be the same as those that follow in the
mContig(s). Theresultisaset of intervals (made non-redundant) indi-
cating maximal matches between the current mRead and one or several
mContigs. Then another hash table with contig k’-min-mer positions
{c;, ¢,} as keys (here ¢, is the position of the seed in the mContig, one
position per mapping obtained) maintains the maximal matches as
triplets {r, r,, m}, where r;is the read identifier, r, is the position of the
seed k'-min-mer inr,and mis the length of the longest match.

The overallmappingalgorithm s thus quadratic over the number
of k-min-mers in each mRead. However, in practice, this number is
close to 45, making the algorithm highly practical. We process mReads
twice, in forward and reverse order, to handle reverse complements.
Theoutput ofthe algorithmis exactly oneread k’-min-mer position for
each contig k'-min-mer position.

The reads are then parsed in nucleotide space and their
k’-min-mers are extracted. If a k’-min-mer is reported as a best match
during the above mapping procedure, then we collect the substring of
the read corresponding to that k'-min-mer. To deal with overlaps
betweensuccessive k'-min-mersin mContigs, we also record the posi-
tion of the second and second-to-last minimizers within each
k'-min-mer. We finally parse mContigs and concatenate the sequences
associated with their k-min-mers, making sure to discard overlaps.

Contig polishing. We perform an additional polishing step on the
base-level representation of contigs to remove sequencing errors.
We re-implemented a strategy akin to racon”: reads are first uniquely
assigned to contigs using minimap2, contigs are then split into
non-overlapping windows of 500 nucleotides and fragments of reads
thatmap toeach window are collected. Finally, aconsensus sequence
for each window is created by partial order alignment using the
SPOA library®.

Our polishing differs from that of racon, in particular in the follow-
ing two aspects. Thefirstis how we select readsin the case of multiple
mappings. We noticed that longer alignments are not necessarily the
best ones, but that alignment identity must also be considered. We
score alignments using the metric MS = alignLength x alignldentity and
foreachread, retain only the alignment that maximizes MS. The second
isareduction of memory usage. We limit the number of read fragments
used to correct a window. With accurate long reads, we noticed that
using only 20 fragments is sufficient to produce a high-quality con-
sensus. We also reduce the memory required to store the read frag-
ments by partitioning the contigs and the reads that map onto them
on the disk, processing one partition at atime. The memory required
tostore the read fragments of a contigis estimated by multiplying the
contig length by the contig coverage (estimated from the initial read
mapping). Contigs are processed sequentially and written into a par-
tition file until the memory required to process the partition exceeds
6 GB. The current partition is then closed and a new one is started. A
structure in memory records the association of contigs to partitions.
Similarly, reads are then processed and written to the partition of their
best-matching contig. This results inanapproximately 100-fold reduc-
tioninmemory usage compared to the original raconimplementation
for the sheep rumen data set.

Strain duplication purging. Sequence duplications in contigs caused
by strainvariability are detected by all-versus-all contig mapping using
wfmash®. Contigs longer than 1 Mbp are left untouched and are used
as templates to remove duplications that are present in shorter con-
tigs. For those shorter contigs, we remove any part overlapping with
a >1Mbp contig when the overlap nucleotide alignment identity is
greater than 99%.

Choice of parameters
Our method has four critical parameters: the minimizer size, the mini-
mizer density and the startingand ending k-min-mer size, k. and k;

max*

The minimizer size and density were both setempirically to13 and
0.005, respectively (that is, roughly 0.5% of total k-mers are used as
minimizers). In our tests, using such short minimizers leads to better
results than using longer minimizers, possibly because they are less
sensitive to sequencing errors.

The starting k-min-mer size, k’,,,;, was fixed to 4. Using k' values
less than 4 creates assembly graphs that have high complexity,
resulting in highly fragmented contigs. The ending k'-min-mer
size, k., is a function of the sample median read length: «},,, =
medianReadLength x density x 2.

Withdensity 0.005and k’,,,;, = 4, the assembler initially considers
overlaps between reads with lengths of % = 600 bases on average.
It then iteratively increases the overlap length, in increments of
200 bases, until finally processing overlaps of twice the median length
of thereads.

Anaerobic digester sample extraction and long-read DNA
sequencing

Facility operators obtained three biomass samples directly from an
anaerobicdigester reactor that was digesting food waste at weeks 1,20
and 40 of a year-long sampling campaign. The samples were shipped
inice-cooled containers to the University of Warwick. Upon receipt,
they were stored at 4°C, subsampled into several 1-5 mlaliquots within
afew days and then stored in 1.8 ml cryovials at -80°C. Samples were
defrosted at4°C overnight before DNA extraction. DNA was extracted
from astarting mass of 250 mg of anaerobic digester sludge using the
MP Biomedical FastDNA SPIN Kit for Soil (cat no. 116560200) and a
modified manufacturer’s protocol.

DNA size was assessed using a FemtoPulse (Agilent). The Pacific
Biosciences protocol ‘Preparing 10 kb Library Using SMRTbell Express
Template Prep Kit 2.0 for Metagenomics Shotgun Sequencing’ was
used to create libraries from 1.5 pg of DNA. In most cases, the DNA
was already 10 kb or smaller. Sample AD2W40 was slightly larger;
therefore, the DNA was sheared using ag-TUBE (Covaris) for one library
andunsheared forasecondlibrary. Libraries were not pooled because
of the large number of reads that were desired. Sequencing was per-
formed using aSequelll sequencer (Pacific Biosciences) using version
8M SMRT cells and version 2.0 sequencing reagents with 30 h movies
and a2 h pre-extension time to generate circular consensus sequenc-
ing reads.

Assembling data sets, mapping reads and binning contigs
Weranall assemblers with16 central processing unit threads. We used
the default parameters of metaMDBG for all assemblies (minimizer size,
13; density, 0.005). We ran hifiasm-meta with the default parameters
on real data and with the option ‘~force-preovec’ on the mock com-
munities as suggested by the authors. We only used the hifiasm-meta
primary assembly of polished contigs (p_ctg.gfa), as adding alternate
contigs reduced the overall MAG quality. We ran metaFlye with the
options‘-meta’ and ‘—pacbio-hifi’ for HiFi data sets and with the option
‘~nano-hq’ for Nanopore data sets. We used the command ‘/usr/bin/
time -v’ to obtain wall-clock runtime and peak memory usage. All tools
that were used and the complete command line instructions are avail-
ablein Supplementary Table S2.

Todetermine the fraction of reads that were mapped to the assem-
blies, we used ‘minimap2-x asm20’ as suggested in the metaFlye study.
We filtered out reads in which all of the alignments were shorter than
80% of its length, and we assigned each remaining read to a unique
contigthroughitslongest alignment (breaking ties arbitrarily). To esti-
mate contig coverage across samples before binning, we used the com-
mand ‘minimap2-ak19 -w10-110G -g5k -r2k -lj-min-ratio 0.5-A2-B5-0O5,
56 -E4,1-z400,50 | samtools sort -0 outut.bam’ as proposed in the
hifiasm-metaarticle'*. We input the resulting binary alignment map to
theprogramjgi_summa rsize bam contig depthsofMetaBAT2
to obtain contig coverage profiles across samples.
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We performed contig binning using MetaBAT2 (ref. 32), with
default parameters and a fixed seed (-seed 42) for reproducibility.
As MetaBAT2 may bin strains from the same species, creating asingle
apparently contaminated MAG, we separated all circular contigs of
1Mb or longer before binning the remaining contigs, as suggested in
the hifiasm-meta study™.

Quality assessment of assemblies

We used CheckM (v.1.1.3) to assess the quality of all MAGs and circular
contigs longer than1Mbp. We used viralVerify* (v.1.1) toidentify plas-
mids and viruses in each assembly. We considered only contigs shorter
than 500 kbp with prediction scores higher than five. Annotations
labeled as ‘Plasmid’ or ‘Uncertain - plasmid or chromosomal’ were
considered as plasmids and, similarly, annotations labeled as ‘Virus’
or ‘Uncertain - viral or bacterial’ were considered as viruses. We used
checkV? to assess the quality of viral contigs. We used Barrnap (https://
github.com/tseemann/barrnap), and Infernal® to predict, respectively,
rRNA and tRNA genes from circular contigs. We filtered out annotations
with E-values over 0.01. A total of 437 (96%) near-complete circular
contigs found by metaMDBG had one copy of the 5S,16S and 23S genes
and at least 18 tRNA genes, compared to 96.6% for hifiasm-meta and
98.5% for metaFlye (Supplementary Table S12).

Assessment of completeness and fragmentation of assemblies
withreference sequences

We used the following process to assess the completeness and frag-
mentation of assemblies when reference genomes are available
(mock reference genomes or near-complete circular contigs). We
used wfmash to align contigs against the reference sequences. Align-
ments with less than 99% identity were filtered out. Alignments were
ordered by their matching score from MS = alignlength x alignidentity
(bestscorefirst). We considered alignment identity to improve contig
assignment to similar strains. Alignments were then processed sequen-
tially and contigs were uniquely assigned to references. During this
process, we check whether a reference is complete or not, meaning
that at least 99% of its positions are covered by contigs. We prevent
other contigs frombeing assigned to acomplete reference. Moreover,
we prevent a contig from being assigned to a reference if more than
30% of its matching positions are already covered by another contig.
In this case, we first try to assign this contig to another reference.
References with less than 70% completeness were considered to be
missed by the assembler.

Taxonomic classification of MAGs recovered from anaerobic
digester samples

The phylogenetic tree in Fig. 2 was built using fasttree® from the out-
put alignment of GTDB-Tk v.2.1.0 (ref. 35) on near-complete-quality
MAGs of all three assemblers for the anaerobic digester data set.
Concurrent diversity coverage between the different assemblers
was explored at different taxonomic levels from genus to domain.
To do so, it is necessary to first address MAGs for which no annota-
tion is available at a given taxonomic rank. A pair of unannotated
MAGs may or may not share the same taxa. A first pass based on tree
topology allows us to select neighboring MAGs as candidates for
sharing the same unknown taxa. As a second step, we compute the
relative evolutionary distance (RED) using the Rlibrary Castor v.1.7.3
(ref. 36). Following guidelines from GTDB, we use their median RED
values for each taxon in order to decide whether to group unknown
MAGs together. We then find the best ancestor for each unknown
MAG in terms of its RED being nearest to the corresponding taxon’s
median RED. If they share the same best ancestor, then we group them
together; otherwise, we split them into distinct unknown taxa. Tree
manipulation and representation are carried out using the libraries
ggtreev.2.4.1(ref.37), treeiov.1.14.3 (ref. 38) and ggtreeExtra version
1.0.2 (ref. 39).

Assembler implementation details. During transformation to mini-
mizer space, reads are homopolymer-compressed*’. We handle reverse
recomplements in a manner that is similar but slightly different than
classical DBG assembly. We consider canonical k-min-mers by compar-
ing toits reverse (not its reverse complement). The first minimizer of
each is compared; the k¥-min-mer with the smallest minimizer is
selected as the canonical representative. In the case of equality, the
second minimizer of eachis compared, and so on. Note that minimizers
are also considered in their canonical representations, which, in this
case, isidentical to the classical technique. A minimizer isin canonical
form if its forward sequence is lexicographically equal to or smaller
thanits reverse-complement sequence.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data sets used in this study were downloaded from the NCBI
Sequence Read Archive; accession numbers are given in Supplemen-
tary Table S1. Zymo-HiFi mock reference genomes are available at
https://s3.amazonaws.com/zymo-files/BioPool/D6331.refseq.zip.
ATCC mock reference genomes are available at https://www.atcc.org/
products/msa-1003.

Code availability

MetaMDBG s available at https://github.com/GaetanBenoitDev/meta-
MDBG. The analysis scripts used in this study to compare assemblers
areavailable at https://doi.org/10.5281/zenod0.8321179.
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circular MAG reconstructed successfully by an alternative assembler. In IQR=Q3-Q1) and outliers. Summary statistics (n, min, median, mean, max):
order to estimate the degree of fragmentation of assemblers, we aligned the Human gut- metaMDBG (19,1, 2, 2.1, 5); hifiasm-meta (32,1, 2, 4, 24); metaFlye
contigs of one assembler against the near-complete circular contigs (c(MAGs) (68,1,4,7.5,48) : AD-HiFi- metaMDBG (11,1, 2, 2.3, 6); hifiasm-meta (72,1, 6,19.8,
recovered by the other assemblers. The fragmentation is then represented as 109); metaFlye (105, 1, 6,15.1,104) : Sheep rumen- metaMDBG (15,1,1,1.8, 8);
the number of contigs required to cover these cMAGs (see section ‘Assessment hifiasm-meta (18,1, 3,10.7,125); metaFlye (183,1, 3, 5,37). The data to generate
of completeness and fragmentation of assemblies using reference sequences’ this boxplot have been extracted from Supplementary Table S5.
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Extended Data Fig. 2| Histograms of SNV density and coverage depths for near-complete circular contigs. SNV densities (A) and coverage depths (B) are shown
for all the near-complete circular contigs (see definition in text) aggregated across the three HiFi PacBio datasets (Human gut, AD-HiFi, Sheep Rumen) for each
assembler (metaMDBG, hifiasm-meta, metaFlye).
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the number of non-circular near-complete MAGs with low coverage ( < 12x) reconstructed by each assembler.
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Extended Data Fig. 5| Total number of near-complete MAGs (circular and Inthe Sheep rumen and Human gut data sets, the number of dereplicated MAG
non-circular) across different dereplication thresholds. We used dRep to clusters from hifiasm-meta drops significantly below a 97% ANI dereplication
cluster MAGs by nucleotide similarity using the parameter -sa from 0.95 to threshold, this is not observed for metaMDBG or metaFlye, which indicates that
1. This Figure shows for each assembler on each data set, how the number of agreater proportion of the hifiasm-meta MAG diversity is at the strain-level. This
dereplicated near-complete MAG clusters, both circular and non-circular, is not the case for the AD-HiFi data set where no assembler seems to generate a
collapses as they are dereplicated at decreasing levels of nucleotide similarity. substantial number of strains with more than 97% ANI.
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