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Abstract

We consider two game-theoretic settings to determine the optimal values of an issuer’s interchange fee

rate, an acquirer’s merchant discount rate, and a merchant’s retail price in a credit card network. In

the first setting, we investigate a two-stage game problem in which the issuer and the acquirer first

negotiate the interchange fee rate, and the acquirer and the retailer then determine their merchant

discount rate and retail price, respectively. In the second setting, motivated by the recent U.S. bill

“H.R. 2695,”we develop a three-player cooperative game in which the issuer, the acquirer, and the

merchant form a grand coalition and bargain over the interchange fee rate and the merchant discount

rate. Following the cooperative game, the retailer makes its retail pricing decision. We derive both

the Shapley value- and the nucleolus-characterized, and globally-optimal unique rates for the grand

coalition. Comparing the two game settings, we find that the participation of the merchant in the

negotiation process can result in the reduction of both rates. Moreover, the stability of the grand

coalition in the cooperative game setting may require that the merchant should delegate the credit

card business only to the issuer and the acquirer with suffi ciently low operation costs. We also show

that the grand coalition is more likely to be stable and the U.S. bill “H.R. 2695”is thus more effective,

if the degree of division of labour in the credit card network is higher as the merchant, the acquirer, and

the issuer are more specialized in the retailing, the acquiring, and the issuing operations, respectively.

Key words: interchange fee rate; merchant discount rate; Nash bargaining; Stackelberg game; super-
modularity; Shapley value; nucleolus.



1 Introduction

In today’s retailing market, many consumers consider the credit card payment as an important, domi-

nating means to shop from merchants. As the Nilson Report indicates, 795.5 million MasterCard and

Visa cards were held by the U.S. consumers in 2004 [13]. The consumers who intend to buy now and

pay later are more likely to complete transactions with credit cards. In the United States, the aggregate

credit card transaction amount was 1.7 trillion in 2003, and this number has been quickly growing [13].

For major benefits associated with credit-card transactions for both consumers and businesses, see,

e.g., Hartman [18].

A typical credit card operation in reality usually involves two steps, as shown in Figure 1. In the first

step, consumers buy products from the merchant and complete their transactions by confirming their

credit card payments. In the second step, consumers pay the total credit-card transaction amount–

i.e., consumers’ total expense that is calculated as the sum of the merchant’s sales revenue (retail

price times sales quantity) for all products– from their bank accounts to the issuer. Next, the issuer

retains an interchange fee– that is computed as the transaction amount times an interchange fee rate

f– as its revenue and transfers the remaining amount to the acquirer. The acquirer then charges

the merchant a discount fee that equals the transaction amount times a merchant discount rate d.

Note that the discount fee includes the issuer’s interchange fee. That is, for an one-dollar credit card

transaction, the acquirer obtains the merchant discount d but pays the interchange fee f to the issuer.

It thus follows that the acquirer’s revenue generated from this credit card business is (d − f)× total
transaction amount. To assure the acquirer’s non-negative profit, we realistically assume that d ≥ f .

As a result, the merchant’s sales revenue is (1 − d)× total transaction amount. For specific examples
illustrating the credit card operation, see, e.g., Hunt [20].

Figure 1: The two-step credit card transactions. Note that d and f denote the merchant discount rate
and the interchange fee rate, respectively.

In this paper, we consider a three-echelon credit card network that involves an issuer (a financial

firm serving consumers), an acquirer (a financial firm serving the merchant), and a merchant serving

consumers in a consumer market. The consumers use the credit cards (that are issued by the issuer)

to buy from the merchant and pay their credit-card bills prior to the due dates. In the credit card

network, the interchange fee is used to compensate the issuer for bearing the risk of issuing credit

cards, and the merchant discount fee is used to motivate the acquirer to maintain the merchant’s
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account and process credit card transactions. The interchange and merchant discount fees have been

among the largest costs of merchants who accept the credit card payments (Akers et al. [1]). If the

interchange fee rate is increased, then the issuer benefits more from the credit card operation, and the

acquirer may accordingly raise its merchant discount rate so as to assure its profitability. As a result,

the merchant’s sales revenue may be reduced, and the merchant may respond by increasing its retail

prices to improve its profit. However, a higher retail price may discourage consumers from buying

the product, thereby resulting in a reduction in the total transaction amount and thus a decrease in

the issuer’s, the acquirer’s, and the merchant’s profits. Following the above facts, it is important to

properly determine the interchange fee rate, the merchant discount rate, and the retail prices; but,

such a decision problem has not been considered in existing publications, as indicated by our literature

review in Section 2.

In practice, the interchange fee rate is either negotiated by the issuer and the acquirer or determined

jointly by the issuer, the acquirer, and the merchant. Accordingly, we consider two game-theoretic

settings to derive the optimal interchange fee rate, merchant discount rate, and retail price. In Sections

3, we investigate the first setting that involves a two-stage game problem in which the merchant does

not participate in the negotiation of the interchange fee rate. This scenario is consistent with the fact

that the interchange fee rate is normally centrally determined by the credit card companies such as

Visa and MasterCard, through a committee comprising at least partially representatives of issuers and

acquirers (Small and Wright [39]). That is, in the first stage, the issuer and the acquirer bargain over

the interchange fee rate, as discussed by Balto [3] and Small and Wright [39]. In the second stage, using

the negotiated interchange fee rate, the acquirer determines a merchant discount rate and announces

it to the merchant, who then makes its retail pricing decision. Note that our two-stage game involves

a sequential financial decision problem in which, after an interchange fee rate is negotiated by the

acquirer and the issuer, the acquirer determines a merchant discount rate, which is not negotiated by

the acquirer and the merchant. The sequential decision problem is in gear with the fact that each

acquirer has a real operation cost in addition to the interchange fee, and needs to create profit by

adding a mark-up to the interchange fee, as discussed at MasterCard.com [27]. Since an acquirer’s

“profit”is actually a mark-up– i.e., the difference between the merchant discount and the interchange

fee– minus the operation cost, we find that, given an interchange fee, the acquirer should make a

decision on the markup or the merchant discount rate to “create” a profit. In fact, we can learn

from MasterCard.com [27] that each major credit card network (e.g., Visa, MasterCard) announces

its interchange fee rate publicly by, e.g., releasing the information online. This also implies that the

interchange fee rate is negotiated before the merchant discount rate is determined by the acquirer. For

extant publications concerning the above sequential financial decision problem, see, for example, Akers

et al. [1] and Rochet and Tirole [33], who assumed that an acquirer’s mark-up is its own operation

(service) cost and set the merchant discount as the mark-up plus the interchange fee.

In the two-stage game setting, the second stage involves a sequential (Stackelberg) game in which

the acquirer and the merchant act as the leader and the follower, respectively. We use backward

induction to solve such a game. More specifically, in Section 3, we begin by solving the Stackelberg

game between the acquirer and the merchant, assuming that the interchange fee rate is given. We then
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use the interchange fee rate-dependent Stackelberg solution to develop the issuer’s and the acquirer’s

profit functions, and use the solution concept of Nash bargaining scheme [29] to characterize the

negotiated interchange fee rate. We show that, in the two-stage game setting, the interchange-fee

negotiation between the issuer and the acquirer helps entice the acquirer to stay in the credit card

network.

In Section 4, we consider the second game setting that involves a three-player cooperative game in

which the issuer, the acquirer, and the merchant bargain over the interchange fee rate and the merchant

discount rate. This game is motivated by a recent U.S. legislation. In June 2009, John Conyers and Bill

Shuster– who are the House Judiciary Committee Chairman Representatives– introduced the “Credit

Card Fair Fee Act of 2009 (H.R. 2695)”[19] to the Senate and House of Representatives of the United

States of America, which then enacted the bill to enable merchants to engage in collectively bargaining

on a large scale with banks belonging to credit card networks such as Visa, MasterCard, etc. As John

Conyers and Bill Shuster explained, this legislation would allow merchants to collectively negotiate with

banks (i.e., acquirers and issuers) for certain credit card fees (i.e., interchange fee rate and merchant

discount rate), and ultimately reduce the costs (i.e., retail prices) of everyday goods for consumers [50].

We note that, before 2009, many credit card companies (networks) did not allow merchants to directly

bargain over the interchange fee rate with issuers and acquirers. But certain large merchants such as

Wal-Mart could still bargain for a lower interchange fee rate (Akers et al. [1]).

We thus develop a two-step approach to find the rates for the cooperative game setting. Following

the approach, we first construct a three-player cooperative game in characteristic-function form (von

Neumann and Morgenstern [45, Ch. VI]). Then, we investigate whether there exist an interchange

fee rate and a merchant discount rate so that the issuer, the acquirer, and the merchant are willing

to cooperate for the credit card business. For similar approaches, see, e.g., Petrosjan and Zaccour

[30], Sexton [36], etc. We show that, our three-player cooperative game is supermodular only when

both the issuer and the acquirer can significantly contribute– i.e., generate suffi cient profit surplus–

to the credit card network. We then apply Shapley value, the nucleolus, and the globally-optimal

solution to determine the interchange fee rate and the merchant discount rate that result in a fair

allocation of the system-wide profit among the three players. We find that, for most cases, the Shapley

value-characterized rates cannot assure the non-empty core; but, we can always find the nucleolus-

characterized and the globally-optimal rates that guarantee the non-emptiness of the core and thus

assure the stability of the grand coalition. Our cooperative game analysis for such a finance problem is

an important focus of this paper; for other applications of the cooperative game theory in the finance-

operation interface area, see, e.g., Gow and Thomas [17], where the concepts of Shapley value and the

nucleolus were used to determine interchange fees for bank ATM networks.

Comparing our analytic results in the two game settings, we find that the participation of the

merchant in the negotiation process indeed helps reduce both rates, as expected by the U.S. bill “H.R.

2695.”We also show that the grand coalition is more likely to be stable and the U.S. bill “H.R. 2695”

is thus more effective, if the degree of division of labour in the credit card network is higher as the

merchant, the acquirer, and the issuer are more specialized in the retailing, the acquiring, and the

issuing operations, respectively. This result may be justified by the fact that, in the United States, the
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degree of division of labour is high in the credit card business, as indicated by a recent report in [32].

Then, in Section 5, we discuss the implications for the two-player games with a single financial firm

acting for both the acquiring and the issuing operations, and find that most results for the three-player

games also hold for the two-player games. We also investigate the robustness of our results when we

consider a logistic demand function, and find that our main managerial results hold for the game with

the logistic function. Our paper ends with a summary of major concluding remarks in Section 6. The

proofs of all theorems and a corollary are relegated to online Appendix A.

2 Literature Review

This paper is associated with those concerning retail pricing-, interchange fee rate-, and merchant

discount rate-related problems in credit card networks. Most existing relevant papers have been re-

viewed by Chakravorti [11], Hunt [20], Bolt and Chakravorti [6], and Verdier [44]. Chakravorti [11]

discussed the costs and benefits of credit cards to network participants, and summarized major pub-

lications that investigated certain key features in credit card networks, including merchant pricing

policy, interchange fees, merchant acceptance, and network competition. Hunt [20] provided a brief

overview of the economics of the payment card industry. Verdier [44] surveyed the recent literature

about the interchange fee rate in payment card systems with an emphasis on the ongoing debate that

opposes banks to the regulatory institutions or the competition authorities in various countries. Bolt

and Chakravorti [6] classified relevant economic models for credit card operations into the following

five categories: (i) models focusing on interchange fees; (ii) models with price differentiation at the

point of sale; (iii) models with competition between networks; (iv) models accounting for the role of

credit; and (v) models with competition among payment instruments. Our paper is closely related to

those in categories (i) and (ii). Below we review some relevant works in these two categories.

Baxter [4] constructed a one-period model to investigate an interchange fee problem, assuming that

the market is perfectly competitive for payment service and consumption goods. The author concluded

that the interchange fee is an important and necessary tool that balances consumers’and the merchant’s

demands and the issuers’and the acquirers’costs. Schmalensee [34] extended Baxter’s model in [4]

by assuming that issuers and acquirers have significant market powers while merchants are perfectly

competitive. Similar to Baxter [4], Schmalense [34] found that, as a balancing device, the interchange

fee can increase the value of a credit card system by properly allocating costs between issuers and

acquirers and thus reasonably determining the cost allocation between consumers and merchants. We

note that both Baxter [4] and Schmalensee [34] ignored the strategic interactions of consumers and

merchants.

As an early work involving the strategic interactions of consumers and merchants, Rochet and Tirole

[33] constructed a quantitative model in which issuers have market powers but acquirers are perfectly

competitive, and consumers and merchants decide rationally on whether to buy or to accept a payment

card. They found that, due to the issuers’market powers, the socially-optimal interchange fee rate for

the central planner is higher than that in Baxter [4]. Wright [48] assumed that the merchants may not

accept credit cards for some strategic reasons, and developed a model in which the partial participation
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of heterogeneous consumers and merchants is allowed in a two-sided market. The author found that

the privately-optimal interchange fee rate may be very high.

All of the above papers considered the centralized case in which the interchange fee rate is de-

termined by a central planner or a credit card company/association such as Visa and MasterCard.

However, Balto [3] questioned the rationality of the centrally-determined interchange fee rate, and

argued that a lower interchange fee rate could be determined as a result of the bilateral negotiation

between the acquirers and the issuers.

To the best of our knowledge, Small and Wright [39] is a seminal paper that assumed the inter-

change fee rate is negotiated rather than centrally determined. Small and Wright constructed a Nash

bargaining model to characterize the bilateral bargaining over the interchange fee rate. They dis-

cussed the hold-up problem that results from the “honour all cards rule”and found that, as a result of

implementing the rule, the bilaterally-negotiated interchange fee rate may be higher than the centrally-

determined interchange fee rate. However, Small and Wright [39] did not include the merchant’s retail

pricing decision in their model. In addition, Thomas [42] used the multi-player cooperative game the-

ory to analyze the credit card-related problems. Motived by the major changes in the distribution of

the credit card costs– e.g., the introduction of annual fees, the lowering of merchant service charges,

etc.– in the U.K. at the end of 1980s, the author analyzed the fair allocation of the credit card-related

costs among the credit card companies, the retailers who accept the credit card payments, and the

cardholders. More specifically, Thomas [42] developed a credit-card cooperative game in the linear

characteristic-value function, applied the concepts of the core, Shapley value, and the nucleolus to

numerical examples, and performed a sensitivity analysis to examine the impacts of debit cards on

credit-card fee structures. But, Thomas [42] did not analytically consider the interchange fee rate,

merchant discount rate, and the retail prices.

Different from the aforementioned papers, we examine a two-stage game to investigate the nego-

tiated interchange fee rate and to derive the optimal merchant discount rate and the optimal retail

pricing decision. In addition, motivated by the recent U.S. legislation H.R. 2695 [19], we consider a

three-player game where the acquirer, the issuer, and the merchant negotiate the interchange fee rate

and the merchant discount rate. This significantly distinguishes our paper from the existing literature.

3 The Two-Stage Game Analysis

In this section, we assume that the acquirer and the issuer are two separate financial firms, which is

in gear with the following fact: In a recent report released by Divisions of Research & Statistics and

Monetary Affairs in the U.S. Federal Reserve Board [32], Prager et al. listed the top 10 U.S. acquirers

and the top 10 U.S. issuers, and their corresponding shares of all credit card transactions (in dollars) in

2007. From that report (see online Appendix B), we find that, in 2007, the top 10 acquirers and issuers

held 88.7% and 89.6% of all acquiring- and issuing-related dollar value transactions, respectively. This

shows that the top financial firms can properly represent the acquirers and issuers in the U.S. credit card

business. In addition, among the top firms, only Bank of America is both a top acquirer with a share

of 17.8% and a top issuer with a share of 14.6%. Therefore, the percentage of the transactions by the
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firms acting mainly in the acquiring operation and by the firms acting mainly in the issuing operation

can be roughly estimated as (88.7% − 17.8%)/88.7% = 79.9% and (89.6% − 14.6%)/89.6% = 83.7%,

respectively. The percentage of the transactions in the acquiring business and that in the issuing

business by the firms acting in both operations are calculated as 20.1% and 16.3%, respectively. The

above percentages imply that the acquiring and the issuing operations aremostly performed by separate

financial firms. Accordingly, in this paper, we focus on the three-player games involving a merchant,

an acquirer, and an issuer, who are three separate firms. The implications for the two-player games

with a merchant and a financial firm acting in both the acquiring and the issuing operations will be

discussed later in Section 5.1.

Moreover, we learn from Section 1 that, in practice, the acquirer should first bargain with the issuer

over the interchange fee rate, and secondly determine its merchant discount rate and announce it to

the retailer, who then makes its retail price. Accordingly, we analyze a two-stage game to determine

the interchange fee rate f , the merchant discount rate d, and retail price p of a product in a credit

card network.

1. In the first stage, the issuer and the acquirer bargain over the interchange fee rate, which can

be modeled as a two-person cooperative game. We use the concept of Nash bargaining scheme

to characterize the negotiated interchange fee rate. In this stage, the issuer and the acquirer ←EIC.BN
(i) “cooperate”– jointly serve the credit card network– and (ii) “compete”– bargain over the

interchange fee rate for the division of the profit resulting from the credit card operation– at the

same time. This can be actually described as the “co-opetition,”as discussed by Brandenburger

and Nalebuff [8].

2. In the second stage, the acquirer determines and announces a merchant discount rate to the

merchant, who then makes its retail pricing decision. This is a non-cooperative Stackelberg game

in which the acquirer and the merchant act as the leader and the follower, respectively.

The above indicates that a cooperative game is followed by a non-cooperative game, which appears

to be an interesting game structure. Such a structure differs from biform games discussed by Branden- ←EIC.BS
burger and Stuart [7], who considered a two-stage game model involving a non-cooperative game in

the first stage and a cooperative game in the second stage. Specifically, we learn from [7] that a biform

game precisely reflects the idea that business strategies (in the non-cooperative setting) can shape the

competitive environment in which players bargain over their payoffs. But, our two-stage game model

indicates that some players’cooperative behaviors can determine a non-cooperative setting in which

those and other players choose their business strategies.

One may note that, in reality, the merchant (e.g., the AEON Japan Group) may not cooperate

with the external acquirer and issuer but instead operate by itself for the acquiring and the issuing

business, which is actually unusual. In this section, we focus on the analysis of the two-stage game,

which is a traditional and usual setting. Our analysis for the case with the merchant acting in both

the acquiring and the issuing operations is provided in online Appendix C.1. Next, we use backward

induction to solve this two-stage game problem.
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3.1 The Analysis of the Stackelberg Game in the Second Stage

Given the interchange fee rate f , we derive the merchant’s best-response retail price p∗(d, f), and then

find the Stackelberg solution (d∗(f), p∗(f)).

3.1.1 The Merchant’s Best-Response Pricing Decision

The merchant buys the product at the unit acquisition cost c, and sells it at the retail price p. The

demand for the product, denoted by q(p), is a deterministic, linear, and price-dependent function,

which is given as q(p) = α − βp, where α > 0 denotes the price-independent demand and β > 0

represents the marginal impact of the price. This assumption has been widely used in economics,

finance, and operations management; see Bertrand [5], Corbett and Karmarkar [12], Lim and Ho [24],

and the references therein.

To assure that the demand q(p) is non-negative, we assume that the parameter α is suffi ciently

large such that α ≥ βc. Moreover, to generate the non-negative sales of the product, the merchant

should determine the retail price such that p ≤ α/β. Thus, (p − c)/p = 1 − c/p ≤ (α − βc)/α. Note
that the ratio (p−c)/p is regarded as the well-known “Lerner index”[23]. Lerner index reflects a firm’s
market power; that is, a firm with a higher value of Lerner index has a greater power in the market

that it serves. Therefore, to assure that q(p) ≥ 0, the merchant’s market power for the product should

be smaller than or equal to (α− βc)/α, which is the relative measure of the maximum demand for the

product (i.e., α−βc) over the constant, price-independent demand α. We can compute the merchant’s
sales revenue and total acquisition cost as R ≡ p × q(p) = p(α − βp) and C ≡ c × q(p) = c(α − βp),
respectively.

In practice, some merchants may accept both credit card payments and other common payment

methods such as cash, checks, debit cards, etc., whereas other merchants may be unwilling to accept

credit cards as a transaction medium. Since the early 1990s, among all payment methods, the per-

centage of the transaction dollar volume by credit cards has been rapidly increasing. We learn from

Mann [25] that, as the U.S. Department of Commerce statistics indicates, credit card volume in 1999

accounted for about 23% of the value paid in all U.S. consumer payment transactions. The Association

for Financial Professionals reported in [2] that, in 2005, 47% of total transaction dollar volume at

the U.S. retailers were based on consumer purchases with credit cards. For details regarding the U.S.

purchase transactions (in dollars) with credit cards from 1990 to 2007, see the statistics released by

Divisions of Research & Statistics and Monetary Affairs in the U.S. Federal Reserve Board [32]. Based

on the above facts, we assume that a percentage of the merchant’s sales revenue R is generated from

the consumer purchases with the credit card. Note that, in reality, a consumer’s willingness of using a ←AE.(1)
←R2.2credit card for his or her purchases is mainly affected by (i) the fixed fee (including, e.g., the annual

fee) charged by the issuer– denoted by F– and (ii) the density of the issuer’s network– denoted by

η ∈ [0, 1], which reflects how widespread the issuer’s network is. Accordingly, we assume that the

percentage of consumptions with the credit card is dependent on F and η. Hereafter, we denote such a

percentage by τ(F, η), which should be decreasing in F but increasing in η, i.e., ∂τ(F, η)/∂F ≤ 0 and

∂τ(F, η)/∂η ≥ 0. As a result, the remaining sales revenue [1− τ(F, η)]R results from the transactions

with other payment methods.
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If the merchant does not accept the credit card, then it can only serve the consumers who does

not pay with the credit card, and can thus achieve the profit [1 − τ(F, η)](R − C). If the merchant

decides to join the credit card network, then its sales profit can be calculated as R − C. Noting that
the merchant needs to pay the acquirer the merchant discount fee T = τ(F, η)dR, we find that the

merchant’s profit as R − C − T . Therefore, given the merchant discount rate d, the merchant’s profit
is based on whether or not it accepts the credit card; that is,

πM (p) =

{
πNCM (p) ≡ [1− τ(F, η)](p− c)(α− βp), if does not accept the credit card;

πCM (p) ≡ {[1− τ(F, η)d]p− c}(α− βp), if accepts the credit card,
(1)

where the superscripts “NC”and “C”represent “no credit card”and “credit card,”respectively. We

note that, if the merchant decides to accept the credit card, then, in order to assure that [1−τ(F, η)d]p−
c ≥ 0, the acquirer should determine its merchant discount rate such that d ≤ (α− βc)/[τ(F, η)α].

We can calculate the optimal prices maximizing πNCM (p) and πCM (p) in (1) as p1 ≡ (α/β + c)/2

and p2(d) ≡ {α/β + c/[1 − τ(F, η)d]}/2, respectively. Since 0 ≤ f ≤ d ≤ (α − βc)/[τ(F, η)α] < 1 and

0 ≤ τ(F, η) ≤ 1, we find that p1 ≤ p2(d), which implies that the acceptance of credit card transactions

would induce the merchant to raise its retail price. Moreover, we find that, as d increases when the

merchant accepts the credit card, the merchant should raise its retail price. Substituting p1 and p2(d)

into πNCM (p) and πCM (p), respectively, we obtain the merchant’s maximum profit without credit card

transactions as πNCM (p1) = β[1−τ(F, η)](α/β−c)2/4– which is independent of d– and that with credit

card transactions as πCM (p2(d)) = β[1− τ(F, η)d]{α/β − c/[1− τ(F, η)d]}2/4– which is decreasing in d
as ∂[πCM (p2(d))]/∂d < 0.

As limd→0 π
C
M (p2(d)) = β(α/β − c)2/4 ≥ πNCM (p1) and limd→(α−βc)/[τ(F,η)α] π

C
M (p2(d)) = 0 <

πNCM (p1), there must exist a unique value κ such that πCM (p2(d))
∣∣
d=κ

= πNCM (p1). Solving πCM (p2(d)) =

πNCM (p1), we have,

κ ≡ α− βc
τ(F, η)α

[
1−

√
[1− τ(F, η)]2(α− βc)2 + 4αβc[1− τ(F, η)]− [1− τ(F, η)](α− βc)

2α

]
, (2)

which is greater than zero but smaller than (α− βc)/[τ(F, η)α]. If d ≤ κ, then πCM (p2(d)) ≥ πNCM (p1),

and the merchant should accept the transactions with credit cards; otherwise, the merchant should not

accept credit card transactions.

In order to induce the merchant to participate in the credit card network, the acquirer should set its

merchant discount rate d ≤ κ. As a result, when the merchant accepts the credit card, the d-dependent
sales revenue is calculated as,

R(d) = p2(d)× q(p2(d)) =
1

4

[
α2

β
− βc2

[1− τ(F, η)d]2

]
; (3)

and the merchant’s profit is computed as,

πM (d) = πCM (p) =
1

4

{[1− τ(F, η)d]α− βc}2
β[1− τ(F, η)d]

, (4)
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which is decreasing in d and τ(F, η); that is, the merchant’s profit is reduced when the acquirer increases

its merchant discount rate d or more consumers prefer to shop with credit cards.

3.1.2 The Interchange Fee Rate-Dependent Stackelberg Solution

From Figure 1, we find that the acquirer’s revenue can be obtained as (d − f) times the total credit

card transaction amount τR(d), where R(d) is given as in (3). Assume that the acquirer incurs an

operation cost cA per dollar of credit-card transaction. Hence, given the interchange fee rate f , the

acquirer determines its merchant discount rate by maximizing the following constrained problem,

max
d
πA(d) = (d−f−cA)τ(F, η)R(d) =

τ(F, η)(d− f − cA)

4

{
α2

β
− βc2

[1− τ(F, η)d]2

}
, s.t. f+cA ≤ d ≤ κ,

(5)

where d − f − cA represents the acquirer’s net profit per dollar of credit-card transaction; and the

constraint (i.e., f + cA ≤ d ≤ κ) guarantees the participation of both the acquirer and the merchant

in the credit card business.

Theorem 1 The optimal interchange fee rate-dependent merchant discount rate d∗(f) is

d∗(f) =

{
d1(f), if f ≤ f̂ ,
κ (constant), if f̂ ≤ f ≤ κ,

where d1(f) is a unique solution satisfying the equation that α2[1−τ(F, η)d1(f)]3 = β2c2[1+τ(F, η)d1(f)−
2τ(F, η)(f + cA)]; and,

f̂ ≡ [1 + κτ(F, η)− 2cAτ(F, η)]β2c2 − [1− κτ(F, η)]3α2

2β2c2τ(F, η)
. (6)

We also find that d1(f) is increasing in f , i.e., ∂[d1(f)]/∂f ≥ 0; but, ∂[d1(f)]/∂f < 1. Moreover, d1(f)

is a convex function of f , i.e., ∂2[d1(f)]/∂f2 ≥ 0. �

Substituting d∗(f) (given in the above theorem) into p2(d)– which is given in Section 3.1.1– yields

the f -dependent Stackelberg retail price for each product. In addition, Theorem 1 indicates that, if the

interchange fee rate f rises, then the acquirer should respond by increasing its merchant discount rate.

But, this may discourage the merchant to accept customers’purchases with credit cards. In order to

assure that the merchant is willing to trade with credit cards, the acquirer should bear a portion of

the increase in the interchange fee rate. It thus follows that the increase in the merchant discount rate

is smaller than the increase in the interchange fee rate.

3.2 The Analysis of the Two-Player Cooperative Game in the First Stage

We now investigate the first-stage game problem in which the acquirer and the issuer bargain over the

interchange fee rate f , anticipating the f -dependent Stackelberg solution as obtained in Section 3.1.

We next use the cooperative game concept of Nash bargaining scheme (NBS) [29] to characterize the

negotiated interchange fee rate. The NBS represents a unique bargaining solution that can be obtained
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by solving the following maximization problem: maxy1,y2(y1 − y0
1)(y2 − y0

2), s.t. y1 ≥ y0
1 and y2 ≥ y0

2,

where yi and y0
i correspond to player i’s profit and security level (a.k.a. status quo point), respectively,

for i = 1, 2. This concept has been broadly applied to analyze a variety of bargaining problems in the

finance field; see, e.g., Cai [10], Ericsson and Renault [15], etc.

In our bargaining problem, we, w.l.o.g., assume that the acquirer and the issuer are player 1 and

player 2, respectively. Thus, y1 = πA(d∗(f)), which can be easily obtained by substituting d∗(f) in

Theorem 1 into (5), and y2 = πI(f). Next, we compute the issuer’s profit πI(f). The issuer can attain

the interchange fee f × τ × R(d∗(f) from the credit card transactions, where R(d∗(f)) is found by

replacing d in (3) with d∗(f) in Theorem 1. Moreover, as in practice, the issuer often charges each

consumer who holds the credit card a fixed (transaction amount-independent) fee– including, e.g., the

annual fee, the penalty for the late payment, and the expense over the credit limit– and a credit interest

that is calculated as an interest rate times the consumer’s transaction amount. For the fixed fees and

the interest rates in recent U.S. credit card statistics, see Woolsey and Schulz [47]. Recalling from in

Section 3.1.1 that the fixed fee is represented by F , we denote the interest rate for the credit card issued

by the issuer by t. Therefore, the issuer’s total revenue from the credit card transactions is calculated

as F + (f + t)× τ(F, η)×R(d∗(f). Letting cI (cI < f) denote the issuer’s operation cost per dollar of

credit card transaction, we compute the issuer’s profit as πI(f) ≡ F + (f + t− cI)× τ(F, η)×R(d∗(f)).

For a similar calculation, see Brito and Hartley [9] who did not consider the fixed cost but only involved

the interest rate into their model.

Note that neither the acquirer nor the issuer can gain any profit from credit-card transactions if

they do not join the credit card network. Thus, the status quo point is (y0
1, y

0
2) = (0, 0). Therefore, to

derive the NBS-based interchange fee rate for the two-player cooperative game, we need to solve the

maximization problem that maxf Λ(f) ≡ πA(d∗(f))× πI(f); that is,

max
f

Λ(f) =



Λ1(f) ≡ τ(F, η)[d1(f)− f − cA]

4

[
α2

β
− βc2

[1− τ(F, η)d1(f)]2

]
×
{
F +

τ(F, η)(f + t− cI)
4

[
α2

β
− βc2

[1− τ(F, η)d1(f)]2

]}
, if cI ≤ f ≤ f̂ ,

Λ2(f) ≡ τ(F, η)[κ− f − cA]

4

[
α2

β
− βc2

[1− κτ(F, η)]2

]
×
{
F +

τ(F, η)(f + t− cI)
4

[
α2

β
− βc2

[1− κτ(F, η)]2

]}
, if f̂ ≤ f ≤ κ.

(7)

Next, we accordingly find the optimal interchange fee rate under the constraint cI ≤ f ≤ f̂ and that

under the constraint f̂ ≤ f ≤ κ, which are then compared to obtain the NBS-characterized interchange
fee rate.

Theorem 2 The functions Λ1(f) and Λ2(f) in (7) are both log-concave in f . When the acquirer and

the issuer bargain over the interchange fee rate, the NBS-based rate f∗ is uniquely determined as,

f∗ =

 f̃2 ≡
κ+ cI − cA − t− r1

2
∈ [f̂ , κ], if r1 ≤ r2 and Λ1(f∗1 ) ≤ Λ2(f̃2),

f∗1 ≡ min(f̃1, f̂) ∈ [cI , f̂ ], otherwise,

10



where

r1 ≡
4F

τ(F, η){α2/β − βc2/[1− κτ(F, η)]2} and r2 ≡
[1− κτ(F, η)]3α2 − β2c2

β2c2τ(F, η)
+ cA + cI − t,

f̃1 is the unique solution of the first-order condition that ∂[Λ1(f)]/∂f = 0, and f̂ is defined as in (6).

�

As the above theorem implies, if the acquirer’s and/or the issuer’s per dollar operation costs (i.e.,

cA and cI) are suffi ciently small such that r1 ≥ r2, then the NBS-based interchange fee rate is no more

than f̂ . Otherwise, the two players may choose a higher rate in the range [f̂ , κ]. This result happens

simply because of the following reason: if the issuer incurs a high operation cost, then it should attempt

to charge the acquirer a high interchange fee rate to offset its cost. As a response, the acquirer may

increase its merchant discount rate. This may raise the acquirer’s profit margin (i.e., the merchant

discount rate minus the interchange fee rate) if the interchange fee rate is unchanged. However, by

observing this, the issuer would accordingly bargain with the acquirer to increase its interchange fee

rate.

In addition, Theorem 2 shows that, if the fixed fee F or the interest rate t is suffi ciently large, then

the value of r1 is likely to be greater than the value of r2, and the NBS-based interchange fee rate

may be smaller than or equal to f̂ . That is, a large value of F or t may induce the issuer to bargain

for a small interchange fee, because the issuer’s high revenue from consumers can compensate for the

reduction in the interchange fee. As Theorem 1 indicates, the acquirer responds by setting its merchant

discount rate as d1(f), which is increasing in f .

Remark 1 Using (3) and d∗(f) in Theorem 1 to compute the issuer’s profit πI(f) = F + (f + t −
cI) × τ(F, η) × R(d∗(f)), we find that, when f̂ ≤ f ≤ κ, πI(f) is strictly increasing in f . That is, if

the issuer determines the interchange fee rate by maximizing its own profit rather than by negotiating

with the acquirer, then the optimal rate may be f = κ. Consequently, the acquirer may also set its

merchant discount rate as d = κ. That is, if the interchange fee rate is determined by the issuer itself

rather than by the negotiation, then the acquirer’s profit would possibly be zero. This implies that the

negotiation may help increase the acquirer’s profit and entice the acquirer to stay in the credit card

network. J

3.3 Stackelberg Equilibrium

Substituting the NBS-characterized interchange fee rate f∗ into (d∗(f), p2(d∗(f))), we can find the

Stackelberg equilibrium (dS , pS) as,

(dS , pS) =

{
(κ, {α/β + c/[1− τ(F, η)κ]}/2), if r1 ≤ r2 and Λ1(f∗1 ) ≤ Λ2(f̃2),

(d∗(f∗1 ), p2(d∗(f∗1 ))), otherwise.
(8)

Next, we provide a numerical example to illustrate the NBS-characterized interchange fee rate, the

merchant discount rate and retail price in Stackelberg equilibrium.
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Example 1 Suppose that the issuer’s and the acquirer’s operation costs per dollar of credit card
transaction are cI = $0.005 and cA = $0.004, respectively. The parameters for the demand function

are assumed to be α = 100 and β = 0.7. In addition, the merchant’s acquisition cost is c = $120; the

fixed fee and the interest rate for the credit card are F = $15 and t = 0.002 per dollar of credit card

transaction. For all numerical examples in this paper, we specify the percentage of the merchant’s sales

revenue attributed to the credit card transactions as,

τ(F, η) = ρ1 × η × exp(−ρ2F ), (9)

where ρi > 0 (for i = 1, 2) are two parameters that are selected such that τ(F, η) ∈ [0, 1]. It is obvious

that the above function τ(F, η) satisfies the property that ∂τ(F, η)/∂F ≤ 0 and ∂τ(F, η)/∂η ≥ 0. In

this example, we assume that ρ1 = 10, ρ2 = 0.15, and η = 0.6, which means that τ(F, η) = 0.63.

According to Theorem 2, we find that the NBS-characterized interchange fee rate is f∗ = 4.31%.

Then, using (8), we obtain the Stackelberg merchant discount rate as dS = 15.56%, and the Stackelberg

retail price of the product as pS = $137.98. C

4 The Cooperative Game Analysis

In this section, we allow the merchant to negotiate with the acquirer and the issuer for the interchange

fee rate and the merchant discount rate. This is different from Section 3 in which the merchant cannot

bargain with other players over the rates. Correspondingly, we develop a three-player cooperative

game to characterize the negotiation among the issuer, the acquirer, and the merchant, assuming that

(i) players can communicate with each other and form coalitions with other players and (ii) players

can make side payments to other players; see von Neumann and Morgenstern [45] and Straffi n [40].

Note that the cooperative game theory with n ≥ 3 players concerns the allocation of profit surplus or

cost savings among the n players who cooperate to form a grand coalition and achieve the surplus or

savings.

In the credit card network, the issuer, the acquirer, and the merchant can join the three-player

grand coalition and achieve a system-wide profit generated from the credit card business. To assure

the stability of the grand coalition– i.e., the willingness of three players to cooperate for the credit card

business, we should construct a three-player cooperative game (in the characteristic function form) and

solve it for a fair allocation scheme. But, for our problem, we note that an allocation scheme among

the three players is attributed to the interchange fee rate and the merchant discount rate in the grand

coalition. For example, a higher value of the interchange fee rate results in more allocation to the

issuer; similarly, increasing the merchant discount rate may raise the allocation to the acquirer. That

is, given specific values of the two rates, we can compute the corresponding allocation scheme.

Next, we provide an approach to find the rates assuring that the grand coalition is stable; for similar

approaches, see, e.g., Petrosjan and Zaccour [30], Sexton [36], etc. Specifically, in order to find the

negotiated rates for the credit card network, we should consider the following two steps:

Step 1: Construct a cooperative game given the rates in the grand coalition. In this step,
we construct a three-player cooperative game with the characteristic values in terms of the inter-
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change fee rate and the merchant discount rate in the grand coalition, which are assumed to be

given.

Step 2: Search for the rates that assure the stability of the grand coalition. We solve the co-
operative game to find a fair allocation scheme and the corresponding rates, assuring that the

grand coalition is stable. We first derive the conditions for the non-empty core, in which each

point represents a fair allocation scheme. In order to find a unique solution, we then compute

Shapley value and the corresponding rates for the cooperative game. Note that (i) Shapley value-

based rates may not satisfy the conditions that assure the non-emptiness of the core, and (ii)

Shapley value may not be in the core even if the core is non-empty. Thus, we need to examine

whether or not Shapley value can be used to find the rates that result in the stability of the

grand coalition. If Shapley value cannot assure that the grand coalition is stable, then we con-

sider the nucleolus and the globally-optimal solution that maximizes the total profit in the grand

coalition, which must exist in a non-empty core. For the nucleolus-based rates, we shall develop

an algorithm to find the rates satisfying the conditions for the non-emptiness of the core.

Following the above two steps, we next develop a three-player cooperative game, and derive an

interchange fee rate and a merchant discount rate that result in a fair allocation scheme assuring the

stability of the grand coalition.

4.1 The Three-Player Cooperative Game Given the Rates in the Grand Coalition

To develop a cooperative game with three or more players, we need to compute the characteristic values

of all possible coalitions. Note that the characteristic value of a coalition is the minimum profit that

all members in the coalition can jointly achieve by using their own efforts only (von Neumann and

Morgenstern [45]). For our three-player cooperative game, the possible coalitions are (i) the empty

coalition {∅} in which no player joins the credit card network; (ii) three single-player coalitions {i}
(i = M,A, I) in which only firm i is involved in the credit card business; (iii) three two-player coalitions

{ij} (i, j = M,A, I, i 6= j), which represent the coalitions each involving firms i and j for the credit

card business; and (iv) the three-player (grand) coalition {MAI} in which all of three players cooperate
to implement the credit card business.

Let v(S) denote the characteristic value of the coalition S. Our three-player cooperative game

in the characteristic-function form can be then written as: v(∅); v(M), v(A), v(I); v(MI), v(MA),

v(AI); and v(MAI). Note that v(∅) = 0 since the profit generated by the empty coalition is naturally

zero. We also find from the practice that the acquirer and the issuer, which are two banks, cannot

participate in the retailing business. Therefore, if the merchant does not join the credit card network,

then either the acquirer or the issuer or both of them cannot achieve any profit from the credit card

business; that is, v(A) = v(I) = v(AI) = 0. However, any coalition involving the merchant may gain

a profit generated from consumer purchase with credit cards. The characteristic values v(M), v(MI),

v(MA), and v(MAI) are calculated as given in Table 1, where δ ≥ 1 denotes the scale parameter

for the acquiring-related operation cost of the merchant and the issuer in acting as an “acquirer;”

and γ ≥ 1 denotes the scale parameter for the issuing-related operation cost of the merchant and the
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acquirer in acting as an “issuer.”Moreover, in Table 1, dS is the Stackelberg equilibrium-characterized

merchant discount rate in the two-stage game setting, as given in Section 3; fMI and dMA denote

the negotiated interchange fee rate and merchant discount rate in the coalitions {MI} and {MA},
respectively. For details about our calculation, see online Appendix C.

For the three-player cooperative game, we need to clarify the role of the acquirer, which is a financial ←AE.(2)
←R2.4firm serving the merchant. This is important since, in practice, some large merchants (e.g., JUSCO,

Tesco, etc.) have their own banks, thus being bale to operate the acquiring business itself. That is,

the merchant could act as an acquirer in addition to mainly participating in the retailing business. It

then follows that we may not need a financial firm as the acquirer in the game, and the characteristic

values v(MI) and v(MAI) may be identical. Actually, we can find from a number of practices that, in

today’s credit card networks, it is still common– and necessary– to have a separate financial firm as

the acquirer, and v(MI) and v(MAI) are unlikely to be identical, because of the following two reasons.

1. In practice, if a large merchant possessing the financial function is willing to serve as an acquirer,

then it, as usual, also decides to act as an issuer by issuing credit cards to consumers. This

case corresponds to the coalition {M}, in which the merchant operates the credit card network
by itself. Such an operation mainly stems from the merchant’s motivations for the delivery

of convenience to consumers and the improvement of profitability. The real examples include

JUSCO and Tesco, as explained in online Appendix C.1.

2. In the retailing industry, most merchants– including a number of large merchants such as Wal-

Mart and Sears (which sold its retail credit card business to the Citibank in 2003)– do not

participate in the financial operations, but focus on their retailing operations and cooperate with

one or two external financial firms acting as the acquirer and the issuer. For example, Wal-Mart,

GE Money Bank– which serves Wal-Mart as an acquirer, and the Citibank– which issues the

Citibank credit cards to consumers who can use the cards to shop at Wal-Mart.

From the above, we conclude that (i) a separate financial firm as an acquirer widely exists in

reality, because most merchants do not have their own banks, and (ii) most of the merchants with the

financial functions usually undertake both the acquiring and the issuing operations rather than only

the acquiring business.

We note from Table 1 that, in the coalition {M} where the network density is ηM– which is smaller
than η, the merchant’s net operation cost for the credit card business δcA + γcI − t may not be less
than the Stackelberg equilibrium merchant discount fee dS , which is the “cost”of the merchant in the

two-stage game setting. If δcA + γcI − t < dS , then, because τ(F, ηM ) < τ(F, η), the retail price pS

and the merchant’s profit πM (pS) in the traditional setting are smaller than the retail price pM1 and

the merchant’s profit ΠM1(p
M1) when the merchant acts alone in the credit card business, respectively.

Otherwise, if δcA + γcI − t ≥ dS , then pS and πM (pS) may be greater than pM1 and ΠM1(p
M1),

respectively, which depends on the value of the fixed fee F and the difference between τ(F, ηM ) and

τ(F, η). That is, when δcA + γcI − t < dS , the merchant should have an incentive to undertake the

credit card business instead of “outsourcing” such a business to the acquirer and the issuer. Since

cA + cI < dS , as discussed in Section 3, the fixed fee F , the interest rate t, the network density ηM ,

and parameters δ and γ play important roles in affecting the merchant’s willingness to hold the credit
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Coalition Characteristic Value Remark

{M}

v(M) = max[πM (pS),ΠM1
(pM1 )]

= max

{
β[1− τ(F, η)dS ]

4

[
α

β
− c

1− τ(F, η)dS

]2
,

F +
β[1− τ(F, ηM )(δcA + γcI − t)]

4

×
[
α

β
− c

1− τ(F, ηM )(δcA + γcI − t)

]2}

The merchant may operate in the two-
stage game setting with the profit πM (pS),
or may operate itself for the acquiring
and issuing business (in addition to its own
retailing business) with the profit ΠM1 (pM1 ).
Example: JUSCO (M)/AEON JUSCO
credit cards; Tesco/Clubcard Credit Card

v(MI)

v(MI) = F +
1 + τ(F, η)(t− cI − δcA)

4

×
[
α2

β
+

βc2

[1− τ(F, η)fMI ]2

]
− βc

2

×
[
α

β
+
τ(F, η)c(fMI + t− cI − δcA)

[1− τ(F, η)fMI ]2

]

The issuer operates for the acquiring
business in addition to its own issuing
business; and the merchant operates
for the retailing business. The interchange
fee rate fMI results from the negotiation
between the issuer and the merchant.
Example: Sears (M) and Citibank (I)/
Citibank credit cards

v(MA)

v(MA) = F +
1 + τ(F, η)(t− cA − γcI)

4

×
[
α2

β
+

βc2

[1− τ(F, η)dMA]2

]
− βc

2

×
[
α

β
+
τ(F, η)c(dMA + t− cA − γcI)

[1− τ(F, η)dMA]2

]

The acquirer operates for the issuing
business in addition to its own acquiring
business; and the merchant operates for
the retailing business. The merchant
discount rate dMA results from the negotiation
between the acquirer and the merchant.
Example: Wal-Mart (M) and GE Money Bank (A)
/Wal-Mart Discover credit cards

v(MAI)
v(MAI) = F +

(
α− βc

1− τ(F, η)d

)[
τ(F, η)(t− cI − cA)

4

+
1

4

)(
α

β
+

c

1− τ(F, η)d

)
− c

2

]
The merchant, the acquirer, and the issuer
operate for the retailing, the acquiring,
and issuing business, respectively.
Example: Wal-Mart (M), GE Money Bank (A),
and Citibank (I)/Citibank credit cards

Table 1: The characteristic values v(M), v(MI), v(MA), and v(MAI) for the three-player cooperative
game. Note that, in the characteristic value v(M), the retail price in the two-stage game setting is
pS = {α/β + c/[1 − τ(F, η)dS ]}/2 and the retail price in the coalition {M} is pM1 = {α/β + c/[1 −
τ(F, ηM )(δcA + γcI − t)]}/2.

card business.

When the values of F and t are given, we find that, if the merchant is suffi ciently effi cient in the

credit card business such that δcA + γcI − t < dS , then the merchant should be inclined to operate the

credit card business rather than to subcontract the financial service out to the acquirer and the issuer.

Noting that, in practice, the majority of merchants are specialized in the retailing service rather than

the financial service, we conclude that the large-scale merchants– which include, e.g., JUSCO, as an

example for the coalition {M}– may be likely to consider the credit card business, whereas the other
merchants (especially, small-scale merchants) may have to rely on the acquirer and the issuer as in the

two-stage game setting. Note that the “large”merchants are defined as those who can operate with

suffi ciently small values of δ and γ; and the “small”merchants are those with large values of δ and γ.

We also note that small merchants may increase the fixed fee F and the interest rate t, in order

to act alone in credit card transactions without cooperating with the acquirer and the issuer in the

traditional setting. Specifically, if the merchant charges the credit card consumers a higher interest

rate, then the retail price pM1 can be reduced and the condition that δcA + γcI − t < dS may be still

satisfied even if δ and γ are not suffi ciently small. Moreover, the merchant can increase the fixed fee

F– which also results in an increase in its retail price, assuring that ΠM1(p
M1) ≥ πM (pS). Hence,

to deal with the credit card operations, the small merchants may need to raise the fixed fee and the

interest rate, and also to reduce its retail price to compensate credit card consumers for their higher

credit card costs.
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In addition, the negotiated interchange fee rate fMI in the coalition {MI} and the negotiated
merchant discount rate dMA in the coalition {MA} are smaller than the Stackelberg equilibrium-based
merchant discount rate dS in the two-stage game setting. Our analysis in online Appendix C indicates

that fMI ≥ cI + δcA − t and dMA ≥ cA + γcI − t.

4.2 The Analysis of the Three-Player Cooperative Game for the Rates Assuring
the Stability of the Grand Coalition

We use the solution concepts of Shapley value and the nucleolus to find a unique interchange fee rate

and a unique merchant discount rate that result in a fair scheme of allocating the profit v(MAI) among

the three players. Before we calculate the rates, we first investigate whether our cooperative game in

the characteristic-function form is superadditive and convex.

A three-player cooperative game G is superadditive if v(C1 ∪ C2) ≥ v(C1) + v(C2) for any two

disjoint coalitions C1 and C2 [40]. Moreover, the game is convex and superadditive if its characteristic

function is supermodular (Driessen [14] and Topkis [43]). For our problem, the characteristic function

of our three-player cooperative game is supermodular if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ), for all

S, T ⊆ N [38].

4.2.1 Supermodularity and the Core

We begin by deriving a suffi cient condition under which our cooperative game is supermodular.

Theorem 3 If the merchant discount rate d is negotiated such that v(MAI)−v(MA) ≥ v(MI)−v(M),

then our three-player cooperative game is supermodular. �

In the suffi cient condition given by the above theorem, v(MI) − v(M) means the “additional”

profit generated when the issuer participates in the credit card business by undertaking both the

issuer- and the acquiring-related operations. Moreover, v(MAI)− v(MA) represents the “additional”

profit generated by the participation of the issuer who only operates the issuer-related business while the

acquirer exists in the credit card network. That is, the suffi cient condition in Theorem 3 implies that the

issuer, the acquirer, and the merchant can jointly achieve a higher profit from the credit card business

(i.e., the game is supermodular and thus superadditive), if the issuer’s “contribution”is greater when

the acquirer serves the credit card network than when the acquirer is not involved in such a business.

Furthermore, one may note that the suffi cient condition that v(MAI)− v(MA) ≥ v(MI)− v(M) can

be equivalently re-written as v(MAI)− v(MI) ≥ v(MA)− v(M). Using our above argument, we can

also conclude that the three firms can enjoy a higher system-wide profit, if the acquirer’s contribution

is greater when the issuer exists in the credit card network than when the issuer is not involved.

In addition to the above, we find that the merchant should be always involved in the credit card busi-

ness, even though both the issuer and the acquirer are important to the profitability– and effi ciency– of

the credit card network. The reason is given as follows: if the merchant does not join the network,

then both the issuer and the acquirer cannot gain any profit from the credit card business since they,

as two financial firms, could not play as the role of an “merchant” to realize the sale revenue in the

retailing market.
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Remark 2 The merchant’s participation in the credit card network is significantly important to the
success of the network. Moreover, the issuer and the acquirer may need to have suffi cient expertise in

the issuing- and the acquiring-related business, respectively, in order to make the network-wide profit

higher than when the merchant operates the credit card business by itself or delegates the business

to either the issuer or the acquirer. Theorem 3 implies that the issuer and the acquirer should both

operate in the credit card network, in order to improve the profitability of the network. That is, the

popularity of the credit card service in the financial market could be important to the success of the

recent U.S. bill “H.R. 2695,” in which the merchant is encouraged to participate in the credit card

network for the negotiation of the interchange fee rate and the merchant discount rate. J

When our cooperative game is supermodular, it has a non-empty core in which there exists a set

of fair allocation schemes each assuring the stability of the grand coalition {MAI} [16]. Letting yi
denote the profit allocated to firm i, i ∈ N = {M,A, I}, we can call a proper allocation scheme
y ≡ (yM , yA, yI)– where yM = ΠM4(d), yA = ΠA4(d), and yI = ΠI4(f)– an imputation for our

game G = (N, v(.)), if the scheme satisfies the following two properties: (i) individual rationality, i.e.,

yi ≥ v(i), for all i ∈ N ; and (ii) collective rationality, i.e.,
∑

i∈N yi = v(MAI) [40]. The core is the set

of all undominated imputations (fair allocation schemes) (yM , yA, yI) such that
∑

i∈T yi ≥ v(T ) for all

coalitions T ⊆ N = {M,A, I}.
Even though a supermodular game must have a non-empty core, we cannot conclude that the core

is empty for the non-supermodular game. In the following theorem, we provide necessary and suffi cient

conditions under which our cooperative game has a non-empty core.

Theorem 4 The core of our cooperative game is non-empty if and only if fMI − δcA ≤ f and f +

dMA + t− γcI ≤ d ≤ min(dMA, fMI). �

The above theorem implies that, as the merchant joins the grand coalition {MAI} and bargains with
the acquirer and the issuer over the merchant discount rate and the interchange fee rate, the negotiated

interchange fee rate and merchant discount rate are smaller than dMA and fMI , respectively. Noting

from Section 4.1 that both dMA and fMI are smaller than dS , we find that the merchant discount

rate negotiated by the issuer, the acquirer, and the merchant is smaller than dS in the two-stage game

setting. But, we cannot analytically show that the interchange fee rate is smaller than f∗ in the two-

stage game setting. Though, all numerical examples that we shall provide later can demonstrate that

the interchange fee rate is reduced as a result of the negotiation among the issuer, the acquirer, and

the merchant.

As Theorem 4 indicates, the interchange fee rate f must be greater than or equal to fMI−δcA. We
learn from Section C.2 that fMI is the rate paid by the merchant to the issuer in the coalition {MI},
where the issuer absorbs the unit cost δcA in undertaking the acquiring-related operations. This implies

that fMI−δcA represents the issuer’s unit “net gain”resulting from its own (issuer-related) operations.
Thus, the condition that fMI − δcA ≤ f assures that the issuer is willing to join the grand coalition

{MAI}. Similarly, in the two-player coalition {MA}, the acquirer’s unit “net gain” resulting from
its own (acquiring-related) operations is dMA + t − γcI . To assure that the acquirer has an incentive
to join the grand coalition {MAI}, we should determine the merchant discount rate d such that the
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acquirer’s unit net gain (d− f) in {MAI} is no less than dMA + t− γcI , i.e., f + dMA + t− γcI ≤ d.

Note that the merchant pays the rates dMA and fMI in the two-player coalitions {MA} and {MI},
respectively. In order to entice the merchant to stay in the grand coalition, we should choose the

merchant discount rate that is lower than both dMA and fMI , i.e., d ≤ min(dMA, fMI). According to

the above discussion, we draw the following insights.

Remark 3 The grand coalition is more likely to be stable, if the degree of “division of labour”among
the three firms (i.e., the merchant, the acquirer, or the issuer) in the credit card network is higher.

The division of labour is the specialization of cooperative “labour”in specific, circumscribed tasks, see,

e.g., [41]. In our credit card network, the degree of division of labour reflects the specializations of the

merchant, the acquirer, or the issuer in their retailing, acquiring, and issuing operations, respectively.

When the degree of division of labour in the network is higher, each firm is stronger and more “special-

ized”in its own operation; that is, the acquirer and the merchant in the coalition {MA}may operate
the credit card issuing business more ineffi ciently, and the issuer and the merchant in the coalition

{MI} may operate the credit card acquiring business more ineffi ciently. Note that the scale parameter
δ reflects the operation effi ciency of the issuer and the merchant in acting as an “acquirer;”and, the

scale parameter γ reflects the operation effi ciency of the acquirer and the merchant in acting as an

“issuer.”Therefore, a higher degree of division of labour should result in higher values of δ and γ.

Theorem 4 indicates that, in the credit card network, all of the three firms are willing to join the

grand coalition, if and only if the deviation of any one player from the grand coalition shall make the

remaining two players worse off. That is, if each two-player coalition can achieve a significantly high

profit (characteristic value), then the grand coalition is unlikely to be stable. Recall that the profit

of the coalition {AI} is zero. From online Appendices C.2 and C.3, we find that the profits of the

coalitions {MI} and {MA} could be small if the values of the scale parameters δ ≥ 1 and γ ≥ 1 are

significantly high, respectively. Therefore, in the credit card network with the high values of δ and γ,

neither the two-player coalition {MI} nor {MA} would be stable and instead, the grand coalition is
likely to be stable. That is, if the merchant, the acquirer, and the issuer are more specialized in their

own operations for the credit card business– resulting in a higher degree of division of labour, then it

should be more costly for the issuer and the merchant (the acquire and the merchant) to take the role

of an “acquirer” (“issuer”), the value of δ (γ) is higher, and the grand coalition is more likely to be

stable. J

The above remark implies that the recent U.S. bill “H.R. 2695” should be more effective, if, in

major U.S. credit card networks, the degree of division of labour is higher, and the financial firms

and the merchants are more specialized in their own operations. As discussed in Section 3, in 2007,

the percentage of the transactions by the financial firms mainly acting for the acquiring operation is

around 79.9%, and the percentage of the transactions by the financial firms mainly acting in the issuing

operation is around 83.7%. Moreover, there is no merchant on either the list of top 10 acquirers or the

list of top 10 issuers, which was listed by Prager et al. [32]. The above fact implies that the degree of

division of labour in the U.S. credit card business is high. Thus, we can conclude that the recent U.S.

bill “H.R. 2695” should be effective as merchants, acquirers, and issuers should be willing to form a
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stable grand coalition and negotiate the merchant discount rate and the interchange fee rate.

In addition, we find from Theorem 4 that a low value of the interest rate t is likely to result in the

stability of the grand coalition and the effectiveness of the U.S. bill “H.R. 2695.”Letting

Θ ≡ {(d, f)|f + dMA + t− γcI ≤ d ≤ min(dMA, fMI) and fMI − δcA ≤ f}, (10)

we have the following corollary.

Corollary 1 If γ > 1, then the set Θ is non-empty and thus, the interchange fee rate and the merchant

discount rate in Θ can assure that the corresponding allocation scheme is in the core and the grand

coalition {MAI} is stable. However, if γ = 1, then both the set Θ and the core are empty. �

In this paper, γ is assumed to be greater than 1, because, as discussed previously, the acquirer/merchant

incurs a higher operation cost in acting as “an issuer.”Moreover, noting from Section 4.1 that dMA < dS

and fMI < dS , we find that dS > min(dMA, fMI) and thus, the rates (f∗, dS) in the two-stage game

(traditional) setting– which are given as in Section 3– do not belong to the set Θ. That is, if the

merchant, the acquirer, and the issuer choose the rates (f∗, dS) in the three-player cooperative game

setting, then the core is empty and the grand coalition is not stable.

4.2.2 The Unique Merchant Discount and Interchange Fee Rates

Since the core includes many allocation schemes rather than only a unique scheme, one may need to

make a decision on which imputation in the core to be chosen to allocate the profit v(MAI). Shapley

value [37] and the nucleolus [35] are the two most commonly-used solutions in cooperative game theory.

We thus apply both of them to derive a unique allocation solution and its corresponding rates d and f .

Moreover, the three players may desire to choose the globally-optimal rates that maximize their total

profit v(MAI). Accordingly, in addition to Shapley value and nucleolus, we also compute the globally

optimal rates.

Shapley value For a n-player cooperative game, the Shapley value for player i is computed as

φi =
∑

i∈T (|T | − 1)!(n − |T |)![v(T ) − v(T − {i})]/(n!), where T denotes a possible coalition that the

firm i joins, and |T | is the size of T . It is a unique, monotonic solution (Megiddo [28] and Young [49]),
as the profit allocated to each player increases if the profit achieved by each possible coalition increases.

Using the above formula, we can write the unique allocation scheme in terms of Shapley value for

our cooperative game G = (N, v(·)) as,
φM =

2v(MAI) + 2v(M) + v(MA) + v(MI)

6
;

φA =
2v(MAI)− v(M) + v(MA)− 2v(MI)

6
;

φI =
2v(MAI)− v(M) + v(MI)− 2v(MA)

6
.

Note that φM , φA, and φI correspond to the profits allocated to the merchant, the acquirer, and the

issuer in the grand coalition– ΠM4(d), ΠA4(d), and ΠI4(f) given in (17) and (18), respectively. By
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solving the equations {ΠM4(d) = φM and ΠA4(d) = φA}, we can find the Shapley value-characterized
merchant discount rate dSP and interchange fee rate fSP . Note that we do not need to consider the

equation that ΠI4(f
SP ) = φI , because ΠM4(d

SP ) + ΠA4(d
SP ) + ΠI4(f

SP ) = φM + φA + φI = v(MAI).

However, the Shapley value-characterized dSP and fSP may not belong to the set Θ; thus, when dSP

and fSP are adopted, the core may be empty and the grand coalition {MAI} may be unstable.
To illustrate the above, we next provide two examples– one with an empty core and the other

with a non-empty core– when the Shapley value is used to allocate v(MAI) among the merchant, the

acquirer, and the issuer.

Example 2 We consider a three-product case and use the parameter values given in Example 1.
We also assume that δ = 15 and γ = 12. In addition, for the coalition {M}, the density of the
merchant’s network in (9) is ηM = 0.5. According to Section 4.1, we find that (i) for the coalition {M},
v(M) = 51.44; (ii) for the coalition {MI}, fMI = 6.3% and v(MI) = 88.70; and (iii) for the coalition

{MA}, dMA = 6.2% and v(MA) = 69.24. Solving the equation set {ΠM4(d) = φM and ΠA4(d) = φA}
yields dSP = 2.75% and fSP = 0.07%, and v(MAI) = 101.38. Since fSP < fMI − δcA = 0.3%,

(dSP , fSP ) is not in the set Θ. Therefore, as Corollary 1 indicates, the core is empty and the grand

coalition {MAI} is thus unstable. C

We then provide another example to calculate the Shapley value-based rates that can result in the

stability of the grand coalition.

Example 3 We re-consider Example 2 but assume that cA = 0.004, cI = $0.0045 and γ = 15.

Similarly, we find that v(M) = 48.69; v(MI) = 68.97, and v(MA) = 65.31; and, fMI = 6.25%

and dMA = 6.95%. We then obtain the rates dSP = 2.99% and fSP = 0.33%. It follows that

v(MAI) = 101.57. Since fSP + dMA + t − γcI = 0.73% ≤ dSP ≤ min(dMA, fMI) = 6.25% and

fSP > fMI − δcA = 0.25%, (dSP , fSP ) belongs to the set Θ and thus, the core is non-empty. That is,

if the merchant, the acquirer, and the issuer choose dSP and fSP , then the grand coalition {MAI} is
stable and the three players are willing to cooperate for the credit card business. C

The Nucleolus Since the Shapley value-characterized rates (dSP , fSP ) may not be in the set Θ, we

use another common concept “the nucleolus” to find a unique pair of the rates. For a three-player

cooperative game, the nucleolus solution is defined as a 3-tuple imputation x = (xM , xA, xI) such that

the excess (“unhappiness”) eS(x) = v(S) −
∑

i∈S xi of any possible coalition S cannot be lowered

without increasing any other greater excess [35]. That is, the nucleolus solution makes the largest

unhappiness of the coalitions as small as possible, or, equivalently, minimizes the worst inequity. A

most common approach to find the nucleolus is the sequential linear programming (LP) method that

is based on lexicographic ordering (Maschler, Peleg, and Shapley [26]). Using the LP approach, we

first reduce the largest excess max{eS(x), for all S ⊆ N} as much as possible, then decrease the
second largest excess as much as possible, and continue this process until the 3-tuple imputation x is

determined. Even though the nucleolus has been proved to always exist in the core as long as the core

is non-empty [40], we have to solve a series of linear problems to find it. For a recent detailed discussion

on the calculation of the nucleolus, see Leng and Parlar [22]. For our game, a LP algorithm can be
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developed as given in online Appendix D. We next provide two examples to illustrate the calculation

of the nucleolus-characterized rates dn and fn.

Example 4 We consider the parameter values given in Example 2. Using the algorithm provided

in online Appendix D, we compute the nucleolus-characterized rates as (dn, fn) = (3.53%, 0.45%),

which can result in the stability of the grand coalition. Next, we adopt the parameter values used in

Example 3 to find the nucleolus-characterized rates as dn = 3.58% and fn = 0.44%. Comparing the

nucleolus-characterized solution (dn, fn) with the Shapley value-characterized solution (dSP , fSP ) =

(2.99%, 0.33%) in Example 3, we find that the nucleolus solution suggests a higher merchant discount

rate and also a higher interchange fee rate. Since dn − fn = 3.14% > dSP − fSP = 2.66, both the

acquirer and the issuer should prefer the nucleolus to the Shapley value. C

Globally-Optimal Rates We now investigate a centralized case that the merchant, the acquirer,

and the issuer jointly determine optimal merchant discount and interchange fee rates to maximize their

total profit v(MAI), which is given as in (19). We note that v(MAI) is dependent on the merchant

discount rate d but independent of the interchange fee rate f , which is attributed to the fact that the

interchange fee– calculated as f × τ(F, η)×R– is the issuer’s revenue but is the acquirer’s cost. But,
to find the globally optimal merchant discount rate, we should maximize v(MAI) subject to d ∈ Θ,

where Θ is dependent on the interchange fee rate f , as defined in (10). Note that the constraint d ∈ Θ

is imposed to assure the stability of the grand coalition {MAI}.

Theorem 5 Given the interchange fee rate f , the globally optimal dG(f) maximizing v(MAI) subject

to d ∈ Θ is obtained as dG(f) = f + dMA + t− γcI . �

From the above theorem, we learn that, when the three players decide to maximize their total

profit v(MAI) for a given value of f , then the globally optimal merchant discount rate dG must be no

greater than the nucleolus-characterized rate dn, i.e., dG ≤ dn, because dG(f) = f+dMA+t−γcI ≤ dn.
Since the interchange fee rate f is negotiated between the acquirer and the issuer, the optimal rate fG

can be obtained by solving the following constrained maximization problem: maxf≥fMI−δcA ΛG(f) =

ΠA4(d
G(f)) × ΠI4(f). Similar to Theorem 2, ΛG(f) can be shown to be a quasi-concave function.

But, due to the intractable complexity, we cannot find the closed-form solution for fG but instead

write fG = arg maxf≥fMI−δcA ΛG(f). As a result, the globally optimal merchant discount rate dG =

dG(fG) = fG + dMA + t− γcI .

Example 5 We first use the parameter values given in Example 2– where the rates in terms of Shapley
value cannot assure the stability of the grand coalition– to compute the globally optimal rates as

(dG, fG) = (0.6%, 0.3%). Next, using the parameter values used in Example 3, we find (dG, fG) =

(0.65%, 0.25%). We learn from the above results that, in order to maximize v(MAI), the three firms

should reduce the globally-optimal interchange fee and merchant discount rates to fMI − δcA and

fMI + dMA + t− δcA − γcI , respectively. In fact, we find that such a result holds for a large number
of numerical examples. C
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5 Further Discussions

In this section, we investigate a two-player case for a credit card network where the acquirer and the

issuer are the same firm, and examine the robustness of our results (obtained in Sections 3 and 4)

when the linear price-dependent demand function (specified in Section 3.1.1) is replaced with a logistic

function.

5.1 Discussion on Implications for the Two-Player Games with a Single Firm Act-
ing as Both the Acquirer and the Issuer

We investigate a two-player case for a credit card network where the acquirer and the issuer are the

same firm. We learn from Prager et al. [32] that, even though most of top acquirers and issuers are

different firms, some firms (e.g., Bank of America) still operate for both the acquiring and the issuing

business. Motivated by this practice, we now assume that a single firm acts as both the acquirer and

the issuer, and discuss possible changes on the retail price and the merchant discount rate.

When a single financial firm takes both the acquiring and the issuing operations, there is no inter-

change fee because such a fee is a side payment from an acquirer to an issuer only when the acquirer

and the issuer are separate firms in the credit card business. Thus, for a credit card network involving

a merchant and a single financial firm, we should only need to determine the merchant’s retail price

p and the merchant discount rate d. Similar to Section 3, we also consider the traditional setting to

analyze a non-cooperative game where the merchant does not bargain with the financial firm over the

merchant discount rate; and, similar to Section 4, we consider a two-player cooperative game where

the merchant negotiates the rate d with the financial firm. Note that the analysis of the above games

should be much simpler than that when three players (the merchant, the acquirer, and the issuer)

operate in the credit card network. Hence, for the two-player case, we do not solve the two games but

instead discuss the implications when a single firm acts for both the acquiring and the issuing business.

In the traditional setting where the merchant does not negotiate with the financial firm about the

value of d, the credit card operation can be described as a sequential game where the financial firm

determines and announces the rate d as a leader and the merchant then responds as a follower by

making its retail pricing decision. This game is very similar to the sequential game in the second stage

of our two-stage game problem in Section 3. Specifically, for the two-player case, the merchant’s best-

response pricing analysis is the same as that in Section 3.1.1. However, the single financial firm’s profit

function should be written as F +(d+t−cI−cA)τ(F, η)R(d), which is similar to the acquirer’s profit in

(5) for the three-player case involving the interchange fee rate f > cI . We learn from Theorem 1 that

the optimal merchant discount rate is increasing in f . This implies that, in Stackelberg equilibrium,

the merchant discount rate for the two-player case should be smaller than that for the three-player

case; and, the retail price is also smaller in the two-player case. The result reflects the fact that the

financial firm’s cost is reduced as a result of the absence of the interchange fee, and the firm and the

merchant can thus decrease their merchant discount rate and retail price to increase the sales and

improve their profitability.

In the cooperative game setting where the merchant and the financial firm negotiate the rate d.
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Different from our three-player cooperative game in Section 3, we should need to investigate the two-

player cooperative game using the concept of NBS [29]. Such an analysis is very similar to our analysis

for the coalition {MA} in the three-player cooperative game, which is given in online Appendix C.3.
Specifically, we can easily find the result for the two-player cooperative case by simply replacing the

parameter γ for the coalition {MA} in the three-player case with the value of 1. Similarly using our

argument in online Appendix C.3, we can conclude that, for the two-player case, the merchant discount

rate in the cooperative game setting is not higher than that in the non-cooperative (sequential) game

setting.

Recall from Theorem 4 that, for the three-player case, the merchant discount rate that is negotiated

among the merchant, the acquirer, and the issuer is no less than f + dMA + t − γcI but no greater
than min(dMA, fMI), assuring the stability of the grand coalition. Similar to online Appendix C.3, we

can find that the merchant discount rate for the two-player case is greater than cA + cI − t, which is
smaller than f + dMA + t− γcI as shown in the proof of Theorem 5. However, we cannot immediately

conclude that, when the merchant bargains over d with the financial firm for the two-player case, the

resulting merchant discount rate is smaller than or greater than that in the three-player case.

The above indicates that, when a single financial firm performs both the acquiring and the issuing

tasks in a credit card network, the participation of the merchant for the rate negotiation– which is in

gear with the recent U.S. bill “H.R. 2695”– will result in a decrease in the merchant discount rate.

Next, we provide an example to illustrate our above argument.

Example 6 We consider the parameter values in Example 1. For the two-stage game where the

merchant discount rate is determined by the financial firm rather than negotiated by the merchant

and the financial firm, we substitute the merchant’s sales revenue R(d) in (3) into the financial firm’s

profit function F + (d + t − cI − cA)τR(d), and maximize it subject to d ≤ κ where κ is given as in

(2). The Stackelberg equilibrium-characterized merchant discount rate for the two-player setting can

be obtained as dS = 13.77%, which is smaller than the merchant discount rate 15.56% in Example 1

where the acquirer and the issuer are two separate firms. The result is the same as our above discussion.

We calculate the merchant discount rate that is negotiated by the merchant and the financial firm.

Similar to our calculation for the coalition {MA}, we find that the NBS-characterized rate is 4.90%,

which is significantly smaller than the above Stackelberg equilibrium dS = 13.77%. This important

result is the same as that in the three-player setting.

Next, we consider another example using the parameter values in Example 2. We find that the

Stackelberg equilibrium dS = 13.75%, which is smaller than the equilibrium (i.e., 15.53%) in the three-

player setting. Moreover, we find that the NBS-based rate is 4.87%, which is much smaller than the

Stackelberg equilibrium.

The above numerical results demonstrate that for the non-cooperative case, the Stackelberg equilibrium-

based merchant discount rate in the two-player setting is smaller than that in the three-player setting,

whereas for the cooperative case, the negotiated merchant discount rate in the two-player setting is

greater than that in the three-player setting. C
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5.2 Robustness of Major Results in the Presence of a Logistic Demand Function

We now examine whether or not our major results obtained in Sections 3 and 4 still hold, if we relax our

assumption on the linearity of the price-depedent demand function and instead consider the following

logistic demand function (see, e.g., Phillips [31]):

q′(p) = B × 1

1 + exp(α′ + β′p)
, (11)

where B represents the market size, and α′, β′ > 0 denote the price-independent and the price-

dependent parameters, respectively. Since both the two-stage and the cooperative game analyses

with the demand function in (11) are intractable, we perform subsequent numerical experiments with

the parameter values in (11) as B = 200, α′ = 0.03, and β′ = 0.07. The values of other parameters are

the same as those in Examples 1 and 2.

5.2.1 The Numerical Analysis for the Two-Stage Game with the Logistic Demand Func-
tion

We first examine whether or not our results in Section 3 hold when the price-dependent demand function

is given as in (11). Recall from Section 3.1.1 that the merchant should compare its profits πNCM (p) and

πCM (p) in (1) to determine if consumers are allowed to shop with the credit card issued by the issuer.

To entice the merchant to accept the credit card, the acquirer should announce its merchant discount

rate d such that πCM (p) ≥ πNCM (p). Noting that πCM (p) is decreasing in d and πNCM (p) is independent

of d, we find that there must exist a cutoff level κ– which can be specified as in (2) when the demand

is linear– such that the merchant benefits from accepting credit card transactions and thus agrees on

the use of the credit card, if the merchant discount rate d is no greater than the cutoff level κ. The

above calculation implies that the result in Section 3.1.1 holds when the demand function is specified

as in (11).

Next, we examine the result in Remark 1. Using the values of parameters in Example 1, we compute

the interchange fee rate negotiated between the acquirer and the issuer as f∗ = 5.95%, the Stackelberg

equilibrium-based merchant discount rate and retail price as dS = 17.00% and pS = $148.73. When

the interchange fee rate is determined by the issuer itself, we can calculate the resulting rate as f∗ =

dS = κ = 30.03%, which means that the acquirer’s profit margin is zero. The above result implies that

Remark 1 holds when the demand function is given as in (11).

5.2.2 The Numerical Analysis for the Cooperative Game with the Logistic Demand
Function

We begin by examining the result in Section 4.1. Using the values of parameters in Example 2, we find

that δcA + γcI − t = 0.118 < dS = 0.17. We calculate the merchant’s maximum profit in the two-stage

game setting and that in the coalition {M} as πM (pS) = $7.44 and ΠM1(p
M1) = $16.89. When we

increase the value of δ from 15 to 20 and the value of γ from 12 to 15, and decrease the value of F from

15 to 10, we find that δcA+γcI− t = 0.153 > dS = 0.082, and πM (pS) = $12.66 > ΠM1(p
M1) = $11.08.
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The above results imply that, if the values of δ and γ are higher and/or the value of F is lower, then the

merchant is more unlikely to operate the credit card business by itself. That is, our result in Section

4.1 also applies to the game with the logistic demand function as in (11).

Next, we investigate if Theorems 3 and 4 are applicable to the cooperative game with the logistic

demand function. The characteristic values of the game are calculated as follows: v(∅) = v(A) =

v(I) = v(AI) = 0, v(M) = 16.89, v(MI) = 41.18, v(MA) = 32.90, and v(MAI) = 97.54. For the

game, the merchant discount and the interchange fee rates in terms of Shapley value are computed as

dSP = 6.92% and fSP = 2.37%. We can find from Driessen [14] and Topkis [43] that the cooperative

game is supermodular. Noting that v(MAI)− v(MA) = 64.64 > v(MI)− v(M) = 24.29, we conclude

that Theorem 3 may hold for the game with the demand function in (11). The core of this cooperative

game is thus non-empty. We examine the suffi cient and necessary condition in Theorem 4 as follows:

fMI − δcA = 0.083 − 15 × 0.004 = 0.023 ≤ fSP = 0.0237, and fSP + dMA + t − γcI = 0.0427 <

dSP = 0.0692 < min(dMA, fMI) = 0.077. This means that Theorem 4 also holds for the game with the

logistic function. We preform a great number of numerical experiments, and find that Theorems 3 and

4 always apply to our game analysis, which should demonstrate the robustness of the two theorems.

In fact, one may note from our discussion in Section 4.2.1 that Theorems 3 and 4 could not largely

depend on the linearity property of our demand function.

In addition, we also find that, for most cases, Shapley value cannot assure the stability of the grand

coalition. Therefore, we still calculate the nucleolus to represent the negotiated merchant discount and

interchange fee rates. For Examples 2 and 3, we use the algorithm provided in online Appendix D to

compute the nucleolus-characterized rates (dn, fn) as (8.43%, 2.60%) and (6.86%, 1.93%), respectively.

Similar to our discussion in Example 4, we compare the nucleolus (dn, fn) = (8.43%, 2.60%) and

Shapley value (dSP , fSP ) = (6.92%, 2.37%), and find that both the acquirer and the issuer should

prefer the nucleolus to the Shapley value.

Next, we calculate the globally-optimal rates that maximize the total profit v(MAI). For Examples

2 and 3, we find that the optimal rates (dG, fG) as (4.31%, 2.31%) and (3.74%, 1.12%), respectively.

Our results indicate that Theorem 5 may not hold when the demand function is given in (11), which

is mainly attributed to the fact that Theorem 5 results from the linearity of the demand function.

However, we find that in the centralized setting, the merchant discount rate and the interchange fee

rate are both reduced; this is the same as what we find from Example 5.

We also find that, when a financial firm performs both the acquiring and the issuing operations,

for Example 2, the merchant discount rate in Stackelberg equilibrium is dS = 15.22%, which is smaller

than the Stackelberg equilibrium-based rate in the three-player setting (17.00%). In addition, for the

cooperative case, the negotiated merchant discount rate in the two-player setting is 12.39%, which is

greater than that in the three-player setting (8.43%). It thus follows that our major results in Section

5.1 hold for the game with the logistic demand function.

Remark 4 From our numerical experiments, we learn that our major managerial insights based on

the linearity of the demand function still hold when we use the logistic demand function in (11), even

though Theorem 5 does not apply to the game analysis with the logistic demand function. In fact,

Theorem 5 is dependent on the linearity property of the demand function; but, the managerial insights
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resulting from Theorem 5 hold because in the centralized setting with the logistic function, both the

merchant discount rate and the interchange fee rate are both decreased. In conclusion, we find that

our results in Sections 3 and 4 are robust in general. C

6 Summary and Concluding Remarks

This paper considers a credit card network involving an issuer, an acquirer, and a merchant who serves

consumers in a consumer market. For the network, we determine the interchange fee rate for the issuer,

the merchant discount rate for the acquirer, and the optimal retail price for the merchant in both a two-

stage game setting (where the merchant does not participate in the negotiation of the interchange fee

rate and the merchant discount rate) and a three-player cooperative game setting (where the merchant

is involved in the negotiation). For the former setting, we derive the NBS-characterized interchange

fee rate and the Stackelberg equilibrium-based merchant discount rate and retail price.

For the cooperative game setting, we calculate the characteristic values of all possible coalitions,

derive a suffi cient condition for the supermodularity, and attain a necessary and suffi cient condition

under which the core of our cooperative game is non-empty. The condition for the non-emptiness of the

core indicates that the issuer, the acquirer, and the merchant are willing to jointly determine the rates

if and only if the interchange fee rate is no smaller than a specific threshold and the merchant discount

rate falls in a specific range. We then apply Shapley value, the nucleolus, and the globally-optimal

solution to find unique rates at which the merchant, the acquirer, and the issuer are all better off

by joining the credit card network. We show that both the nucleolus-characterized and the globally-

optimal rates can assure the stability of the grand coalition, whereas the Shapley value-characterized

rates are likely to make the grand coalition unstable. We also discuss the implications for two-player

games involving a merchant and a financial firm who acts for both the acquiring and the issuing

operations.

Our major managerial insights are summarized as follows:

1. In the two-stage game setting, the acquirer should determine a merchant discount rate that is

no larger than a specific cutoff level [i.e., κ in (2)], in order to entice the merchant to accept the

transactions with credit cards. Otherwise, the merchant may not be willing to participate in the

credit card business.

2. In the two-stage game setting, if the interchange fee rate is determined by the issuer itself rather

than by the negotiation between the issuer and the acquirer, then the acquirer would not benefit

from the credit card business. This implies that such a two-player negotiation can help entice

the acquirer to stay in the credit card network.

3. In the cooperative game setting, the “large”merchants (e.g., JUSCO)– which can also effi ciently

operate the acquiring and the issuing business– may have an incentive to undertake the credit

card operations by itself. The other merchants (especially, “small” merchants) may have to

increase the fixed fee and the interest rate, if they desire to act for the credit card business

by themselves. Otherwise, the small merchants have to only focus on the retailing service,

cooperating with the issuer and the acquirer as in the two-stage game setting.

26



4. The merchant’s participation in the credit card network is significantly important to the prof-

itability of the network. Moreover, the issuer and the acquirer may need to have suffi cient

expertise in the issuing- and the acquiring-related business, respectively, in order to make the

network-wide profit higher than when the merchant operates the credit card business by itself or

delegates the business to either the issuer or the acquirer.

Moreover, the popularity of the credit card service in the financial market would be important to

the success of the recent U.S. bill “H.R. 2695,”in which the merchant is encouraged to participate

in the credit card network for the negotiation of the interchange fee rate and the merchant discount

rate.

5. The interchange fee rate and the merchant discount rate in the cooperative game setting are

smaller than those in the two-stage game setting. This means that, as a result of implementing

the U.S. bill “H.R. 2695,”both rates are reduced, which shows that the bill should be effective.

6. The grand coalition should be more likely to be stable, if the degree of division of labour in

the credit card business is higher and the issuer, the acquirer, and the merchant are all more

specialized in their own operations. As discussed in Section 4.2.1, in the United States, the degree

of division of labour in the credit card business is high, and thus, the recent U.S. bill “H.R. 2695”

should be effective. In addition, a low value of the interest rate t is likely to result in the stability

of the grand coalition and the effectiveness of the U.S. bill “H.R. 2695.”

In addition, we perform sensitivity analysis to examine the impacts of the credit card operation

costs (i.e., cA, cI ; δ, γ) on the interchange fee rate and the merchant discount rate in the two-stage

and the three-player cooperative games. Through a large number of numerical experiments, we find

that, for most cases, the Shapley value-characterized rates cannot assure the stability of the grand

coalition, and the globally-optimal interchange fee and merchant discount rates are equal to fMI − δcA
and fMI + dMA + t − δcA − γcI , respectively. Thus, using the parameter values given in Example 2
as base values, we calculate the Stackelberg equilibrium-based rates– for the two-stage game when the

merchant does not bargain over the rates– and the nucleolus-characterized rates– for the three-player

cooperative game when the merchant participates in the rate negotiation. We also show that our main

managerial results hold for the game with a logistic demand function.

According to our results given in online Appendix E, we find that the interchange fee rate and

the merchant discount rate in the cooperative game are significantly smaller than the Stackelberg

equilibrium rates in the two-stage game setting. We also learn that the acquirer’s and the issuer’s

unit operation costs (cA and cI) more significantly impact the interchange fee rate and the merchant

discount rate in the cooperative game setting than in the two-stage game setting. The interchange fee

rate in the two-stage game setting is decreasing in the acquirer’s unit operation cost cA, whereas the

interchange fee rate in the cooperative game setting may not significantly depend on the value of cA
when cA is suffi ciently small (i.e., cA < 0.4). But, the merchant discount rate is always increasing in

cA in both the two-stage and the cooperative game settings.

In both the two-stage and the cooperative game settings, the interchange fee rate and the merchant

discount rate are increasing in the issuer’s unit operation cost cI . In the cooperative game setting,

the interchange fee rate may not significantly depend on the value δ– which measures the per dollar
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operation cost absorbed by the merchant/issuer in acting as an acquirer when δ is suffi ciently small

(i.e., δ < 14); but, the merchant discount rate is increasing in δ. In addition, the parameter γ– which

measures the per dollar operation cost absorbed by the merchant/acquirer in acting as an issuer– may

have no significant impact on the interchange fee rate when γ is suffi ciently small (i.e., γ < 11.5).

In conclusion, we find that the recent U.S. bill “H.R. 2695” should be useful to reduce both the

interchange fee rate and the merchant discount rate. We have identified some important managerial

insights that could help improve the effi ciency of the credit card operations.
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