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1  |  INTRODUC TION

The Quaternary has been characterized by extensive cycles of glaci-
ation and deglaciation. The legacy of these large-scale climate alter-
ations is evident today in everything from species’ genetic diversity 

to population structure (Svenning et al., 2015; Twitchett, 2006). 
Despite the profound impact of such changes on flora and fauna, 
there is limited quantitative evidence on which factors determined 
how different species fared during these cycles, or how species re-
sponded to post-glacial climate amelioration.
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Abstract
During the Quaternary, large climate oscillations impacted the distribution and demog-
raphy of species globally. Two approaches have played a major role in reconstructing 
changes through time: Bayesian Skyline Plots (BSPs), which reconstruct population 
fluctuations based on genetic data, and Species Distribution Models (SDMs), which 
allow us to back-cast the range occupied by a species based on its climatic prefer-
ences. In this paper, we contrast these two approaches by applying them to a large 
data set of 102 Holarctic bird species, for which both mitochondrial DNA sequences 
and distribution maps are available, to reconstruct their dynamics since the Last 
Glacial Maximum (LGM). Most species experienced an increase in effective popula-
tion size (Ne, as estimated by BSPs) as well as an increase in geographical range (as re-
constructed by SDMs) since the LGM; however, we found no correlation between the 
magnitude of changes in Ne and range size. The only clear signal we could detect was a 
later and greater increase in Ne for wetland birds compared to species that live in other 
habitats, a probable consequence of a delayed and more extensive increase in the ex-
tent of this habitat type after the LGM. The lack of correlation between SDM and BSP 
reconstructions could not be reconciled even when range shifts were considered. We 
suggest that this pattern might be linked to changes in population densities, which can 
be independent of range changes, and caution that interpreting either SDMs or BSPs 
independently is problematic and potentially misleading.
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In the absence of direct evidence of species’ prehistoric response 
to alterations in climatic conditions, sophisticated statistical meth-
ods have been developed to infer demographic history from more 
indirect sources. Different types of data, and consequently differ-
ent approaches, are generally favoured by different fields. One of 
the most widely used genetic methods for inferring demographic 
history is the “skyline plot,” a family of graphical, nonparametric 
methods introduced by Pybus et al. (2000). Grounded in the princi-
ples of Kingman's coalescent theory (Kingman, 1982), the “skyline-
framework” uses DNA sequences to reconstruct a gene tree. The 
rate of coalescent events within it can be used to infer how the 
population size changed over time: periods of low coalescent rates 
imply a large population while a high density of coalescences implies 
a small population. Although skyline plots have been used to recon-
struct demographic histories for extant and extinct species (Stiller 
et al., 2010), and across taxa that include vertebrates (Lu et al., 2012; 
Vignaud et al., 2014), invertebrates (Sanchez et al., 2016; Villalta 
et al., 2018) and even bacteria (Segawa et al., 2018), comparative 
multispecies studies are only now emerging (Burbrink et al., 2016).

Skyline plots have been used extensively to infer the response 
of species during the Last Glacial Maximum (LGM), and are often 
paired with climatic reconstructions to infer the changes in available 
habitat for a given species (Calderón et al., 2016; Foote et al., 2013; 
Lorenzen et al., 2012). One popular approach for reconstructing 
possible changes in available habitat for a species through time is 
bioclimatic Species Distribution Models (SDMs) (Elith & Leathwick, 
2009). Modelling algorithms combine data on occurrences with en-
vironmental information to describe a species’ current distribution 
and estimate how changes in environmental variables may have 
influenced this range through time. The underlying logic in linking 
these approaches is that, assuming limited population structure and 
appropriate sampling, a skyline plot could provide an indication of 
changes in total population size, which, in turn, may affect the ex-
tent of the range occupied by a species. However, the association 

between effective population sizes (Ne), as reconstructed by skyline 
plots, and species ranges is generally assumed, not tested.

There are many reasons why Ne might not be a good proxy for 
species ranges. Population structure is known to be a confounding 
effect, and the recommendation to counter it is to pool samples 
from multiple locations (Heller et al., 2013). However, even with this 
sampling scheme, there might be a mismatch in the two quantities 
if mean population density, and thus Ne, was affected by climate 
change differently to total range extent. For example, an increase 
in mean population density, and thus population size, might occur 
without a change in range, if the quality of habitat and its carrying 
capacity increased without a change in its extent (Figure 1a; Figures 
S1, S2) (Fordham et al., 2012). Given the positive relationship gener-
ally observed between range extent and mean local population den-
sity (Connor et al., 2000), Ne would also be expected to increase by 
a greater proportion than range extent under climatic amelioration. 
Another possibility is that, without substantial gene flow, skyline 
plots may reconstruct the population dynamics of the sampled loca-
tions rather than the whole species (Miller et al., 2018).

Another scenario that might lead to a disconnect between local Ne 
and range size arises during range shifts: sampled locations, suitable 
for a species today, might have been only marginally suitable in the 
past; that is, what is now the core area occupied by a species (where 
it is abundant, and sampling is more likely) might be inhabited by pop-
ulations that in the past were at low densities because the area was 
only marginally suitable. Skylines from such populations would reveal 
a strong increase in Ne reflecting the local amelioration of conditions, 
irrespective of broader range changes (Figure 1b; Figures S1, S3). A 
similarly confounded signal will be found in the more extreme scenario 
where, as a result of a sizeable range shift, the sampled populations 
inhabit areas which were completely unsuitable in the past, and thus 
have undergone a founder event. Such populations would be charac-
terized by an increase in Ne as they recovered from the local bottle-
neck associated with the founder event (Figure 1c; Figures S1, S4).

F I G U R E  1  The top of each panel represents two schematic maps of the species range at the LGM (right) and present (left). Colour density 
within each virtual range shows population density. Blue crosses represent the geographically stable genetic sampling location. (a) Increasing 
population size without range change recovers an increasing BSP profile, as seen in the lower panel. (b) Core area today was only marginally 
suitable in the past, range size remains the same but local amelioration leads to a local increase in Ne. (c) Modern sampled populations inhabit 
areas outside the past species range. BSP recovers a steep increase in Ne associated with a founder event. See Material S1 for simulations 
supporting these expectations
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The extent to which changes in population density and bottle-
necks related to range shifts can override the signals linked to changes 
in range size and the overall metapopulation size is unknown. We 
collected from GenBank a comprehensive data set of mitochondrial 
DNA (mtDNA) sequences from many species of Holarctic birds, re-
constructing their population dynamics using Bayesian Skyline Plots 
(BSPs). A simple prediction, based on the relative changes of habitat 
types as reconstructed from the pollen record (Allen et al., 2010), is 
that species associated with closed habitats (e.g., forests) should have 
increased since the LGM, whilst species from open and semiclosed 
habitats (grasslands and steppes) should show a decrease. However, 
species have more complex niche requirements than a simple associ-
ation with a broad habitat type, and a more realistic prediction is that 
Ne should change in line with changes in extent of their geographi-
cal range. We therefore modelled changes in potential range size be-
tween the LGM and the present, using palaeoclimate reconstructions 
and SDMs, and investigated the relationship between changes in Ne 
and range size. Reconstructing individual ranges in the past is chal-
lenging because species may depend upon habitats whose extent is 
not easily reconstructed (e.g., wetlands); therefore, we also compared 
demographic profiles of species grouped by major biomes to investi-
gate whether there was any consistent pattern in their response to 
climatic amelioration in the Holocene.

2  |  MATERIAL S AND METHODS

2.1  |  Raw genetic data

We collated summary information on all available avian NADH de-
hydrogenase subunit 2 (ND2) and cytochrome b (cytb) sequences in 
GenBank, two of the most frequently uploaded avian mitochondrial 
genes, and screened for Holarctic species using the list of Voous 
(1977). Only species with more than 10 accessions for either gene 
were retained. When species had sufficient data for both ND2 and 
cytb, sequences for each gene were extracted and handled as dis-
tinct data sets.

2.2  |  Alignment

Sequence data for each species/gene combination come from multi-
ple studies, so comparable regions were found by aligning sequences 
in mega (version 7.0; (Kumar et al., 2016)) using clustalw (Thompson 
et al., 1994). Sequences for each taxon were trimmed to the long-
est common section between all samples. If inclusion of a single se-
quence required the loss of >200  bp from more than 50% of the 
other sequences, that sample was excluded as were all positions 
containing insertions, deletions or sequencing ambiguities. When 
studies uploaded one copy of each haplotype, associated frequency 
data were used to generate the appropriate number of copies in our 
database. If frequencies were unpublished the data were excluded. 
Sample sizes varied from 11 to 453  sequences per species, with 
lengths from 236 to 1,137 bp.

2.3  |  Median joining networks (MJNs)

For each species/gene combination, we built an MJN in popart (Leigh 
& Bryant, 2015). If the MJN contained long branches (single branch 
with 30 or more substitutions, indicative of profound population 
substructure) the species sampling location was reviewed. If clear 
geographical separation or grouping was found, the data were di-
vided as appropriate and treated as discrete data sets. Single sam-
ples with >30  mutations on a branch were considered extreme 
outliers and dropped from alignments.

2.4  |  Mutation rate

Recent work (Nabholz et al., 2016) proposes that body mass can 
be used to accurately calculate taxon-specific per year substitution 
rates and provides a correction factor for rate variation according to 
body mass as well as major mtDNA loci. We created data set-specific 
molecular evolution rates using average body mass data for each 
of our species (Dunning, 2007) together with the body mass/gene 
correction factors from Nabholz et al.’s (2016) “Calibration set 4” 
(3rd codon position). The equation was therefore 10

( − 0.247 ∗ log10(Mass) + 0.813)

100
. 

A gene-specific correction factor (0.052 for ND2, −0.069 for cytb) 
was then applied (see Table S3). “Calibration set 4” was used as it 
includes younger species splits that should lead to estimates more 
appropriate for the within-species dynamics investigated here. Due 
to the uncertainty surrounding mutation rates, analyses based on 
“Calibration set 2” were also run (data not shown).

2.5  |  BSP analysis

There now exist a range of related skyline plot methods (Ho & 
Shapiro, 2011). Here, we focus on BSP (Drummond et al., 2005) be-
cause its relative simplicity and inherent robustness make it popular 
in the field and particularly suitable for the quality of data sets in our 
study. For each data set, BSP analyses were implemented in beast2 
(Bouckaert et al., 2014) using a strict clock with taxon-specific body 
mass/gene mutation rates, running 300 million steps sampled every 
30,000 steps, with the first 10% discarded as burn-in. “bModelTest” 
was used to select the most appropriate site model and parameters 
for individual analyses (Bouckaert, 2015) whilst “bGroupSizes” and 
“bPopSizes” were set to three, and other parameters were left as 
default. Each analysis was run twice and convergence was verified 
by both a visual inspection of Markov chain Monte Carlo (MCMC) 
traces in tracer v1.6 and confirming effective sample size values 
exceed 200 (Drummond & Rambaut, 2007). Demographic recon-
structions were summarized in tracer (“Number of bins” = 500), and 
plotted in R.

Sampling strategy can have important effects on BSP pro-
files (Chikhi et al., 2010; Heller et al., 2013; Städler et al., 2009). 
Geolocation information is only available for a small proportion of 
samples; for a subset of five species with large sample sizes and good 
geolocation coverage, we confirmed that using all samples provided 
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3996  |    MILLER et al.

representative profiles compared to more structured subsampling 
(Materials S2, Figure S5A–E). Furthermore, we also confirmed 
(Materials S3, Figure S6) that, for these species, BSPs recovered pro-
files in line with those from Extended Bayesian Skyline Plots (EBSPs) 
(Heled & Drummond, 2008), which are more powerful but also re-
quire larger data sets (EBSPs were designed to take advantage of 
multilocus data).

2.6  |  Inclusion criteria

Where data were available for both ND2 and cytb, BSP profiles were 
compared along with summary statistics on each data set. When 
profiles agreed, the best supported data set was retained (e.g., larg-
est sample size, longest sequences) to represent that species’ his-
tory. If profiles were discordant but there was a clear disparity in 
the data sets’ quality, we kept the profile from the stronger data set. 
If data quality did not vary but profiles were discordant, we con-
servatively rejected both profiles. For inclusion in further analysis, 
profiles needed to have a history deeper than 5000 years ago (ka) 
but shallower than 1  million years ago (deeper histories probably 
resulted from problematic fits). Also, because of the sample sizes 
and sequence lengths available for many species, we had to limit 
our BSP analysis to detect only one major size change (i.e., 3 change 
points). For this reason, if the largest change occurred before 60 ka, 
we excluded the species as we would have been blind to any smaller 
changes that occurred in the period of interest.

2.7  |  Habitat classification

The species considered are associated with a wide range of habi-
tat types, especially in terms of the predominant vegetation. Given 
the need for a small number of categories, no classification system 
can be perfect. We used the expert ornithological opinion of one 
of us (R.E.G.) to classify each species according to the major habitat 
with which it is currently associated, based upon descriptions from a 
standard work (BirdLife International & Handbook of the Birds of the 
World, 2018). After data-quality filtering, 138 species were available 
for classification. The habitat classes selected were Closed (forests), 
Semi-closed (shrubland and open woodlands), Open (grassland, 
montane and steppe) and Wetlands (freshwater wetlands). Some 
species could not be placed in them and there were other classes 
(e.g., Rivers) with five or fewer species; these were grouped into a 
separate category, “Other.”

2.8  |  Timing of expansion

Identifying a population's point of expansion from a BSP profile 
proved difficult given the wide range of shapes present: some popu-
lation sizes changed little or gradually, while others showed sharp 
and/or multiple points of inflection. We attempted to develop 

algorithms that could automatically capture the inflection point but 
found them to be unreliable, and opted for visual scoring by E.F.M. 
Scoring was done prior to the running of SDMs, and thus blind to the 
expected changes from the range reconstructions.

2.9  |  Size change

To compare the magnitude of estimated population expansions, the 
relative population size change between 21 ka and the present day 
was calculated. Ne at 21  ka was interpolated for each BSP profile 
and, where profiles were shorter than 21 ka, the population was as-
sumed to be the size at the start of profile. Given the uncertainty 
of dating with molecular methods, and as there is a known risk of 
false signals in BSP profiles at very recent times (Heller et al., 2013), 
we also ran our analysis using size estimates from 60 ka/the earli-
est possible point (instead of 21  ka) to 5  ka (instead of 0  ka) (see 
Materials S4).

To compare average habitat profiles, we used a multispecies 
index (MSI) (Gregory et al., 2005). Here, equivalent adjacent time 
points are aligned and the geometric mean of the change in size cal-
culated, based on all species with data. These average changes in 
size are then applied to a starting value of unity. Working back in 
time this creates directly comparable profiles where all groups reach 
a value of one at the present (see Material S5).

2.10  |  Phylogenetic correction

All analyses included a phylogenetic correction based on the most 
complete molecular phylogeny of extant birds (www.birdt​ree.
org, Jetz et al., 2012). Jetz et al. (2012) present two phylogenetic 
backbones, respectively Ericson and Hackett (“backbone-E” and 
“backbone-H”), considered equiprobable. For each backbone, we 
generated 1000 trees, randomly resolving polytomies in each, and 
repeated all analyses for each tree with a “corPagel” phylogenetic 
correction from the “ape” package in R. We also provide the results 
based ordinary least squares (i.e., without phylogenetic correction).

2.11  |  Species Distribution Models

Our pipeline is provided as an R script in the Supporting Information.

2.11.1  |  Climate reconstructions

To identify areas suitable for species through time, we used a 0.5° 
resolution data set for 19 bioclimatic variables (Net Primary pro-
ductivity, Leaf Area Index and all the BioClim variables (Hijmans 
et al., 2005) excluding BIO2 and BIO3) that are available for the 
last 21,000 years in 1000-year time steps (Beyer et al., 2020). This 
data set was constructed from a combination of HadCM3  climate 
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simulations of the last 120,000  years, high-resolution HadAM3H 
simulations of the last 21,000  years and empirical present-day 
data. The data were downscaled and bias-corrected using the Delta 
Method (Beyer et al., 2019).

2.11.2  |  Species data

Species occurrences were downloaded from the GBIF database 
(https://www.gbif.org) without any filtering (links in Table S4). 
Occurrences were then filtered based on coordinate accuracy 
(maximum error: 10  km), keeping only observations within the 
breeding and resident geographical ranges from Birdlife (BirdLife 
International, 2018). Points were regridded based on the palaeo-
climatic reconstructions (0.5° x 0.5°) and, to work on presence/ab-
sence not frequency, only one presence per grid cell was kept.

For each species, this cleaned data set was used to select a sub-
set of the bioclimatic variables available in the palaeoclimatic recon-
structions (Beyer et al., 2020). We used a standardized approach 
in which we only removed highly correlated variables (r  >  .7), as 
these can lead to model instability (Guisan et al., 2017). A correla-
tion matrix was constructed between the variables observed in the 
whole study area (Europe or North America). Uncorrelated variables 
(threshold = .7) were then selected by retaining the variable with the 
lowest overall correlation across the matrix where two values were 
highly correlated, leaving LAI, BIO4, BIO10, BIO14, BIO15, BIO18 
and BIO19 in Eurasia and LAI, BIO5, BIO7, BIO8, BIO15 and BIO19 
in North America.

To reduce the risk of geographical bias from opportunistic ob-
servations affecting the SDMs, the data set was thinned using the R 
package spThin (Aiello-Lammens et al., 2015), enforcing a minimum 
distance of 70 km between observations. Given the random nature 
of this process, it was repeated 100 times, with the result which kept 
the maximum number of observations retained for downstream 
analyses.

2.11.3  |  Model fitting

SDM was performed using the R package biomod2 (Thuiller et al., 
2019) for all species with more than 10 occurrences after filtering 
and thinning (Stockwell & Peterson, 2002). The thinned data set 
was used as presences, the landmass of Eurasia or North America as 
background, and the same number of pseudo-absences as presences 
were randomly drawn five times from land outside the BirdLife resi-
dent and breeding masks, creating five independent data sets for 
further analysis. We found that drawing pseudo-absences in this 
way, from outside the masks, was the most effective strategy for 
retrieving SDMs consistent with species’ modern-day ranges. By 
confirming that the estimated distributions recovered for the mod-
ern day were in accord with the BirdLife range predictions, we were 
confident that the modelled niche being projected into the past was 
as accurate as possible (Figure S7).

Following Bagchi et al. (2013), models were run independently 
for each of the five pseudoabsence data sets using four different 
algorithms: generalized linear models (GLMs), generalized boosting 
method (GBM), generalized additive models (GAMs) and random 
forest. Model evaluation was performed by spatial cross-validation 
(Roberts et al., 2017), namely splitting the data sets (presences 
and all five runs of pseudoabsences) based on latitudinal bands in 
America and longitudinal bands in Eurasia (Figure S8) with the R 
package BlockCV (Valavi et al., 2019), and using 4/5 of the splits to 
calibrate the model and the remaining 1/5 to evaluate it. As a data 
split containing only absences cannot be used for evaluation, and 
given the great variety of distribution of the species analysed, we 
maximized the probability of having at least some presences in all 
data splits by creating 15 spatial blocks encompassing the whole re-
gion of interest, either North America or Europe. Each block was 
given an ID, numbered sequentially 1–5 repeating, and the 15 blocks 
were assembled into these five working data splits grouped by the 
assigned ID numbers.

The models were run five times (once for each pseudoabsence 
run) for each of the four mentioned algorithms, using in turn four of 
the five defined data splits to calibrate and one to evaluate based on 
the TSS (threshold =0.7).

A full ensemble, combining all pseudo-absences sets and algorithms 
(Araújo & New, 2007), was built using only models with TSS > 0.7 av-
eraged through four different statistics: mean, median, committee-
average and weighted mean. The statistic showing the highest TSS was 
projected to either Eurasia or North America considering the present-
day climate and the palaeoclimatic reconstruction for the LGM (de-
fined as 21 ka). Such projections are visualized as maps, in which each 
cell shows the suitability for the species in a continuous range between 
0 and 1, based on the threshold maximizing TSS.

2.11.4  |  Range change and overlap

In order to calculate the range of each species, such continuous 
projections were transformed into binary (either 0—absence more 
likely, or 1—presence more likely) using 0.5 as a threshold. The binary 
projections were then used to estimate the climatically suitable area 
(km2) for each species now and in the LGM. To do so, we reprojected 
the rasters to the Eckert IV equal-area pseudocylindrical projection 
setting the grid size to 50 × 50 km and multiplied the number of cells 
occupied in each period, and their overlap, by 2500 km2 (cell area).

2.12  |  Range size comparison between sample 
species and all Holarctic species

We used BirdLife data on the Extent of Occurrence (km2) to define 
range size of all Holarctic bird species, those with a mean range lati-
tude of above 20°N. We then compared this full data set to a subset 
of range sizes for the species included in our study using a Wilcoxon 
rank sum test.
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3  |  RESULTS

3.1  |  Summary of available BSPs

A scan of GenBank yielded a preliminary data set of 208 species hav-
ing a minimum of 10 individuals sequenced for either the ND2 or cytb 
genes. Data sets were then discarded because of: insufficient hap-
lotypes for demographic reconstruction (<5), insufficient sequence 
length (<200  bp), sequences across studies not from comparable 
gene sections, unpublished haplotype frequencies, inappropriate 
sampling strategies used by the original study (e.g., nonrandom) 
or extensive population substructure (full details in Materials and 
Methods). Application of these criteria left 167 data sets for BSP 
analyses. They were analysed with beast2 using a BSP and, with one 
exception (king eider, Somateria spectabilis), converged successfully. 
In beast2, we resized the “bGroupSizes” parameter, potentially con-
straining the level of detail recoverable in the profiles but providing 
comparable estimates between variable-quality data sets, analysed 
using the same settings.

Data for both ND2 and cytb were available for 28  species. For 
18 species, expansion times and profiles across them were consistent, 
and a single profile was selected to illustrate the population history. 
For 10 species, the two genes showed discordant demographic his-
tories but, in seven cases, one data set was of appreciably lower qual-
ity (e.g., fewer samples, shorter sequences) and was removed. Three 
species were rejected because the two genes gave discordant profiles 
despite appearing to be of comparable quality (details in Table S1).

Further profiles had to be excluded as they were too deep 
(limit  ≥  1,000,000  years before the present, n  =  9) or too short 
(limit ≤ 5,000 years before the present, n = 4) to be informative for 
the last deglaciation, or showed patterns of expansion/contraction 
that pre-dated the time period of interest, Marine Isotope Stage 3 
(~60 ka, n = 18)(Van Meerbeeck et al., 2009). Notably, even among 
the accepted profiles, there remains great variation in depth due to 
the sparser and more stochastic branching patterns at the bases of 
the trees, which cause many profiles to truncate or to “flatline.” Thus, 
the oldest population size estimates tend to be approximations be-
cause of the reduced information content impacting all profiles, and 
the need to use the points of truncation in short profiles or flatline 
states as the oldest size. For the two species where multiple lineages 
were identified (pine grosbeak, Pinicola enucleator, and horned lark, 
Eremophila alpestris), two separate BSP analyses were performed 
and an average of the estimates was taken for downstream analysis.

The above filters left 102 qualifying species BSP profiles. These 
species inhabit a wide range of habitats: Closed (n  =  43), Open 
(n = 17), Semi-closed (n = 25), Wetlands (n = 12) and Other (n = 5). 
There was no indication that species associated with particular hab-
itats were more/less likely to be excluded (p  =  .77, Fisher's exact 
test, excluding “Other” category as it had too few species for test-
ing). Skyline profiles encompass a wide range of shapes, variously 
exhibiting single sharp inflection points, gradual changes in size and 
multiple points of change (see Figure S9). No significant differences 
were found in the proportion of ND2/cytb genes in each habitat type 

(p = .78, Fisher's exact test, excluding “Other” category), nor in the 
proportions of species from the Palearctic, Nearctic or Holarctic 
in each habitat type (p = .10, Fisher's exact test, excluding “Other” 
category).

3.2  |  Direction and magnitude of 
demographic change

Only four out of 102  species showed an overall decrease in me-
dian Ne over time (21 ka to present), with 10  showing no sizeable 
change (<10% change), while all other species (n  =  88) increased 
to some degree. The direction of change was not associated with 
habitat (p =  .3, Fisher's exact test, excluding “Other” category), al-
though the magnitude of change was (gls p ≤  .026 for backbone-E 
and p  ≤  .030 for backbone-H, lm without phylogenetic correction 
p = .028; Figure 2a). This overall pattern of increase in Ne is rather 
extreme but could be the consequence of most species with suffi-
cient samples in GenBank being relatively common and thus having 
thrived in the Holocene.

3.3  |  Direction and magnitude of change in 
potential geographical range

To investigate the plausibility of changes in the extent of climatically 
suitable area contributing to the overwhelming majority of profiles 
showing an increase in Ne, we created individual SDMs for each of 
our species. We had credible SDMs for 96 species (Table S2); five 
species had to be excluded as there were insufficient observation 
points left for analysis after data thinning, and one species was re-
jected as its SDMs led to a present-day projection much larger than 
the observed range. For the valid SDMs, we generated ranges for 
the LGM (21 ka) and present day and quantified the changes in their 
size.

As was the case for Ne trajectories across the BSPs, many species 
showed an increase in reconstructed range extent since the LGM (76 
of 96). However, the proportion of species showing an increase in 
range was significantly smaller than the proportion with increased 
Ne (p = .009, data subset to the 96 species for which both analyses 
were available). Whilst there was variation among groups of species 
associated with different habitats in the magnitude of change in 
range extent (gls p ≤ .0001 for all 1,000 resolutions of backbone-E 
and backbone-H, lm without phylogenetic correction p  =  .0001, 
Figure 2b) and the direction of change in range extent (p  =  .009, 
Fisher's exact test, excluding “Other” category), there was no signif-
icant match between the direction of the trend in BSP and SDM re-
constructions (Figure S10, Fisher's exact test p = .572). Neither was 
there a significant positive correlation across species between the 
signed magnitudes of the changes in the two measures (Figure 2c; gls 
p ≥ .994 for all 1,000 resolutions of backbone-E and of backbone-H, 
lm without phylogenetic correction p = .3707). Furthermore, taking 
into account changes in the location of the range (i.e., the proportion 
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of overlap between LGM and present range) also failed to explain 
the changes in Ne as reconstructed by BSP (Figure 2D; gls p ≥ .734 
for backbone-E and backbone-H, lm without phylogenetic correc-
tion p = .6917).

3.4  |  Timing of change

We next explored the relationship between the timing of the domi-
nant population size change (since 60 ka) and habitat type (excluding 

“Other” category, as it was heterogeneous and had five species). The 
timings of size change for each population in the four habitats are pre-
sented in Figure 3a. Major size change events in wetland-associated 
species tended to be more recent than for species from the other 
habitats (gls p ≤ .044 in 1000 resolutions of backbone-E and back-
bone-H, lm without phylogenetic correction p = .044). Similar results 
were obtained excluding species which changed less than 10% in Ne 
(which might have added noise) (Figure S11). When using molecular 
evolution rates from Nabholz et al.’s (2016) “Calibration set 4,” the 
timing of all expansions was generally consistent with a response 

F I G U R E  2  (a) Beanplot showing the log relative difference in Ne from 21 ka or start of the profile for species from each habitat type. 
Kernels represent density, small lines are individual species, and thick black lines are medians of species-specific values for the given habitat: 
Closed (n = 43), Open (n = 17), Semi-closed (n = 25), Wetlands (n = 12). (b) Beanplot showing the log relative difference in modelled range 
extent from 21 ka for species from each habitat: Closed (n = 40), Open (n = 15), Semi-closed (n = 25), Wetlands (n = 11). (c) Scatterplot of log 
ratio of Ne from 21 ka to present in relation to the log ratio of change in size of species’ individual bioclimate SDM area from 21 ka to the 
present. (d) Scatterplot of log change in Ne in relation to the proportion of the species’ modelled contemporary range that was also suitable 
during the LGM. In both scatterplots numbers of species are: Closed (n = 40), Open (n = 15), Other (n = 5), Semi-closed (n = 25), Wetlands 
(n = 11)

(a) (b)

(c) (d)
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associated with the LGM. However, using the rate from “Calibration 
set 2” (which includes older nodes than set 4) would recover older 
expansion dates (data not shown); as such dates would correspond 
to periods of high ice coverage, they seem less likely.

For an alternative view of when the expansions occurred, we 
used an MSI. The MSI depicts normalized changes in size aver-
aged across species within each habitat type for each time point 
(Figure 3b). Despite exploiting a different aspect of the BSP profile 
shape, mean change at each time point rather than a single mean 
date of maximum change, MSI profiles reveal a pattern that is 
strongly supportive of the previous result, where wetland species 
expand appreciably later than species in the other three habitats.

We also confirmed there was no correlation between body mass 
and timing of population size change (p = .171, Figure S12).

4  |  DISCUSSION

We gathered a large collection of mtDNA data sets from many 
bird species to look for habitat-associated trends in population size 
through time. Although variable data quality may lead to uncertain-
ties about the magnitude of any particular change in population size 
we detect, the direction of change is relatively robust (Grant, 2015; 
Grant et al., 2012). Of 102 species, only four species show an overall 
decrease in effective population size (Ne). Changes during the last 
deglaciation in the modelled extent of the geographical range also 
indicated increases for most species, though their proportion was 
lower than for Ne. However, we could find no association across spe-
cies between the direction or magnitude of change in Ne and range 
reconstructions.

Species with large ranges at present are the probable “winners” 
in their response to climatic change and are more likely to show an 
increase in range and population size from the LGM. Widespread 
species might also be more likely to have been sampled, and indeed, 
we found that, based on BirdLife breeding range data, the spe-
cies studied here have significantly larger modern-day ranges than 
Holarctic species as a whole (Wilcoxon rank sum p <  .001, Figure 
S13). Most species sampled also showed an increase in range size 
based on SDMs. However, the proportion of expanding species ac-
cording to SDMs was much lower than that observed for BSPs, thus 
failing to fully explain the ubiquity of expanding BSPs, and there was 
no statistical association between changes since the LGM as recon-
structed by BSPs and SDMs.

Colonization bottlenecks during range shifts can, in principle, 
lead to an increase BSP irrespective of the overall change in range 
size, as long as migration is low enough (i.e., if the BSP captures the 
local dynamics in a given population/small geographical region rather 
than the whole range). However, if this mechanism were important, 
we would expect species exhibiting an increase in BSP despite a 
range contraction to be associated with large shifts. In fact, this is 
not the case for the majority of species with increasing BSP profiles 
and decreasing or stable SDM profiles, (Figure S14). Therefore, colo-
nization bottlenecks do not seem to explain the ubiquity of expand-
ing BSPs in our data set.

Increases in migration can also lead to an increasing BSP with-
out any change in census population sizes. The potential role of mi-
gration in producing counterintuitive Ne estimates when assuming 
panmictic populations for a whole species has received much atten-
tion in the context of interpreting cross-coalescence (e.g., Multiple 
Sequentially Markovian Coalescent (MSMC)) profiles (Mazet et al., 
2015). However, it is difficult to envisage a scenario where migration 
would increase significantly in the face of a range contraction; the 
effect of migration is more likely to be seen during an expansion, 
when previously isolated fragments are reconnected. Thus, it seems 
unlikely that migration can explain our results.

A final, more likely but difficult-to-test explanation is that popu-
lation densities have increased since the LGM. Thus, even for species 
that have experienced a range contraction, there might have been 
changes in local population dynamics such that the average density 

F I G U R E  3  (a) Beanplot showing time of dominant effective 
population size change for species from each habitat type. Kernels 
represent density, and small lines the time of an individual species 
size change event (increase/decrease). Thick black line is median of 
species-specific change times for a given habitat: Closed (n = 43), 
Open (n = 17), Semi-closed (n = 25), Wetlands (n = 12). (b) MSI 
depicting normalized change in size averaged across species within 
each habitat for each time point
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is higher at present. This decoupling of range extent and density 
makes interpretation of the SDMs and BSPs very challenging. To re-
solve them, there is a need to use species abundance models that 
explicitly predict population densities rather than presence/absence 
(Howard et al., 2014; Johnston et al., 2015; Potts & Elith, 2006). 
Whilst fitting such models is possible in principle, they have been lit-
tle used because extensive population density information is rarely 
available. However, recent efforts such as those by the Cornell Lab 
of Ornithology (https://ebird.org/scien​ce/statu​s-and-trend​s/; Auer 
et al., 2019) have started collating such information, opening a win-
dow to better understanding the link between range size and den-
sity. Our results, however, do raise a caveat in the interpretation of 
SMDs and BSPs for extinct species; arguably, the best strategy is 
to couple the two approaches, as only their combined results might 
provide a good overview of the fate of a species.

Besides the challenges of interpreting Ne reconstructions from 
BSPs, we also have to be cautious about the limitations of SDMs. 
SDMs assume that the range of a species is solely determined by a 
set of climatic variables that limits its expansion; in reality there are 
many other factors (such as availability of nesting sites, interactions 
with other species, availability of appropriate prey types) which 
might determine the distribution of a species (Araújo & Guisan, 
2006). If those neglected factors are important enough and are not 
adequately predicted by (i.e., correlated with) a climatic variable, the 
SDMs will fail to properly reconstruct the past range. Furthermore, 
SDMs assume that the niche of a species has not changed through 
time, but some species might have adapted to different conditions 
over the last 20,000  years (Townsend, 2011; Veloz et al., 2012). 
Thus, we caution that some of the mismatch between BSPs and 
SDMs might also be attributed to shortcomings of the latter.

The timings we find for when population expansions occurred 
agree broadly with those of changes in climate after the LGM. Dates 
were based on mitochondrial mutation rates calibrated for body size 
and based on a calibration set that included relatively young spe-
cies splits (Nabholz et al., 2016), and thus likely to give faster muta-
tion rates (i.e., less affected by selection) that were appropriate for 
within-species analysis (Ho, 2007; Howell et al., 2003; Penny, 2005). 
Using a calibration set that included older splits (Nabholz et al., 
2016) would lead to much older (well before the last glaciation), and 
thus less realistic changes in Ne. However, we strongly caution that 
mutation rates calibrated by bird body size, whilst the best available 
option for comparative analysis, are likely to be noisy, and individ-
ual species estimates should not be overly interpreted. Ideally, we 
would need taxon-specific mutation rates (Hope et al., 2014) which 
are not available for the number of species investigated here. Having 
said this, the fact that species from the same habitat tend to yield 
broadly similar profiles gives us confidence that the relative timings 
are robust, even if the absolute values have room for improvement.

We found that changes in Ne for wetland-associated species 
have occurred more recently, and have been significantly larger, than 
those from terrestrial habitats. Although the significance is marginal 
when based on point estimates for the date of most rapidly chang-
ing size, the finding is supported by MSI analysis, which also reveals 

a similar pattern. Compared to many terrestrial habitats, wetlands 
tend to be less stable: factors such as local water levels, meltwater 
from retreating ice sheets, and soil erosion all play into wetland de-
velopment and could have delayed their stabilization after the LGM. 
Although reconstruction of wetland environments and the model-
ling of wetland recovery is difficult (Fan & Miguez-Macho, 2011; 
Kaplan, 2002; Lafleur, 2008; Valdes et al., 2005), analysis of pollen 
across Eurasia shows that species associated with wetlands such 
as sphagnum moss and alder trees exhibit much later expansions 
compared with terrestrial species (Allen et al., 1999; Giesecke et al., 
2017). Indeed, the expansion of alder relative to other trees (Allen 
et al., 1999) matches closely the later expansion we find for wetland 
vs. nonwetland birds.

BSP analysis is powerful but depends on a number of assump-
tions that are rarely met in real data, most notably the use of a 
random sample of individuals drawn from a panmictic population 
(Chikhi et al., 2010; Heller et al., 2013; Pannell, 2003). Consequently, 
most profiles should be seen as approximations that are easy to 
over-interpret (Grant, 2015; Miller et al., 2018). However, increasing 
numbers of public domain data sets allow studies based on charac-
teristics averaged across multiple profiles constructed from species 
or populations that share habitats or traits. This approach has its 
own challenges and the data need stringent filtering. Here, we con-
structed and inspected network diagrams for each data set, identify-
ing species with genetic outliers and evidence of strong population 
substructure to be divided or excluded. It is noteworthy that the use 
of public domain data sets can additionally restrict the level of con-
trol a study has on sampling scheme, a key tool for limiting the im-
pact of violating the panmixia assumption (Chikhi et al., 2010; Heller 
et al., 2013). We explored the impact of sampling scheme on five of 
the data sets from this study and found the shape and trend of the 
median line to be generally robust to dramatic alterations in sam-
pling scheme (Figure S5A–E). Although we recognize that structural 
biases undoubtedly exist in the data uploaded to GenBank, this gave 
us confidence that structural bias was not driving the demographic 
patterns recovered. However, the large number of species inves-
tigated allowed us to see a clear pattern of population expansion 
in almost all species following the LGM, irrespective of their range 
dynamics inferred from SDMs, and a tendency for the expansion to 
occur later in wetland species. The near-ubiquitous signal of expan-
sion suggests a possible decoupling of range size and local densities, 
implying a need for carefully interpretation of BSP and SDMs to de-
scribe species-wide responses.
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