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Abstract In population and evolutionary biology, hypotheses about micro-evolutionary and macro-

evolutionary processes are commonly tested by comparing the shape indices of empirical evolutionary trees

with those predicted by neutral models. A key ingredient in this approach is the ability to compute and quantify

distributions of various tree shape indices under random models of interest. As a step to meet this challenge, in

this paper we investigate the joint distribution of cherries and pitchforks (that is, subtrees with two and three

leaves) under two widely used null models: the Yule-Harding-Kingman (YHK) model and the proportional to

distinguishable arrangements (PDA) model. Based on two novel recursive formulae, we propose a dynamic

approach to numerically compute the exact joint distribution (and hence the marginal distributions) for trees

of any size. We also obtained insights into the statistical properties of trees generated under these two models,

including a constant correlation between the cherry and the pitchfork distributions under the YHK model,

and the log-concavity and unimodality of the cherry distributions under both models. In addition, we show

that there exists a unique change point for the cherry distributions between these two models.
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1 Introduction

Phylogenetic tree shapes have been utilised to test evolutionary processes (see, e.g. Mooers and Heard, 1997;

Nordborg, 2001; Blum and François, 2006; Purvis et al, 2011; Stadler, 2013), and more recently, to resolve

disease transmission patterns (see, e.g. Colijn and Gardy, 2014). One challenge in these approaches is the

ability to compute the distributions of various tree shape indices under the models of interest, which is needed

in statistical testing for calculating the p-value of the empirical shape statistics or constructing a confidential

interval. Even for some relatively simple null models, this can still be a challenging task. Many current ap-

proaches are based on approximating techniques, such as Monte Carlo sampling (see, e.g. Blum and François,

2006) or Gaussian approximation (see, e.g. McKenzie and Steel, 2000), which could be computationally inten-

sive or restricting the tests to the trees above a certain size. Therefore it is desirable to explore efficient ways

of computing these distributions exactly.

Two widely used null models for generating random trees in population and evolutionary biology are the

Yule-Harding-Kingman (YHK) model (Harding, 1971; Yule, 1925; Kingman, 1982) and the proportional to

different arrangements (PDA) model (Aldous, 2001). Under the PDA model all rooted binary trees of the same

size are chosen with the same probability (Aldous, 2001) whilst under the YHK model each tree is chosen with

a probability proportional to the number of total orderings that can be assigned to its internal nodes so that

the relative partial ordering derived from the tree topology is preserved.

In this paper, we are interested in the exact computation of the joint distribution for the number of subtrees

under the YHK and PDA model. Here a subtree, also known as a fringe subtree in Aldous (1991), consists of

a node and all its descendants. More specifically, we study the distributions of the number of cherries, subtrees

with two leaves, and that of pitchforks, subtrees with three leaves. Note that this is equivalent to study the

joint distributions of 2-pronged and 3-pronged nodes as defined in (Rosenberg, 2006), as well as the joint

distributions of clades of size two and three as defined in (Zhu et al, 2011).

We now describe the contents of the rest of this paper. In the next section we gather some necessary

notation and background. In particular, we present a random tree generating process for realising both the

YHK and PDA models as described in McKenzie and Steel (2000). In contrast to the splitting model that

were used in several previous studies concerning the asymptotical distributions of subtrees (see, e.g. Chang

and Fuchs, 2010), the process used here is based on iteratively attaching leaves. We therefore also collect

some observations on the change of the numbers of cherries and pitchforks in a tree when an additional leaf is

attached.

In Sections 3 and 4 we study subtree distributions under the YHK and the PDA models, respectively.

Our main results include two novel recursive formulae on the joint distributions of cherries and pitchforks;

see Theorem 1 for the one under the YHK model and Theorem 4 for the one under the PDA model. These

recursions enable us to develop a dynamic approach to numerically compute the joint distributions, and hence

also their marginal distributions, for trees of any size.

Rewritten in functional forms, the recursions also provide a way to compute the covariance and correlation

of the joint distributions under these two models. Somewhat surprisingly, we find that under the YHK model

the correlation between the cherry and the pitchfork distributions is a constant −
√

14/69, which is independent
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of the number of leaves (see, e.g., Corollary 3). In contrast to currently methods developed respectively for

the two models (see, e.g. Rosenberg, 2006; Chang and Fuchs, 2010), the recursions also lead to an alternative

and arguably more unified approach to compute the moments of the cherry and the pitchfork distributions,

and we demonstrate this by reaffirming several results obtained in previous studies.

Using the recursions on the cherry distribution derived from the joint distribution, we obtain in Theorem 6

the exact formula for the cherry distribution under the PDA model, and derive some interesting properties

for cherry distributions, including that they are log-concave and hence unimodal under both models (see

Theorems 3 and 7).

In Section 5 we present a comparative study of cherry and pitchfork distributions under the YHK and

PDA models. We first compare the mean and the variance of these two distributions under these two models.

Then we show in Theorem 8 that there exists a unique change point when comparing cherry distributions, that

is, there exists a critical value τn for each n ≥ 4 such that the probability that a random tree with n leaves

generated under the YHK model contains k cherries is lower than that under the PDA model if 1 < k < τn,

and higher if τn < k ≤ n/2. Finally, we conclude in Section 6 with discussions and some open problems.

2 Preliminaries

For later use, we present in this section some basic notation and results concerning phylogenetic trees. Through-

out this article, X denotes a finite set with |X| = n ≥ 2.

Phylogenetic trees A phylogenetic tree T = (V (T ), E(T )) on X is a rooted tree with leaf set L(T ) = X

such that the root has one child whilst all other vertices have either zero or two children (see Fig. 1 for an

example). Note that in this paper phylogenetic trees are rooted, with their edges directed away from the root.

In addition, for technical simplicity we assume without loss of generality that the root has one child (also

referred to as planted phylogenetic trees by Baroni et al (2005)). Let E∗(T ) be the set of pendant edges in T ,

i.e., those edges incident with a leaf. Then we have |E(T )| = 2n− 1 and |E∗(T )| = n.

Let e be an edge in a phylogenetic tree T . The tree consisting of e and all edges below e is called a subtree

of T , and is denoted by T (e). In particular, a cherry is a subtree with two leaves, and a pitchfork is a subtree

with three leaves. The number of cherries and pitchforks contained in T are denoted by C(T ) and A(T ),

respectively. Note first that we always have 1 ≤ C(T ) ≤ n/2 and 0 ≤ A(T ) ≤ n/3. Moreover, in our definition

a cherry contains three edges and a pitchfork contains five edges. As an example, for the tree T depicted in

Fig. 1 we have C(T ) = 2 and A(T ) = 1. In addition, T (e8) is a pitchfork with edge set {e1, e3, e5, e7, e8}, and

T (e7) is a cherry with edge set {e1, e5, e7}. Finally, C(T ) and A(T ) are respectively equal to the number of

2-pronged nodes and 3-pronged nodes contained in T (see Rosenberg (2006) for the definitions of r-pronged

nodes).

Given an edge e in a phylogenetic tree T and a taxon x0 6∈ L(T ), let T [e;x0] be the phylogenetic tree

obtained from T by attaching a new leaf labelled with x0 to the edge e. Formally, let e = {u, v} and let w

be a vertex not contained in V (T ), then T [e;x0] has vertex set V (T ) ∪ {x0, w} and edge set
(
E(T ) \ {e}

)
∪
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Fig. 1: Examples of phylogenetic trees. T is a phylogenetic tree on X = {x1, . . . , x6}, and T ′ = T [e9;x7] is a

phylogenetic tree on {x1, . . . , x7} that is obtained from T by attaching the leaf labelled x7 to edge e9. Here

the directions of all edges are directed away from the root r, and hence omitted for simplicity.

{(u,w), (v, w), (w, x0)} (see Fig. 1 for an illustration of this construction). When the labelling of the new leaf

is clear from the context, T [e;x0] is abbreviated to T [e].

The YHK and the PDA model In this subsection, we present a formal definition of the two null mod-

els investigated in this paper: the proportional to distinguishable arrangements (PDA) model and the Yule–

Harding–Kingman (YHK) model. In contrast to the splitting process used by Aldous (2001) to accommodate

the two models, the random process used here is based on iteratively attaching leaves.

Under the Yule–Harding model (Harding, 1971; Yule, 1925), a rooted phylogenetic tree on X is generated

as follows. Beginning with the tree with two leaves, we “grow” it by repeatedly uniformly sampling a pendant

edge e in the current tree Tcur and replace Tcur by Tcur[e]. This process continues until a binary tree with

n leaves is obtained. Finally, we label each of its leaves with a label sampled randomly uniformly (without

replacement) from {x1, . . . , xn}. When branch lengths are ignored, the Yule–Harding model is shown by Aldous

(1996) to be equivalent to the trees generated by the coalescent process, a backward tree generating process

that is widely used in population genetics (Kingman, 1982), and so we call it the YHK model. The probability

of generating a tree T under this model is denoted by Py(T ).

Let Tn be the set of phylogenetic trees with leaf set {x1, . . . , xn}. It is well known that the number of trees

contained in Tn is ϕ(n) := (2n− 3)!! = 1× 3× · · · × (2n− 3) (see e.g. Semple and Steel, 2003). Here we adopt

the convention that ϕ(1) = 1. Under the PDA model, each tree has the same probability, that is, 1/ϕ(n), to

be generated. Alternatively, a tree can be generated under the PDA model using a Markov process similar

to the one used in the YHK model; the only difference is that the edge e is uniformly sampled from E(T ),

instead of E∗(T ) (see, e.g., McKenzie and Steel, 2000). We use Ey, Vy, Covy and ρy to denote respectively the

expectation, variance, covariance and correlation taken with respect to the probability measure Py under the

YHK model. Similarly, Eu, Vu, Covu and ρu are defined with respect to the probability Pu under the PDA

model.
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For n ≥ 2, let An (resp. Cn) be the random variable A(T ) (resp. C(T )) for a random tree T in Tn. In this

paper, we are interested in the joint distributions and the marginal properties of An and Cn under the YHK

and the PDA models.

Subtree Pattern For later use, we present in this subsection several technical results concerning the change

of the numbers of cherries and pitchforks when a new leaf is attached to a phylogenetic tree.

We begin with the following notation. Given a phylogenetic tree T , let E1(T ) be the set of pendant edges

that are contained in a pitchfork but not a cherry; E2(T ) the set of edges in T that are contained in a cherry

but not in a pitchfork (note that in our notation a cherry contains three leaves); E3(T ) the set of pendant

edges that are contained in neither a cherry nor a pitchfork; and E4(T ) = E(T ) \ (E1(T ) ∪ E2(T ) ∪ E3(T )).

For instance, for the tree T depicted in Fig. 1, we have E1(T ) = {e3}, E2(T ) = {e2, e4, e9}, E3(T ) = {e6} and

E4(T ) = {e0, e1, e5, e7, e8, e10}. In addition, E(T ) can be decomposed into the disjoint union of these four sets

of edges. The following lemma, whose proof is straightforward and hence omitted here, shows this observation

holds for all phylogenetic trees, where t denotes disjoint union.

Lemma 1 Suppose that T is a phylogenetic tree with n leaves. Then we have

E(T ) = E1(T ) t E2(T ) t E3(T ) t E4(T ). (1)

In addition, we have |E1(T )| = A(T ), |E2(T )| = 3(C(T )−A(T )), |E3(T )| = n−A(T )−2C(T ), and |E4(T )| =
n− 1 + 3A(T )− C(T ).

The last lemma provides a decomposition for the set of edges in a phylogenetic tree, which is useful to the

study of the PDA model. For the YHK model, we need an analogous decomposition for E∗(T ), the set of the

pendant edges in T . To this end, note first that we have E1(T ) ⊆ E∗(T ) and E3(T ) ⊆ E∗(T ). In addition, let

E∗i (T ) := Ei(T )∩E∗(T ) be the set of pendant edges in Ei(T ) for i = 2, 4. Then we have the following lemma,

whose proof is straightforward and hence omitted.

Lemma 2 Suppose that T is a phylogenetic tree with n leaves. Then we have

E∗(T ) = E1(T ) t E∗2 (T ) t E3(T ) t E∗4 (T ). (2)

In addition, we have |E∗2 (T )| = 2(C(T )−A(T )) and |E∗4 (T )| = 2A(T ).

We end this section with the following result relating the values C(T [e]) − C(T ) and A(T [e]) − A(T ) to

the choice of e.

Proposition 1 Suppose that e is an edge in a phylogenetic tree T and T ′ = T [e]. Then we have

A(T ′) =


A(T ) if e ∈ E3(T ) ∪ E4(T ),

A(T )− 1 if e ∈ E1(T ),

A(T ) + 1 if e ∈ E2(T );

and C(T ′) =


C(T ) if e ∈ E2(T ) ∪ E4(T ),

C(T ) + 1 if e ∈ E1(T ) ∪ E3(T ).

Proof Let {F1, . . . , Fk} be the set of pitchforks contained in T , and let {H1, . . . ,Hl} (l ≥ k) be the set of

cherries contained in T . Here we may assume that indices are chosen in the way so that H1 is contained in F1.
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Suppose first that e = (u, v) ∈ E1(T ). Swapping the labelling of Fi if necessary, we may assume that e

is the pendant edge contained in the pitchfork F1 but not in the cherry H1. Let u0 be the parent of u, and

let u1 be the child of u that is distinct from v. In addition, let w be the newly added interior vertex in T ′.

Now consider e0 = (u0, u) and e′ = (u,w) in T ′. Then T ′(e0) is not a pitchfork as u0 has four leaves as

its descendants. On the other hand, T ′(e′) is a cherry of T ′ that is not contained in T . Therefore, we have

A(T ′) = k − 1 and C(T ′) = l + 1, as required.

By a similar argument, we can establish the proposition for the other three cases, i.e., e ∈ Ei(T ) for

2 ≤ i ≤ 4. Since by Lemma 1 these four cases cover all possible choices of e, the proposition follows. �

One useful consequence of the last proposition is the following corollary, whose proof is straightforward

and hence omitted.

Corollary 1 Suppose that e is an edge in a phylogenetic tree T with A(T ) = a and C(T ) = b. Then for the

phylogenetic tree T ′ = T [e], we have

(A(T ′), C(T ′)) ∈ {(a− 1, b+ 1), (a+ 1, b), (a, b+ 1), (a, b)}

according to the index i (1 ≤ i ≤ 4) with e ∈ Ei(T ).

3 Subtree Distributions under the YHK Model

In this section, we study the distributions of the random variables An (i.e., the number of pitchforks) and Cn

(i.e., the number of cherries) under the YHK model. Our starting point is the following recursion on their joint

distribution.

Theorem 1 We have

Py(An+1 = a,Cn+1 = b) =
2a

n
Py(An = a,Cn = b) +

(a+ 1)

n
Py(An = a+ 1, Cn = b− 1)

+
2(b− a+ 1)

n
Py(An = a− 1, Cn = b) +

(n− a− 2b+ 2)

n
Py(An = a,Cn = b− 1)

(3)

for n > 3 and 1 < b < n. Moreover, Py(A3 = a,C3 = b) equals to 1 if (a, b) = (1, 1), and 0 otherwise.

Proof Fix n > 3, and let T2, . . . , Tn, Tn+1 be a sequence of random trees generated by the YHK process, that

is, T2 contains two leaves and Ti+1 = Ti[ei] for a uniformly chosen pendant edge ei in Ti for 2 ≤ i ≤ n. In

particular, we have |E∗(Ti)| = i for 2 ≤ i ≤ n+ 1. Then we have

Py(An+1 = a,Cn+1 = b) = P(A(Tn+1) = a,C(Tn+1) = b)

=
∑
p,q

P(A(Tn+1) = a,C(Tn+1) = b |A(Tn) = p, C(Tn) = q)P(A(Tn) = p, C(Tn) = q)

=
∑
p,q

P(A(Tn+1) = a,C(Tn+1) = b |A(Tn) = p, C(Tn) = q)Py(An = p, Cn = q), (4)

where the first and second equalities follow from the law of total probability, and the definition of random

variables An and Cn.
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Let en be the pendant edge in Tn chosen in the above YHK process for generating Tn+1, that is, Tn+1 =

Tn[en]. Since Corollary 1 implies that

P(A(Tn+1) = a,C(Tn+1) = b | A(Tn) = p, C(Tn) = q) = 0 (5)

for (p, q) 6∈ {(a, b), (a + 1, b − 1), (a − 1, b), (a, b − 1)}, it suffices to consider the following four cases in the

summation in (4): case (i): p = a, q = b; case (ii): p = a + 1, q = b − 1; case (iii): p = a − 1, q = b; and case

(iv): p = a, q = b− 1.

Firstly, Proposition 1 implies that case (i) occurs if and only if en ∈ E4(Tn) ∩E∗(Tn) = E∗4 (Tn). Together

with Lemma 2, we have

P(A(Tn+1) = a,C(Tn+1) = b | A(Tn) = a,C(Tn) = b) =
|E∗4 (Tn)|
|E∗(Tn)| =

2A(Tn)

n
=

2a

n
. (6)

Similarly, Proposition 1 implies that case (ii) occurs if and only if en ∈ E1(Tn) ∩E∗(Tn) = E1(Tn). Hence

by Lemma 1 we have

P(A(Tn+1) = a,C(Tn+1) = b | A(Tn) = a+ 1, C(Tn) = b− 1) =
|E1(Tn)|
|E∗(Tn)| =

a+ 1

n
. (7)

Next, Proposition 1 implies case (iii) occurs if and only if en ∈ E2(Tn) ∩ E∗(Tn) = E2(Tn). Hence using

Lemma 1 we have

P(A(Tn+1) = a,C(Tn+1) = b | A(Tn) = a+ 1, C(Tn) = b) =
|E2(Tn)|
|E∗(Tn)| =

2(b− a− 1)

n
. (8)

Finally, by Proposition 1 case (iv) occurs if and only if en is contained in E3(Tn) ∩ E∗(Tn) = E∗3 (Tn).

Hence by Lemma 2 it follows that

P(A(Tn+1) = a,C(Tn+1 = b) | A(Tn) = a,C(Tn) = b− 1) =
|E∗3 (Tn)|
|E∗(Tn)| =

n− a− 2b+ 2

n
. (9)

Now substituting Eq. (6)–(9) into Eq. (4) completes the proof of the theorem. �

The recursion in the last theorem can be used for a dynamic approach to numerically compute the joint

distribution of An and Cn . More precisely, let Mm (m ≥ 3) be the (m+ 1)× (m+ 1) matrix whose (i, j)-entry

is Py(Am = i− 1, Cm = j − 1). Then M3 contains a unique non-zero entry, which is at position (2, 2) and has

a value of 1 . Next, starting with m = 4 and assuming that Mm−1 is already constructed, each entry in Mm

can be computed using time O(1), and hence Mm can be constructed in time O(m2) with Mm−1 given. In

other words, Mn, which specifies the joint distribution of cherry and pitchfork under the YHK model, can be

computed in O(n3) (see Fig. 2 for the contour plots with n = 50 and n = 200). Note that an alternative way

of computing the joint distribution of An and Cn under the YHK model is proposed in Disanto and Wiehe

(2013), which is based on integrating and differentiating generating functions.

For later use, we rewrite the recursion in Theorem 1 in the following functional form.

Theorem 2 Let ϕ : R× R→ R be an arbitrary function. Then, under the YHK model, we have

Eyϕ(An+1, Cn+1) =
2

n
Ey[An ϕ(An, Cn)] +

1

n
Ey[An ϕ(An − 1, Cn + 1)]

+
2

n
Ey[(Cn −An) ϕ(An + 1, Cn)] +

1

n
Ey[(n−An − 2Cn) ϕ(An, Cn + 1)]

for n > 2.
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Fig. 2: Contour plots of the probability density functions for the joint distribution of cherries and pitchforks

on phylogenetic trees with 50 and 200 leaves. The density functions are computed using a dynamic approach

based on the recursions in Theorems 1 and 4. The polygonal contours arise because the joint distribution is

defined only on integer lattice points.

Proof Consider the indicator function I(a,b) on R× R defined as

I(a,b)(x, y) =

1 if x = a and y = b,

0 otherwise.

We multiply Eq. (3) in Theorem 1 by ϕ(a, b) and rewrite them as follows

Ey[ϕ(An+1, Cn+1)I(a,b)(An+1, Cn+1)] =
1

n

{
2Ey[Anϕ(An, Cn)I(a,b)(An, Cn)]

+ Ey[Anϕ(An − 1, Cn + 1)I(a,b)(An − 1, Cn + 1)] + 2Ey[(Cn −An)ϕ(An + 1, Cn)I(a,b)(An + 1, Cn)]

+ Ey[(n−An − 2Cn)ϕ(An, Cn + 1)I(a,b)(An, Cn + 1)]
}
.

Summing over all a and b completes the proof. �

In the remainder of this section we study cherry and pitchfork distributions using Theorem 2. We begin

with a functional recursion on the cherry distribution Cn. This enables us to show that the cherry distribution

is log-concave under the YHK model, and obtain an alternative approach to computing the central moments

of cherry distribution.

Proposition 2 Let ψ : R→ R be an arbitrary function. Then we have

Eyψ(Cn+1) =
1

n
Ey[2Cn ψ(Cn) + (n− 2Cn) ψ(Cn + 1)] (10)

for n > 2. In particular, we have Py(C2 = 1) = 1, Py(C2 = k) = 0 for k 6= 1, and

Py(Cn+1 = k) =
2k

n
Py(Cn = k) +

n− 2k + 2

n
Py(Cn = k − 1) (11)

for n > 2 and 1 < k < n.
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Proof For ψ : R → R given in the statement of the proposition, we define ϕ∗(x, y) = ψ(y), a function on

R × R. Applying Theorem 2 to the function ϕ∗ leads to Eq. (10). Eq. (11) follows from Eq. (10) by taking

ψ(x) = Ik(x), where Ik(x) equals 1 if x = k, and 0 otherwise. �

Using the last proposition, the mean and the variance of cherry distribution can be obtained by substituting

ψ(x) = x and ψ(x) = x2, respectively, in the recursive equation Eq. (10) in Proposition 2.

Corollary 2 (Heard, 1992; McKenzie and Steel, 2000) We have Ey(Cn) = n/3 for n > 2 and Vy(Cn) =

2n/45 for n ≥ 5.

Recall that a sequence of numbers, {y1, . . . , ym}, is said to be positive if each number in the sequence is

greater than zero. It is called log-concave if yk−1yk+1 ≤ y2k holds for 2 ≤ k ≤ m−1. Clearly, a positive sequence

{yk}1≤k≤m is log-concave if and only if the sequence {yk/yk+1}1≤k≤m−1 is increasing. Therefore, a log-concave

sequence is necessarily unimodal, that is, there exists an index 1 ≤ k ≤ m such that

y1 ≤ y2 ≤ · · · ≤ yk ≥ yk+1 ≥ · · · ≥ ym (12)

holds. Finally, a non-negative integer valued random variable Y with probability mass function {pk : k ≥ 0}
is log-concave if {pk}k≥0 is a log-concave sequence.

To show that the probability density function of Cn is log-concave, we need the following lemma.

Lemma 3 Let z1, z2, z3, z4 be four positive numbers with z22 ≥ z1z3 and z23 ≥ z2z4. Then we have

z2z3 ≥ z1z4 and z1z3 + z2z4 ≥ 2z1z4.

Proof Since zi are positive for 1 ≤ i ≤ 4, from z22 ≥ z1z3 and z23 ≥ z2z4 if follows that

z2
z1
≥ z3
z2
≥ z4
z3
.

Hence we have

z2z3 ≥ z1z4, (13)

which completes the proof of the first inequality in the lemma.

To prove the second inequality in the lemma, we consider the following two cases.

Case 1: z1 ≥ z2. Together with z22 ≥ z1z3, this implies z2 ≥ z3, and hence z3 ≥ z4 in view of z23 ≥ z2z4.

Therefore, we have

(z1 − z2)(z3 − z4) ≥ 0.

This leads to z1z3 + z2z4 ≥ z1z4 + z2z3 ≥ 2z1z4, where the last inequality follows from Eq. (13).

Case 2: z1 < z2. If z3 ≤ z4, then we have (z1− z2)(z3− z4) ≥ 0, and hence z1z3 + z2z4 ≥ z1z4 + z2z3 ≥ 2z1z4,

as required. Therefore, we may assume that z3 > z4. This implies z1z3 ≥ z1z4 and z2z4 ≥ z1z4, and hence

z1z3 + z2z4 ≥ 2z1z4, as required. �

Using the last lemma, we present the following theorem concerning the log-concavity of the cherry distri-

bution under the YHK model.



10 Taoyang Wu, Kwok Pui Choi

Theorem 3 Under the YHK model, we have

Py(Cn = k)2 ≥ Py(Cn = k + 1)Py(Cn = k − 1) (14)

for n > 2 and 1 < k < n.

Proof For simplicity, we put an,k := Py(Cn = k). We prove this theorem by induction; the basic case n = 3 is

straight-forward. Now assuming that n ≥ 3 and Eq. (14) holds for all 1 < k < n, it suffices to show that

a2n+1,k ≥ an+1,k−1an+1,k+1 (15)

for all 1 < k ≤ n. Using the recursion described in Eq. (11), we have

a2n+1,k = 4k2a2n,k + (n+ 2− 2k)2a2n,k−1 + 4k(n+ 2− 2k)an,kan,k−1

and an+1,k−1an+1,k+1 is equal to

(2k + 2)(2k − 2)an,k−1an,k+1 + (2k + 2)(n− 2k + 4)an,k−2an,k+1

+ (n− 2k)(2k − 2)an,kan,k−1 + (n− 2k)(n− 2k + 4)an,kan,k−2.

Therefore, by the inductive assumption and Lemma 3 we have

a2n+1,k − an+1,k−1an+1,k+1

= 2[k(n− 2k) + (n+ 2k)](an,kan,k−1 − an,k−2an,k+1) + 4k2(a2n,k − an,k−1an,k+1)

+ 4an,k−1(an,k−1 − an,k−2) + 4(n+ 2− 2k)2(a2n,k+1 − an,kan,k−2) + 4an,k−2(an,k − an,k+1)

≥ 4an,k+1(an,k−1 − an,k−2) + 4an,k−2(an,k − an,k+1)

= 4(an,k−1an,k+1 + an,kan,k−2 − 2an,k−2an,k+1) ≥ 0,

from which Eq. (15) follows, as required. �

In the next result we compute the mean and the variance of pitchfork distribution An under the YHK

model, and calculate the covariance and correlation of An and Cn. Note that the mean and the variance of

An was also obtained by Rosenberg (2006, Theorem 4.4). Since the proof is similar to that of Corollary 2, we

only outline the main step here.

Proposition 3 For n ≥ 7 we have

Ey(An) =
n

6
, Covy(An, Cn) = − n

45
, and Vy(An) =

23n

420
. (16)

Proof Applying Theorem 2 to ϕ(x, y) = x and using Corollary 2, it follows that

Ey(An+1) =
1

n
Ey[2A2

n +An(An − 1) + 2(Cn −An)(An + 1) + (n−An − 2Cn)An]

=
2

3
+
n− 3

n
Ey(An)

holds for n > 2. Together with Ey(A3) = 1, we have Ey(An) = n/6 for n ≥ 4, as required.
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Next, applying Theorem 2 to the function ϕ(x, y) = xy shows that

Ey(An+1Cn+1) =
n− 5

n
Ey(AnCn) +

n− 1

n
Ey(An) +

2

n
Ey(C2

n)

holds for n > 2. By Corollary 2 and Ey(An) = n/6 it follows that

Covy(An+1, Cn+1) = Ey(An+1Cn+1)− (n+ 1)2

18

=
n− 5

n
Ey(AnCn) +

n− 1

6
+

2(5n+ 2)

45
− (n+ 1)2

18

=
n− 5

n
Covy(An, Cn)− 2

15

holds for n ≥ 5. Solving the last recursion equation, we obtain Covy(An, Cn) = −n/45 for n ≥ 6, as required.

Now the formula on Vy(An) can be established by an argument similar to that for Covy(An, Cn) by

applying Theorem 2 to the function ϕ(x, y) = x2. �

Interestingly, the last proposition implies that the correlation coefficient between the cherry and pitchfork

distribution under the YHK model is a negative constant for n ≥ 7. Note that negative correlation is to be

expected as the more cherries are found in a tree, the more likely that there are fewer pitchforks in that tree.

Corollary 3 Under the YHK model, the correlation coefficient ρy(An, Cn) between An and Cn is −
√

14/69,

which is independent of n for n ≥ 7.

Proof The proposition follows directly from Corollary 2 and Proposition 3. �

4 Subtree Distributions under the PDA model

In this section, we shall investigate the cherry and pitchfork distributions under the PDA model. Similar to

the study on the YHK model in Section 3, our starting point is the following recursion relating the joint

distribution of cherries and pitchforks.

Theorem 4 We have

Pu(An+1 = a,Cn+1 = b) =
n+ 3a− b− 1

2n− 1
Pu(An = a,Cn = b) +

a+ 1

2n− 1
Pu(An = a+ 1, Cn = b− 1)

+
3(b− a+ 1)

2n− 1
Pu(An = a− 1, Cn = b) +

n− a− 2b+ 2

2n− 1
Pu(An = a,Cn = b− 1)

for n > 3 and 1 < b < n. Moreover, Pu(A3 = a,C3 = b) equals to 1 if (a, b) = (1, 1) and 0 otherwise.

Proof We give a sketch of the proof as it is similar to the proof of Theorem 1.

The only modifications needed are the conditional probabilities in the four cases there. For case (i),

by Proposition 1 this case occurs if and only if en ∈ E4(Tn), and hence the conditional probability

is |E4(Tn)|/|E(Tn)| = (n + 3a − b − 1)/(2n − 1) by Lemma 1. Using similar arguments, for case (ii),

the conditional probability is |E1(Tn)|/|E(Tn)| = (a + 1)/(2n − 1). For case (iii), the conditional prob-

ability is |E2(Tn)|/|E(Tn)| = 3(b − a + 1)(2n − 1). Finally, for case (iv), the conditional probability is

|E3(Tn)/|E(Tn)| = (n − a − 2b + 2)/(2n − 1). The rest of the proof proceeds as in the proof of Theorem

1. �
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Using an approach similar to the remark after Theorem 1, the last theorem leads to a dynamic programming

approach to compute the joint distribution of cherry and pitchfork (see Fig. 2 for the contour plots with n = 50

and n = 200). In addition, we present the following result which will enable us to study the moments of An

and Cn, whose proof is similar to that of Theorem 2 and hence omitted.

Theorem 5 Let ϕ : R× R→ R be an arbitrary function. For n > 3 we have

Euϕ(An+1, Cn+1)

=
1

2n− 1
Eu[(n+ 3An − Cn − 1) ϕ(An, Cn)] +

1

2n− 1
Eu[An ϕ(An − 1, Cn + 1)]

+
3

2n− 1
Eu[(Cn −An) ϕ(An + 1, Cn)] +

1

2n− 1
Eu[(n−An − 2Cn) ϕ(An, Cn + 1)].

In the remainder of this section we shall apply Theorem 5 to study cherry and pitchfork distributions under

the PDA model. To begin with, we present the following functional recursion between cherry distributions,

which will enable us to obtain the exact formula for cherry distributions and show that cherry distribution is

log-concave under this model.

Proposition 4 Let ψ : R→ R be an arbitrary function. Then for n > 2 we have

Euψ(Cn+1) =
1

2n− 1
Eu[(n+ 2Cn − 1) ψ(Cn)] +

1

2n− 1
Eu[(n− 2Cn) ψ(Cn + 1)] (17)

and

Pu(Cn+1 = k) =
n+ 2k − 1

2n− 1
Pu(Cn = k) +

n− 2k + 2

2n− 1
Pu(Cn = k − 1), 1 ≤ k < n. (18)

Proof Let ψ : R→ R be an arbitrary function as in the statement of the proposition. Then ϕ∗(x, y) = ψ(y) is

an function on R×R. Now applying Theorem 5 to the function ϕ∗ leads to Eq. (17). Finally, Eq. (18) follows

from Eq. (17) by taking ψ(x) = Ik(x), where Ik(x) equals 1 if x = k, and 0 otherwise. �

Note that the recursion presented in the last proposition enables us to study the moments of cherry

distribution under the PDA model. As an example, we present below an alternative computation for the mean

and the variance of Cn. Since the techniques used to solve difference equations under this model is rather

different from that used under the YHK model (i.e., Corollary 2), a complete proof is included here. Note that

in the proof we will use the following well-known Faulhaber’s formulae (also known as Bernoulli’s formulae)

concerning the sum of powers of integers (see e.g. Conway and Guy, 1996).

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n2(n+ 1)2

4
,

n∑
i=1

i4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
,

n∑
i=1

i5 =
n2(n+ 1)2(2n2 + 2n− 1)

12
.

Corollary 4 (Chang and Fuchs, 2010, Proposition 5) For n ≥ 2 we have

Eu(Cn) =
n(n− 1)

2(2n− 3)
∼ n

4
and Vu(Cn) =

n(n− 1)(n− 2)(n− 3)

2(2n− 3)2(2n− 5)
∼ n

16
.
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Proof We may assume that n ≥ 3 in the remainder of the proof as the case n = 2 clearly holds. Substituting

ψ(x) = x in the recursive equation Eq. (17) in Proposition 4 leads to that

Eu(Cn+1) =
1

2n− 1
Eu
[
(n+ 2Cn − 1)Cn + (n− 2Cn)(Cn + 1)

]
=

n

2n− 1
+

2n− 3

2n− 1
Eu(Cn)

holds for n > 2. Together with the initial condition Eu(C2) = 1, multiplying the both sides of the last difference

equation on Eu(Cn) by 2n− 1 and solving it leads to

(2n− 3)Eu(Cn) = 1 + · · ·+ (n− 1) =
n(n− 1)

2

for n > 2, as required.

For simplicity, let f(n) = (2n− 3)(2n− 5) and g(n) = (n− 1)(n2 − 2n− 1). Then

n∑
k=1

g(k) =

n∑
k=1

(k3 − 3k2 + k + 1) =
n(n− 1)(n2 − n− 4)

4
.

Next, applying Proposition 4 to the function ψ(x) = x2 implies that

Eu(C2
n+1) =

1

2n− 1
Eu
[

(n+ 2Cn − 1)C2
n + (n− 2Cn)(Cn + 1)2

]
=

n

2n− 1
+

2n− 2

2n− 1
Eu(Cn) +

2n− 5

2n− 1
Eu(C2

n)

=
g(n+ 1)

(2n− 1)(2n− 3)
+

2n− 5

2n− 1
Eu(C2

n)

holds for n > 2. Now multiplying f(n+ 1) on both sides of the above recursion leads to

f(n)Eu(C2
n)− f(n− 1)Eu(C2

n−1) = g(n)

for n ≥ 3. Since Eu(C2
2 ) = 1 = −g(2) and g(1) = 0, we have

(2n− 3)(2n− 5)Eu(C2
n) = f(n)Eu(C2

n) =

n∑
k=1

g(k) =
n(n− 1)(n2 − n− 4)

4

for n ≥ 3, from which we have

Eu(C2
n) =

n(n− 1)(n2 − n− 4)

4(2n− 3)(2n− 5)
(19)

and hence Vy(Cn) follows. �

Another consequence of the recursion in Proposition 4 is the following exact formula on the cherry dis-

tribution for the PDA model, whose proof is a straightforward application of induction and hence omitted

here.

Theorem 6 For n ≥ 2 and 1 ≤ k ≤ n/2 we have

Pu(Cn = k) =
n!(n− 1)!(n− 2)!2n−2k

(n− 2k)!(2n− 2)!k!(k − 1)!
. (20)

Interestingly, a similar formula for unrooted trees was obtained by Hendy and Penny (1982), that is, the

probability that a random tree generated by the PDA model contains exactly k cherries is

n!(n− 2)!(n− 4)!2n−2k

(n− 2k)!(2n− 4)!k!(k − 2)!
(21)

for 2 ≤ k ≤ n/2 (see, also McKenzie and Steel, 2000, Theorem 4). A direct consequence of Theorem 6 is that

the cherry distribution under the PDA model is log-concave, and hence also unimodal.
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Theorem 7 For n ≥ 2 and 1 < k < n we have

Pu(Cn = k)2 ≥ Pu(Cn = k + 1)Pu(Cn = k − 1). (22)

Moreover, let ∆(n) = (n+1)(n+2)
2(2n+1) . Then

Pu(Cn = k − 1) < Pu(Cn = k) for 1 < k < ∆(n), and Pu(Cn = k) > Pu(Cn = k + 1) for ∆(n) ≤ k < n/2.

Proof Since Pu(Cn = k) = 0 for k > n/2, the theorem clearly holds for k ≥ n/2− 1. Hence in the remainder

of the proof we may assume k < (n− 2)/2. Now by Theorem 6 we have

Pu(Cn = k − 1)

Pu(Cn = k)
=

4k(k − 1)

(n− 2k + 1)(n− 2k + 2)
:= g(k, n). (23)

Considering the function g(k, n) defined in Eq. (23), then g(k + 1, n) > g(k, n) holds for 1 < k < (n − 2)/2.

This, together with Eq. (23), completes the proof of Eq. (22).

The second part of the theorem follows from the observation that g(k, n) > 1 if and only if k ≥ ∆(n). �

Now we apply Theorem 5 to study pitchfork distribution, and the joint distribution between pitchforks

and cherries under the PDA model. Note that the mean and the variance of pitchfork distributions under

this model were also derived by Chang and Fuchs (2010, Proposition 5). Since the proof is similar to that in

Corollary 4, we only outline the main steps used here.

Proposition 5 For n ≥ 3 we have

Eu(An) =
n(n− 1)(n− 2)

2(2n− 3)(2n− 5)
∼ n

8
, (24)

Covu(An, Cn) =
−n(n− 1)(n− 2)(n− 3)

2(2n− 3)2(2n− 5)(2n− 7)
∼ − n

32
, (25)

Vu(An) =
3n(n− 1)(n− 2)(n− 3)(4n3 − 40n2 + 123n− 110)

4(2n− 3)2(2n− 5)2(2n− 7)(2n− 9)
∼ 3n

64
. (26)

Proof Applying Theorem 5 to the function ϕ(x, y) = x and using Corollary 4, we have

Eu(An+1) =
3n(n− 1)

2(2n− 1)(2n− 3)
+

2n− 5

2n− 1
Eu(An)

for n > 2. Now Eq. (24) follows by solving the last recursion with an approach similar to that in Corollary 4.

To this end, applying Theorem 5 to the function ϕ(x, y) = xy implies that

Eu(An+1Cn+1) =
2n− 7

2n− 1
Eu(AnCn) +

n(n− 1)(5n2 − 9n− 8)

4(2n− 1)(2n− 3)(2n− 5)

holds for n > 2. Solving this recursion we have

Eu(AnCn) =
n(n− 1)(n− 2)(n2 − 3n− 2)

4(2n− 3)(2n− 5)(2n− 7)
, (27)

from which Eq. (25) follows.

Finally, applying Theorem 5 to the function ϕ(x, y) = x2 shows that

Eu(A2
n+1) =

2n− 9

2n− 1
Eu(A2

n) +
g(n+ 1)

4(2n− 1)(2n− 3)(2n− 5)(2n− 7)
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holds for n > 2. Solving the above recursion leads to

EuA2
n =

n(n− 1)(n− 2)(n3 − 4n2 − 17n+ 66)

4(2n− 3)(2n− 5)(2n− 7)(2n− 9)
,

from which Eq. (26) follows. �

We end this section with the following correlation result for the PDA model.

Corollary 5 For n ≥ 4 we have

ρu(An, Cn) = −
√

2(2n− 5)(2n− 9)

3(2n− 7)(4n3 − 40n2 + 123n− 110)
∼ − 1√

3n
. (28)

In addition, {|ρu(An, Cn)|}n≥4 is a decreasing sequence converging to 0.

Proof Note first that Eq. (28) follows from Corollary 4 and Proposition 5. Since the sequence {|ρu(An, Cn)|}n≥4
clearly approaches 0, it remains to show that this sequence is decreasing. To this end, it suffices to show that

the ratio

R(n) =
ρu(An, Cn)2

ρu(An+1, Cn+1)2

is greater than 1 for n ≥ 4. Using Eq. (28), we have

R(n) =
(2n− 5)2(2n− 9)(4(n+ 1)3 − 40(n+ 1)2 + 123(n+ 1)− 110

(2n− 7)2(2n− 3)(4n3 − 40n2 + 123n− 110)
.

By numerical computation, we can check that R(n) > 1 for 4 ≤ n ≤ 15, therefore we may assume that n > 15

in the remainder of the proof. Now denoting the numerator and denominator of R(n) by R1(n) and R2(n),

respectively, then we have

R1(n)−R2(n) = 64n5 − 944n4 + 5408n3 − 15048n2 + 20436n− 10995

> 64n4(n− 15) + 5408n3(n− 15) + 20436(n− 15) > 0

for n > 15. This implies R(n) = R1(n)/R2(n) > 1 for n > 15, as required. �

5 A comparative study of two models

In this section, we compare and contrast the distributional properties of the number of cherries and the

pitchforks in random trees generated under the YHK and the PDA models.

To begin with, note that the recursions in Theorems 1 and 4 provide us exact computation of the joint

distribution, and hence also the marginal distributions, of An and Cn under the two models. For example, the

joint distributions with n = 50 and n = 200 for the two models are depicted in Fig. 2. They suggest that on

average, trees of a given size generated by the YHK model contain more cherries and more pitchforks than

those by the PDA model. This is confirmed by the following result.

Proposition 6 For n > 3, we have

Eu(Cn) < Ey(Cn) <
4

3
Eu(Cn) (29)

and

Eu(An) < Ey(An) <
4

3
Eu(An). (30)
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Proof By Corollaries 2 and 4 we have

Ey(Cn) =

[
1 +

n− 3

3(n− 1)

]
Eu(Cn),

from which Eq. (29) follows. Similarly, by Propositions 3 and 5 we have

Ey(An) =

[
1 +

n2 − 7n+ 9

3(n− 1)(n− 2)

]
Eu(An),

from which Eq. (30) follows. �

Next, we study the variances of cherry and pitchfork distributions under the two models.

Proposition 7 For n > 5, we have

32

45
Vy(Cn) < Vu(Cn) <

49

54
Vy(Cn).

Proof Let Rn = Vy(Cn)/Vu(Cn). Then by Corollaries 2 and 4 we have

Rn =
4(2n− 3)2(2n− 5)

45(n− 1)(n− 2)(n− 3)
.

This implies

Rn
Rn+1

=
n(2n− 3)(2n− 5)

(n− 3)(2n− 1)2
= 1 +

2n+ 3

(n− 3)(2n− 1)2
> 1,

and hence that Rn is decreasing in n. Noting that limn→∞Rn = 32
45 , we have

32

45
< Rn < R5 =

49

54
< 1,

from which the proposition follows. �

Proposition 8 For n ≥ 7, we have

1.168Vu(An) <
368

315
Vu(An) < Vy(An) <

8349

6520
Vu(An) < 1.281Vu(An).

Proof Let Rn = Vy(An)/Vu(An) for n ≥ 7. Then by Proposition 3 and 5 we have

Rn =
23(2n− 3)2(2n− 5)2(2n− 7)(2n− 9)

315(n− 1)(n− 2)(n− 3)(4n3 − 40n2 + 123n− 110)
,

and hence

Rn
Rn+1

=
n(2n− 5)(2n− 9)(4n3 − 28n2 + 55n− 23)

(n− 3)(2n− 1)2(4n3 − 40n2 + 123n− 110)

= 1 +
2(24n3 − 180n2 + 382n− 165)

(n− 3)(2n− 1)2(4n3 − 40n2 + 123n− 110)
> 1.

Therefore, Rn is strictly decreasing in n and we have

Vy(An)

Vu(An)
= Rn > lim

m→∞
Rm =

23 · 4 · 4 · 4
315 · 4 =

368

315
> 1.168 .

This, together with R7 = 8349
6520 < 1.281, completes the proof. �
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Proposition 6 shows that trees generated by the YHK model have smaller variation in the number of

cherries than trees of the same size generated by the PDA model. On the contrary, Proposition 8 shows that

YHK model generates trees with larger variation in the number of pitchforks than the PDA model does. This

is not unexpected as the covariances of cherries and pitchforks are found to be negative by Propositions 3

and 5.

Now we present a result concerning the correlation coefficients between the cherry and the pitchfork

distributions under the two models. Since these two distributions are negatively correlated, we will focus on

their absolute values.

Proposition 9 For n ≥ 7, we have |ρy(An, Cn)| ≥ |ρu(An, Cn)|. Moreover,
{ρu(An,Cn)
ρy(An,Cn)

}
n≥7 is a monotoni-

cally decreasing sequence with limit 0.

Proof This follows from Corollary 3 and 5 and the observation that

|ρu(A7, C7)| =
√

30

7× 163
≤ |ρy(A7, C7)| =

√
14

69
.
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Fig. 3: Plot of the ratio Py(Cn = k)/Pu(Cn = k) for n = 200 and 1 ≤ k ≤ 100. The probabilities are computed

using Eq. (11) and Eq. (18).

Proposition 6 states that the mean of Cn is greater under the YHK model than the PDA model. In the

remainder of this section, we shall present a more detailed study on Cn. Intuitively, it is easy to see that the

number of cherries contained in a random tree generated by the YHK model is likely to be greater than that

by the PDA model: firstly, by Proposition 1 we know that the number of cherries in T [e], the phylogenetic

tree obtained from T by attaching a new leaf to edge e in T , is strictly greater than that in T precisely
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when e is a pendant edge of T ; secondly, in the YHK process the edge to which the new leaf is attached is

sampled only from the pendant edges while in the PDA model that edge is sampled from all possible edges.

Indeed, this intuition can also be corroborated by numerical results. As an example, considering the ratio of

Py(Cn = k)/Pu(Cn = k) with n = 200 as depicted in Fig. 3 using a logarithmic scale, then it is clear that the

ratio is strictly increasing and is greater than 1 when k is greater than a certain value. The following theorem

establishes the existence of a unique change point between the two models for n ≥ 4. Note that a similar

phenomenon is shown to hold for clade sizes by Zhu et al (2015, Theorem 5).

Theorem 8 Suppose n ≥ 3. The ratio Py(Cn = k)/Pu(Cn = k) is strictly increasing for 1 ≤ k ≤ n/2. In

particular, there exists a number τn with 1 ≤ τn ≤ n/2 such that

Py(Cn = k) < Pu(Cn = k) for 1 ≤ k < τn, and Py(Cn = k) > Pu(Cn = k) for τn < k ≤ n/2.

Proof For simplicity, put akn = Py(Cn = k). By Eq. (23), it suffices to show that

f(k, n) =:
ak−1n

akn
≤ Pu(Cn = k − 1)

Pu(Cn = k)
=

4k(k − 1)

(n− 2k + 1)(n− 2k + 2)
:= g(k, n) (31)

holds for 1 < k ≤ n/2. To this end, we shall use induction on n. The base case n = 3 is clear because

Py(C3 = 1) = Pu(C3 = 1) = 1. For induction step, assuming that f(k,m) < g(k,m) holds for a given m > 3

and all 1 ≤ k ≤ m/2, it remains to show that f(k,m+ 1) ≤ g(k,m+ 1) for all 1 < k ≤ (m+ 1)/2.

Note first that f(1,m+1) = g(1,m+1) = 0. Now fix 2 ≤ k ≤ (m+1)/2, then ak−1m > 0. Since Proposition 2

implies

ak−1m+1 =
2k − 2

m
ak−1m +

m− 2k + 4

m
ak−2m and akm+1 =

2k

m
akm +

m− 2k + 2

m
ak−1m ,

it follows that Eq. (31) is equivalent to

(2k − 2)ak−1m + (m− 2k + 4)ak−2m <
(
2kakm + (m− 2k + 2)ak−1m

)
g(k,m+ 1).

Since ak−1m > 0, dividing both sides of the last inequality by ak−1m leads to

(2k − 2) + (m− 2k + 4)f(k − 1,m) < 2k
g(k,m+ 1)

f(k,m)
+ (m− 2k + 2)g(k,m+ 1). (32)

By induction assumption we have f(k − 1,m) ≤ g(k − 1,m) and 0 < f(k,m) < g(k,m), hence it remains to

show that

(2k − 2) + (m− 2k + 4)g(k − 1,m) < 2k
g(k,m+ 1)

g(k,m)
+ (m− 2k + 2)g(k,m+ 1). (33)

To this end, denoting the left and the right side of Inequality (33) by L(k,m) and R(k,m), respectively, then

we need to show that R(k,m)− L(k,m) > 0. Note first that

L(k,m) = (2k − 2) +
4(k − 1)(k − 2)

m− 2k + 3
.

On the other hand, since
g(k,m+ 1)

g(k,m)
=
m− 2k + 1

m− 2k + 3
= 1− 2

m− 2k + 3
,

we have

R(k,m) = 2k − 4k

m− 2k + 3
+

4k(k − 1)

m− 2k + 3
.
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Therefore, we have

R(k,m)− L(k,m) = 2 +
4k(k − 1)− 4k − 4(k − 1)(k − 2)

m− 2k + 3

= 2 +
4(k − 2)

m− 2k + 3
> 0,

as required. Here the last inequality follows from m > 3 and 2 ≤ k ≤ (m+ 1)/2. �

6 Discussion and Conclusion

Tree shape indices are summary statistics of some aspect of the shape of a phylogenetic tree, particularly the

‘balance’ of a tree. Since the introduction of the first tree shape index by Sackin (1972), many such indices

have been proposed (see Mooers and Heard (1997) for an excellent review and Mir et al (2013) for some recent

development).

In this paper we present several results concerning the distributions of cherries and pitchforks under the

YHK and PDA models. Our main results include two novel recursive formulae on the joint distributions of

cherries and pitchforks under these two models, which enable us to numerically compute their joint probability

density functions (and hence also the marginal distributions) for trees of any size numerically. This is relevant

because one of the main applications of tree indices is their use as test statistics to discriminate stochastic

models of evolution. For example, statistics based on the number of cherries and on that of pitchforks are

utilised by Blum and François (2005) to test the goodness-of-fit of the YHK model to an HIV-1 dataset.

However, cherries and pitchforks are used alone in those statistics while the contour plots in Figure 1 suggest

that the joint distributions of the cherries and pitchforks might be better than the marginal distributions to

discriminate the two models. Therefore, developing powerful statistical tests based on the joint distributions

and a thorough data analysis of phylogenetic trees will be explored elsewhere.

Our numerical results (e.g. Fig. 4) indicate that the limiting joint distributions of cherries and pitchforks

can be well approximated by bivariate normal distributions. For the YHK model, this was recently confirmed

by Holmgren and Janson (2015) and it remains open to establish the analogous result for the PDA model. In

addition, several asymptotic results on cherries and pitchforks have been established by Plazzotta and Colijn

(preprint) for the general Crump-Mode-Jagers branching process, and it would be interesting to study the

joint distribution of cherries and pitchforks under this process.

In this paper we concentrate on rooted trees, but it is of interest to investigate to what extent the results

obtained in this paper for rooted trees can be carried over to unrooted trees. For example, using Eq. (21)

and an argument similar to the proof in Theorem 7, it follows that the cherry distribution of unrooted trees

under the PDA model is also log-concave, and hence unimodal. However, whether the same property holds for

the cherry distribution of unrooted trees under the YHK model remains open. One challenge is to derive the

recursions for unrooted trees as in Theorem 1 or an exact formula as in Theorem 6.

To end this article, we mention several additional questions. For instance, cherries and pitchforks are special

instances of a rooted caterpillar (i.e., a rooted tree containing precisely one cherry), and hence it is of interest

to see how the recursion formulae in Theorems 1 and 4 might be extended to rooted caterpillars in general.

Next, is pitchfork distribution, or other subtree distributions, log-concave? Our numerical calculation suggests
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Fig. 4: Plot of the total variation distance between the joint distributions of cherry and pitchfork and discretised

bivariate normal distributions for 10 ≤ n ≤ 200 under the YHK model (solid line) and PDA model (dotted

line). The mean vectors and covariance matrices of the normal distributions are derived from Corollary 2 and

Proposition 3 for the YHK model, and Corollary 4 and Proposition 5 for the PDA model. The bivariate normal

distributions are discretised by assigning to each point (x, y) of the two-dimensional integer lattice with the

probability that a point randomly generated according to the given normal distribution is contained in the

unit square centred at (x, y).

the pitchfork distribution is log-concave. A related question is whether there also exists a unique change point

for other subtree distributions. Finally, cherry pattern and pitchfork pattern are closely related to instances

of recursive shape index (in the sense of Matsen (2007)), therefore it would also be of interest to see whether

some of the properties obtained here can be carried over to some other tree indices as well.
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