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Abstract

The early-life microbiota is an ‘immature’ and highly dynamic microbial ecosystem, 
which is central to infant health. Both perinatal and postnatal factors can impact the 
gut microbiota, with antibiotics proposed to cause short and longer-term disturbances. 
Antibiotics not only impact microbial community composition but also contribute to 
the overall antibiotic resistance profile, i.e. the ‘resistome’, and they may also enhance 
carriage of multi-drug-resistant bacteria. Given high antibiotic prescription practices in 
pregnant women and newborns this also contributes to the global threat of antimicrobial 
resistance. This review summarises the current literature on antibiotic usage and how 
this may impact the developing gut microbiota during early-life, including the influence 
of horizontal gene transfer on contributions to pathogenicity and resistance of gut 
bacteria. We also focus on Enterococcus spp. given their high levels in infants and their 
link with opportunistic infections that are a significant cause of morbidity and mortality 
during early-life. Finally, a perspective on the importance to antibiotic stewardship, and 
harnessing the microbiota itself for anti-infection therapies for reducing antibiotic usage 
are also covered.

Antibiotic consumption and antimicrobial 
resistance – the current problem

Antimicrobial resistance (AMR) is an ongoing  
pandemic and its burden relies on over and misuse of 
antibiotic drugs. A recent systemic analysis indicated 
deaths associated with bacterial AMR in 2019 was 
4.95 million, including 1.27 million deaths directly 
attributable to bacterial AMR (Murray et  al. 2022).  
High antibiotic prescription rates raise the concern 
for AMR in high-income countries (HICs), and one in 
three people in WHO European Region (14 countries) 
used leftover antibiotics from a previous prescription  

or obtained antibiotics without a prescription  
(WHO 2023) (Torres et  al. 2021, Ndaki et  al. 2022). 
In low- to middle- income countries (LMICs) this is  
further compounded by easier access to antibiotics 
in community settings. A review on AMR by O’Neill 
forecasted more 10 million deaths due to AMR in 
2050 with Asia and Africa most affected, followed by 
Europe, Latin America and North America. This report 
also highlights important factors like severe delay of 
commercialisation of new antibiotics in HICs, and 
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poor stewardship programs in LMICs and in HICs  
(O’Neill 2014).

Crucially, overuse of antibiotics not only increases 
risk of AMR, but can also increase the severity and 
length of disease, which in turn increases healthcare 
costs and mortality rates due to emergence of multi-
drug-resistant (MDR) bacteria (Llor & Bjerrum 2014). In 
paediatric populations, the WHO estimates AMR causes 
200,000 infants’ deaths every year (Romandini et  al. 
2021). About 40% of newborn infections are resistant 
to standard antibiotic treatment globally, suggesting a 
reservoir of MDR bacteria and antibiotic-resistant genes 
in this population (WHO 2023). Primary care accounts 
for more than 80% of all antibiotic prescriptions across 
Europe, which are mostly for respiratory infections 
(Llor & Bjerrum 2014). Recent studies also indicate that  
33–39% of newborns are exposed to antibiotics via 
the mother (to prevent preterm birth and reduce the  
risk for maternal or neonatal infections) during delivery 
(Stokholm et  al. 2013). In the last decade, antibiotic 
consumption has rapidly increased in LMICs (Sulis 
et  al. 2020, Kwon et  al. 2022), with inadequate testing 
facilities, hygiene and antibiotic storage conditions, 
potentially worsening the AMR situation (Ayukekbong 
et  al. 2017). Table 1 shows the most commonly  
prescribed/used antibiotics in different global regions. 
Although educational interventions, particularly in 
HICs, have been associated with reductions in antibiotic 
consumption and promotion of appropriate antibiotic 
prescription practices, ongoing and further efforts  
are crucial in this area (Pierce et  al. 2020, Pinto Ferreira 
et al. 2022, Rocha et al. 2022).

A multinational survey conducted across 76  
countries reported antibiotic consumption rates between 
2000 and 2015. The consumption of Access (essential 
antibiotics that are first or second line of treatment for 
common infections) and Watch (antibiotics that are 
only applied to limited group of infective syndromes) 

antibiotics increased by 26.2% and 90.0%, respectively.  
In LMICs, the consumption of Access antibiotics was 
45.3%, with Watch antibiotics increasing by 165%, while  
in HICs it was 14.8% and 27.9%, respectively, across 
the same 15-year period. Countries in which Access  
antibiotics made up at least 60% of their antibiotic 
consumption decreased over the study period, from 50 
out of 66 countries in 2000, to 42 out of 76 countries  
in 2015. These data indicate an antibiotic usage  
alarming situation, and the WHO Aware framework and 
nationwide target for Access antibiotics is now aimed 
at least 60% of overall antibiotic consumption by 2023 
(Klein et al. 2021).

Notably, although over/misuse of antibiotics is 
associated with driving AMR – there is also significant 
challenges associated with inaccessibility to medicines, 
including antibiotics. Indeed poor access to antibiotics 
was associated with increased pneumonia and acute 
febrile illness among children less than 5 years of  
age (Sulis & Gandra 2021). In terms of access to 
new antibiotics, a study found that the majority of  
antibiotics approved and launched between 2010 and 
2020 were accessible in only 3 (US, UK and Sweden)  
out of 14 HICs, with the situation significantly worse 
in LMICs. Indeed, only 10 out of 25 new antibiotics 
that entered the market between 2010 and 2019 were 
registered in more than 10 countries. With low sales, 
many companies have delayed commercialisation  
fearing decreases in profitability (Kållberg et  al. 2018, 
Outterson et  al. 2021). The main barriers to access of 
new antibiotics includes affordability, insufficient 
government funding, weak drug discovery, difficulties in 
market entry and vulnerable health systems (Frost et  al. 
2019). In order to combat these issues, and in the face of 
AMR, the Global Antibiotic Research and Development 
Partnership (GARDP) is developing treatments for  
(multi)drug-resistant infections, including working 
together with partners to develop new antibiotics,  

Table 1 Top most prescribed antibiotics given to infants in different geographical regions. These antibiotics were prescribed for 
conditions such as ear infections, necrotising enterocolitis (NEC), urinary tract infection (UTI), respiratory tract infection, 
pneumonia, meningitis and sepsis.

Regions Antibiotics References

Europe Ampicillin, gentamicin, linezolid, vancomycin Prusakov et al. (2021), Nasso et al. (2022)
Asia Carbapenems, tetracycline, gentamicin, amoxicillin Hufnagel et al. (2018), Bielicki et al. (2020)
Australia Gentamicin, benzylpenicillin (penicillin G), cefotaxime, 

ampicillin
Anderson et al. (2017), Yan et al. (2019), McMullan et al. (2020)

USA Ampicillin, gentamicin, vancomycin, cefazolin Poole et al. (2019), Spencer et al. (2022)
Africa Cephalosporins, penicillin, carbapenems, gentamicin Bielicki et al. (2020), Abubakar & Salman (2023), Mambula 

et al. (2023)
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and improving antibiotics access in a responsible way 
(Russell et al. 2023).

Impact of antibiotics on early-life gut 
microbiota composition

Gut-associated microbial communities i.e. the gut 
microbiota, are seeded at birth, and play a critical role 
in early-life development. Composition of the early-
life microbiota can either be associated with health or  
disease, with colonisation by beneficial microbes at key 
stages required for host wellbeing (Milani et al. 2017).

Intrinsic and extrinsic factors play a significant 
role in shaping interactions between gut microbes, and 
also how these microbes impact host responses. These  
factors include host genetics, antibiotic use, maternal and 
infant nutrition, gestational age, and mode of delivery, 
all of which can impact gut microbiota signatures in the 
short and longer term (Fouhy et  al. 2019). In general, 
vaginally born infants have dominant genera such  
as Bifidobacterium, Bacteroides, Parabacteriodes and 
Escherichia, which are transferred vertically from maternal 
vaginal and gut sites, while caesarean-born infants 
can harbour potentially pathogenic taxa including 
Enterococcus, Staphylococcus, Streptococcus, Klebsiella, 
Clostridium, and Enterobacter that may originate from 
the mother’s skin and hospital environments (Shao et al. 
2019, Chong et  al. 2022). Breast milk contains human  
milk oligosaccharides (HMOs), which are not digested 
by host but metabolised by Bifidobacterium spp. that are 
enriched in breast-fed infants (Tamburini et  al. 2016). 
Contrastingly, formula-fed infants have a more diverse 
microbiota – with higher prevalence of opportunistic 
pathogenic taxa in the gut (Ma et al. 2020, Laursen 2021).

Although birth mode and nutrition significantly 
alter the developing gut microbiota, antibiotics also 
have wide-ranging effects on taxonomic composition, 
which is further compounded by the issue of antibiotic 
over/misuse and AMR as highlighted above. Indeed, 
it is estimated that only 1 in 1000 neonates that 
receive antibiotics will develop an officially diagnosed  
infection, and currently antibiotics are prescribed in 
4–10% of all neonates (Reyman et al. 2022).

Prior to birth, intrapartum antimicrobial  
prophylaxis (IAP) is given to women during onset of  
labour and delivery to reduce group B Streptococcal 
infections (Braye et  al. 2019). IAP antibiotics includes 
intravenous penicillin or ampicillin, with cefazolin 
recommended for women with a penicillin allergy 

(Braye et al. 2019). IAP-exposed infants have been shown  
(at 3 months) to have low levels of Bacteroides and 
Parabacteroides and high levels of Enterococcus and 
Clostridium (Patangia et al. 2022).

After birth, a group of infants that are often 
‘overexposed’ to antibiotics are preterm infants, who  
often receive broad-spectrum antibiotics during their 
hospital stay, with up to 80% exposed to antibiotics in  
their first postnatal week (Bubser et al. 2022). Commonly 
used antibiotics are gentamicin, penicillins and 
vancomycin (Simeoli et  al. 2022). An estimated 15 
million infants are prematurely born every year and 1 
million children die each year due to complications, 
including infections (WHO 2023). Previous studies have 
indicated low to absent levels of Bifidobacterium and 
Bacteroides, with high levels of facultative anaerobes  
such as Enterobacteriaceae and increased levels of 
Clostridium, Streptococcus and Staphylococcus (Shao 
et  al. 2019). Crucially, these perturbed gut microbiota  
profiles in infants is associated with the devastating gut 
disease NEC, which is associated with overgrowth of 
opportunistic pathogens (that are often MDR) in the 
preterm gut (Cuna et  al. 2021). Specifically, microbial 
perturbations preceding NEC have been identified, 
with increases in the abundance of Enterobacteriaceae, 
Enterococcus, and Citrobacter, with concurrent decreases 
in Bacteriodetes and Veillonella levels (Pammi et al. 2017). A 
more recent shotgun metagenomic study of NEC patients 
revealed that Enterococcus faecalis and Escherichia coli  
were the dominant taxa, followed by Staphylococcus 
epidermidis and Klebsiella pneumoniae (Tarracchini 
et  al. 2021). Most recently, a link between Clostridium  
perfringens and preterm infants with NEC has been 
postulated, which was confirmed by in-depth genomics 
and experimental characterisation (Kiu et al. 2023).

Unlike preterms, full-term infants tend to spend less 
days in hospital (Fuertes et  al. 2023). However, they also 
receive antibiotics, with ampicillin, gentamicin and 
vancomycin the most commonly prescribed (Leroux 
et  al. 2015, Rivera-Chaparro et  al. 2017, Prusakov et  al. 
2021). Antibiotics during these first days and weeks shape  
the diversity and composition of the term infant 
microbiota (Shekhar & Petersen 2020), with previous 
work suggesting increased abundance of genera and 
species belonging to the phylum Pseudomonadota, and  
decreased abundance of beneficial Bifidobacterium. These 
antibiotic-induced perturbations also appear to affect  
host immunity and metabolism (Kwon et al. 2022).

An overall reduction in colonisation resistance,  
due to disturbances in the early-life gut microbiota, may 
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heighten risk of neonatal sepsis, which affects 3 million 
newborns each year. A neonatal observational study 
revealed that only a minority (13%) of patients receive 
WHO standard care of ampicillin and gentamicin for 
sepsis, and there is an increasing use of last-line agents 
such as carbapenems and polymyxin in some LMICs. 
Mortality at 28 days is high at 11.3%, and more than  
59% deaths were due to hospital-acquired infections 
(Russell et al. 2023).

Carriage and transfer of MDR bacteria 
during early-life

Due to the rapid rise in AMR and MDR bacterial  
infections, there is a need to understand how different 
factors drive AMR, including MDR bacteria carriage 
and bacterial transmission routes (Andersson & Hughes 
2017). Initially, vertical transmission of maternal 
microbes is one route by which the newborn may  
acquire microbes carrying AMR, particularly if the  
mother has received antibiotics during pregnancy (Li 
et  al. 2021). Previous work has also shown that perinatal 
antibiotics also enhance horizontal gut colonisation 
(rather than vertical), which is defined as acquisition 
of strains from the environment (e.g. hospital settings), 
indigestion of food and interpersonal interactions.  
This may lead to carriage of potentially pathogenic  
strains (Li et  al. 2021), due to antibiotic-induced gut 
microbiota perturbations creating a favourable niche  
for MDR bacteria from the (hospital) environment 
(Arboleya et al. 2022).

Within the hospital environment, infants are 
potentially exposed to a range of MDR bacteria. There 
are many examples of transfer of MDR bacteria between 
neonates including an outbreak of extensively drug-
resistant Acinetobacter baumanni that involved 22  
infants, with the strain introduced into the neonatal 
intensive care unit (NICU) via a colonised infant (Zarrilli 
et  al. 2012). In Moroccan NICUs, 17% of newborns 
had acquired A. baumannii and its prevalence was 14% 
(Arhoune et  al. 2019). Tunisian tertiary care evaluated  
MDR bacterial acquisition through nasal and rectal  
swabs, which indicated that E. coli was the most 
frequently detected bacterium on admission, with E. coli 
and K. pneumoniae detected on discharge. Length of stay, 
age and paediatric intensive care unit hospitalisation 
were risk factors for MDR bacterial acquisition during 
hospitalisation; with 9% paediatric patients acquiring  
at least one MDR strain (Tfifha et  al. 2018). Thus, 

the hospital environment may play a crucial role in 
establishment of gut microbiota, and identification 
of resistant opportunistic pathogens is an important 
consideration for future infection risk and subsequent 
treatment options (Shao et al. 2019).

Livestock may also be a major contributor to 
resistance in animals and humans, and infants in  
LMICs with potentially closer contact with animals  
may lead to additional horizontal transmission of 
MDR bacteria (Rhouma et  al. 2022). Furthermore, 
previous studies indicate that childcare contacts and 
family members may be a further reservoir of antibiotic  
resistance genes (ARGs); 77% of 80 healthy individuals’ 
faecal samples have at least one ARG (Chen et al. 2022).

Horizontal gene transfer driving AMR in the 
early-life window

Although vertical transmission of mother microbes, 
and horizontal transfer of MDR strains from hospital 
environments, are major routes for establishing 
a ‘resistome’ in the gut microbiota of newborns,  
horizontal gene transfer (HGT) also plays a critical role  
in the development of AMR (Li et  al. 2021). It is  
responsible for expanding the repertoire of ARGs  
between and within bacterial species (Jitwasinkul 
et  al. 2016b). This complete ‘resistome reservoir’ of 
ARGs can be found in pathogenic and commensal 
bacteria, with movement of genes between microbes –  
including bidirectionally (Lerner et  al. 2017, Appel & 
Vehreschild 2022). Indeed, a systematic study assessed the  
impact of 144 different antibiotics against 38 species 
of gut bacteria, and it showed β-lactamase resistance  
was common amongst gut commensals, likely facilitated 
via HGT (Maier et al. 2021).

Interestingly, high frequencies of potential HGT  
have been reported in infants’ meconium and early  
faecal samples (Dimitriu 2022), indicating dynamic 
resistome development at early stages of microbial 
community structuring. Previous work also indicates 
that ARGs prevalence increases over time and during  
the first year of life (Loo et  al. 2020b, Wintersdorff et  al. 
2016). Nogacka et al. found higher beta-lactam resistance 
in vaginally born Spanish infants whose mothers  
received IAP (Nogacka et al. 2017). Das et al. demonstrated 
that selected infant gut species (B. longum subsp. infantis, 
Lactobacillus fermentum, L. gasseri and E. faecalis) have 
more than 97% similarity with those in breast milk, 
and share similar ARGs abundances (Das et  al. 2019).  
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However, it is important to note that these studies show 
associations rather than active HGT, and additional  
studies using, for example, Hi-C sequencing (as has been 
used in adult faecal samples) may allow for more accurate 
linkages with host bacteria strains and ARG carriage 
profiles (Yaffe & Relman 2020, Ivanova et al. 2022).

This ARG ‘flow’ depends upon the donor and  
recipient bacterium, and the type of mobile genetic  
element (MGE) driving HGT. Antibiotic susceptible 
bacteria may acquire resistance via a number of 
mechanisms including by mutations or MGEs such as 
integrons, transposons, bacteriophages and plasmids 
(Jitwasinkul et  al. 2016b, Haudiquet et  al. 2022). Among 
MGEs, conjugative plasmids are the major contributors 
for spread of AMR via transmission within and  
between bacterial species. However, a conflict exists for 
transmission of conjugative plasmids, as carriage can be 
associated with a reduction in ‘host’ fitness. Therefore, 
within a microbial community, e.g. the early-life gut 
microbiota, plasmid transmission is influenced by 
presence of susceptible hosts, which favours increased 
plasmid transfer. Moreover, there is a trade-off between  
the rates of vertical (i.e. passage of a plasmid from mother 
to daughter cells during division) and horizontal (i.e. 
passage of a plasmid from donor to any recipient cell 
outside of cell division, often through conjugation) 
plasmid transmission (Turner et  al. 1998). When  
horizontal transmission increases, virulence of 
the receptor strain should also increase, thereby  
reducing the plasmid rate via vertical transmission 
(Dimitriu et al. 2021).

Conjugative plasmids mediate gene transfer in  
diverse environments. Their ability to donate F type 
conjugative plasmid R1 varies among enteric (i.e. gut) 
bacteria as sex-pili formations is repressed in bacterial 
strains with R1 plasmids. When plasmids encode  
virulence factors and ARGs, amplifier cells not only 
facilitate the emergence of new pathogenic strains but 
also affect the efficacy of antibiotic treatments. Thus, 
the identification of amplifier strains is of considerable 
importance for public health (Dionisio et  al. 2002). In 
commensal E. coli, F plasmids are the most common 
conjugal plasmids, and they were the first to be associated 
with transmissible antibiotic resistance (Stephens et  al. 
2020). As E. coli is a core member of gut microbiota, 
particularly during early-life, further work is needed 
to probe factors that are involved in plasmid mediated 
HGT and AMR (Ott & Mellata 2022). Given the 
gastrointestinal tract has many different biofilm sites, this 
may also increase HGT of plasmids (via closer physical 

contact), and thus overall ARGs, which may contribute 
to over resistome profiles in the infant gut microbiota. 
Indeed, the expression of tetracycline and kanamycin 
genes has been found to increase three- to four- fold in 
biofilms of E. faecalis (Cook & Dunny 2013, Motta et  al. 
2021). Intriguingly, MGEs (plasmids) may also act as a  
barrier to HGT, as Lazdins and colleagues utilised a vector 
to displace resistance plasmid – IncP-1 plasmid RK2, as an 
alternative strategy to combat AMR (Lazdins et al. 2020).

ARGs can also be associated with integrons (non-
mobile elements). There are five classes of integrons, 
with class 1 integrons the most widely studied. These 
are found in pathogens and commensals that contain 
different ARG cassettes conferring resistance to antibiotics 
(Loo et  al. 2020a). In early-life, due to immaturity of the 
microbiota, and thus reduced colonisation resistance, 
this potentially provides a niche for exogenous bacteria 
carrying ARG integrons to efficiently colonise. Previous 
work has shown that integrase gene (int1) persistency 
was found throughout the first 2 years of life, including 
between mothers and their children, also indicating that 
maternal sources were possible routes for transmission. 
Additional transposons-containing integron genes on 
conjugative plasmids associated with sulphonamide, 
aminoglycoside and trimethoprim resistance similar 
to conjugative plasmid psH1148_107 were also detected  
(Ravi et  al. 2015). Prophages (viral genomes integrated 
within a bacterial genome) can also media HGT and 
contribute to bacterial pathogenicity. Transduction 
can mediate resistance between bacterial species 
such as in Enterococcus by polyvalent phages (Chen 
et  al. 2022). However, transfer of resistance genes by  
phages, particularly within the gut microbiota remains  
a complex subject (Borodovich et al. 2022).

Early-life AMR carriage

On average, it appears that the number of ARGs within 
infants increases with age, with all infants harbouring 
common ARGs (blaZ, tet(M), fosA, lsa(A), erm(B) and 
aac(6′)-aph(2′′)) in the first year of life, which may  
correlate with increasing overall gut microbiota diversity 
(Loo et  al. 2020a). Previous work has also detected high 
prevalence and persistence for the int1 gene in infants 
at ages 3–10 days and 4 months, with persistency  
detected throughout the first 2 years of life between 
mothers and their children (Ravi et  al. 2015). Over 9% 
of breastfed neonates born by caesarean section were 
found to have one or more ARGs within the first normal 
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faeces passed, with >85% of breast milk colostrum 
samples also containing ARGs, leading the authors to 
hypothesise ARGs may originate from breast milk and/
or the environment (Zhang et  al. 2022). In addition, a 
previous meta-analysis cohort study has also indicated 
that ARG load was higher in formula-fed infants,  
with the ARG load in premature formula-fed infants 
nearly double the load of breastfed infants. Formula-
fed infants also have significantly more potential  
pathogens within the family Enterobacteriaceae, which 
are known to harbour many mobile ARGs (Pärnänen et al. 
2021). Another study found that hospital environments, 
rather than the maternal microbiome, were the major 
sources of ARGs in neonates, with the first ARGs blaSHV 
and mecA only found in newborn samples rather than in 
maternal–infant pairs (Klassert et  al. 2020). In addition, 
several studies have also shown a high prevalence of  
ARGs in infants who have had no prior antibiotic 
treatments, again suggesting a hospital (or maternal) 
environmental source (Ravi et  al. 2015). This is  
highlighted by the similarity between microbes from  
the hospital environment and those found in the  
infants’ gut (as discussed earlier). Such ARG interchange 
may lead to colonisation of pathogenic bacteria  
in neonatal wards including MDR bacteria (Klassert  
et al. 2020).

However, just using purely targeted ARG profiling 
approach(es) limits broader understanding on the 
carriage, mode of transfer, and bacterial strains involved; 
thus, additional approaches like in-depth metagenomics 
and culture are needed. Further phenotypic profiling 
is key, particularly for uncovering novel AMR genes  
and/or mechanisms (Andreoni, 2003, Qi et  al. 2006, 
Sommer et al. 2009, Jitwasinkul et al. 2016a).

The many faces of Enterococcus

Many members of the gut microbiota can, in certain 
conditions, overgrow and cause serious infection in  
their host (Abt & Pamer 2014). This poses a significant 
problem in infant populations who are exposed to  
multiple microbiota perturbing factors and have 
an immature immune system, thus reducing their 
overall anti-infection responses. One such genus are  
Enterococcus, which comprise a diverse group of lactic 
acid bacteria (LAB) that can be isolated from different 
environments, but are commonly found in the gut 
of humans and animals. Different species and strains 
have been shown to act as ‘beneficial’ members of the 
gut microbiota, and there are some that are used as  

probiotics, particularly in the veterinary arena (Silva 
et  al. 2012). Indeed, most enterococci are non-virulent, 
and have a low infection potential, with a recent study 
indicating that 4% of Enterococcus spp. isolated from 
humans showed mutualistic behaviour with a probiotic 
potential (Lohrasbi et al. 2020). This may be due to their 
ability to produce enterocins (enterococcal bacteriocins 
that are small antimicrobial peptides) that display  
broad-inhibitory spectrum activity against spoilage 
bacteria and foodborne pathogens such as Bacillus 
cereus, Staphylococcus spp., Clostridium spp. and Listeria 
monocytogenes (Ben Braïek & Smaoui 2019). Recently, a 
two-peptide leaderless bacteriocin produced by the E. 
faecalis 14 (strain previously isolated from meconium) 
named Enterocin DD14. These leaderless bacteriocins  
were discovered by Cintas and colleagues after 
characterisation of an enterococcal bacteriocin named 
L50. It is active wide range of Gram positive bacteria 
including MRSA, both in vivo and in vitro, including  
anti-adhesive activity (Ladjouzi et  al. 2023, Pérez-
Ramos et  al. 2023). Furthermore, Enterococcus strains 
from breastfed infants showed higher inhibitory effects 
than those from adults, suggesting additional research 
in this area is required to further probe their probiotic  
potentials (Rahmani et al. 2020).

Crucially, there are a number of species and strains 
that are of significant clinical concern, including 
E. faecalis, accounting for 80–90% of enterococcal  
infections, and Enterococcus faecium which represents 
5–10% (Silva et  al. 2012). There is increasing concern 
due to increases in MDR Enterococcus strains, including 
vancomycin-resistant enterococci (VRE) which have 
been spreading steadily worldwide, and are common 
in long-lasting hospital outbreaks (Ramos et  al. 2020).  
Moreover, given that Enterococcus strains can harbour 
vancomycin resistance encoded on plasmids, this 
increases risk of transfer to other susceptible Enterococcus 
species and strains, and also potential spread to other  
key clinical pathogens (and microbiota members) such  
as was found in MRSA (DeNap & Hergenrother 2005).

Mechanisms of AMR in Enterococcus

Intrinsic resistance (i.e. when a bacterial species is  
naturally resistant to a certain antibiotic without the  
need for mutation or gain of further genes) in  
Enterococcus is linked to an inability of aminoglycosides 
to enter the cell (where they inhibit ribosomal protein 
synthesis). However, at the population level, enterococcal 
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minimum inhibitory concentrations (MICs) have 
increased over time, which appears to link to increasing 
extrinsic resistance (i.e. acquiring resistance genes from 
other bacteria which are already resistance to antibiotics). 
Pheromone-sensitive, broad host range plasmids, and 
transposons drive HGT exchange among enterococci. 
Small peptide signals from potential recipients trigger 
expression of conjugative transfer genes in pheromone-
responsive plasmids of Enterococcus (Zatyka & Thomas 
1998). Broad host range plasmids transfer genetic 
information to Enterococcus species and strains and also 
other Gram-positive and even Gram-negative species 
(Hollenbeck & Rice 2012).

Three types of transposons (composite, conjugative 
and Tn3 transposons) are also responsible for genetic 
exchange (including ARGs) in enterococci. Prophylactic 
gentamicin is given to preterm infants as a treatment 
for potential bacterial infections (Shimizu et  al. 2019), 
but high-level gentamicin resistance frequently 
occurs through aph(2′′)-la-acc(6′)-le, which is flanked 
by IS256 in composite transposon Tn5291 in E. 
faecalis (Hollenbeck & Rice 2012). This same gene is  
responsible for high-level resistance to all available 
aminoglycosides except streptomycin (Marothi et  al. 
2005). β-lactam and cephalosporin’s use penicillin-
binding proteins (PBPs) to disrupt cell wall synthesis  
that leads to production of reactive oxygen species. 
However, in enterococci these are removed by  
superoxide dismutase (Růžičková et  al. 2020). Additional 
resistance is provided by bla genes (confer resistance 
through β-lactamases to β-lactam antibiotics) which  
can be transmitted between bacteria via plasmids.

Enterococcus strains can also encode acquired  
resistance to glycopeptides such as vancomycin. Although 
linezolid resistance is currently not common, it can 
be acquired through the cfr gene (alters adenosine in 
linezolid), which is encoded on transmittable plasmid 
pEF-01 (Růžičková et  al. 2020). The gene vanHBX 
conferring resistance to vancomycin has been detected  
in E. faecium, and data suggests this can be acquired via 
phage transduction (Kondo et  al. 2021). The vanC gene 
along with vanRc, vanXYc (which are protein homologs) 
were found in Enterococcus gallinarum, Enterococcus 
casseliflavus and Enterococcus flavescens confers intrinsic 
low level resistance to vancomycin (Clark et  al. 1998, 
Younus et  al. 2021). Vancomycin variants are found in 
these species including E. faecium as indicated in Fig. 1.

Enterococcal bacteriophages have previously been 
shown to play a role in transfer of ARGs in enterococci, 
as gentamicin (ant2-I-) and tetracycline (tet(M)) were 

transferred within and between enterococcal species. 
However, although phenotypically resistant, none  
were detected by PCR (Mazaheri Nezhad Fard et al. 2011).

Why is it a problem clinically?

The name ‘entero’ specifies Enterococcus has an intestinal 
habitat, and indeed they have been found in high 
concentrations in adult human faeces - between 104 
and 106 bacteria per gram wet weight (Boehm Ab 2014), 
although it is unclear what the levels are in infant 
faeces. These gut-associated strains in many cases will 
not be associated with infection, but they may act as a 
reservoir. Indeed, ARGs such as tet(M)) and erm(B) have 
previously been shown to be encoded by Enterococcus spp. 
in healthy infants in a US-based study (Zhang et al. 2011). 
A recent EARS-Net (European Antimicrobial Resistance  
Surveillance Network) study showed that VRE caused 
around 16,000 nosocomial infections, and 1065 deaths  
in the EU/EEA in 2015 (twice the number reported in 
2007). The burden of antibiotic-resistant associated 
infections in EU/EEA was highest in infants and people 
aged 65 years or older (Cassini et  al. 2019, Murray et  al. 
2022). Current German data also highlights the same 
increasing trend (Markwart et  al. 2019). Increasing VRE 
proportions in infants is of serious concern, as antibiotic 
resistance is associated with increase mortality and 
morbidity (Ayobami et  al. 2020). Enterococcus infections, 
alongside E. coli, Pseudomonas aeruginosa, Enterobacter  
and K. pneumoniae are leading causes of hospital-
associated bacteraemia, UTIs and endocarditis (Monegro 
Af & Regunatha 2022).

Crucially, gut-derived enterococci may act as a  
reservoir of opportunistic MDR strains that in certain 
circumstances may translocate to the bloodstream 
or other body sites and initiate serious infection,  
particularly in vulnerable patient groups like neonates 
(Dubin & Pamer 2017). Studies have shown that 
Enterococcus species (particularly E. faecalis) are one of the 
most dominant LAB colonising newborns (Al-Balawi & 
Morsy 2020), and preterm infants in particular appear to 
carry more Enterococcus in their gut as compared to full-
term infants (Dahl et  al. 2018). Linking to infections, E. 
hirae is a rare human pathogen, however a first paediatric 
case of catheter-associated bacteraemia in a 7-month-
old infant has been reported (Brayer et  al. 2019). Also,  
E. faecalis was found to be responsible for acute 
pyelonephritis in children aged 0–18 years at a German 
university tertiary care centre (Raupach 2019), and a 
NICU study reported a natural history of vancomycin-
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resistant E. faecium (VREF) carriage among infants after 
discharge from hospital (Schechner et  al. 2022). MDR 
E. faecium and VREF have also been associated with  
neonatal sepsis, with the maternal gut traced as the  
source. This indicates monitoring of VRE colonisation 
in pregnant women should be undertaken to reduce  
neonatal sepsis occurrence (Subramanya et al. 2019).

How can we reduce carriage of potential AMR 
bacteria in the infant gut?

Current data indicates that infants who receive  
probiotics also receive less prescribed antibiotics,  
which may be linked to enhanced colonisation 
resistance (King et  al. 2019). Previous studies have 
shown that Lactobacillus and Bifidobacterium  

strains reduce the risk of infection and reduce carriage 
of Enterococcus in the neonatal gut, this includes data  
showing that this probiotic supplementation reduces 
incidence of preterm-associated NEC and late-onset sepsis 
(which is associated with overgrowth of MDR bacteria 
including Enterococcus) (King et  al. 2019, Robertson 
et  al. 2020). This Bifidobacterium dominance, and lower 
abundances of pathobionts, more closely resembles a gut 
of a full-term infant (Alcon-Giner et al. 2020). Moreover, 
probiotic use of Lacticaseibacillus rhamnosus GG appears 
to enhance elimination of VRE in adults, preterm and 
newborn infants, potentially due to production of organic 
acids and/or bacterocins (Manley et al. 2007, Tytgat et al. 
2016). Probiotic supplementation during pregnancy 
may also limit vertical transmission of potential MDR 
bacteria including Enterococcus to newborns, although  

Figure 1
Presence and absence heat map for five different 
Enterococcus species (E. faecalis, E. faecium, 
Enterococcus hirae, E. casseliflavus and E. 
gallinarum) and strains from different countries 
indicating high prevalence of aminoglycoside, 
macrolide and glycopeptide genes. Heat map was 
generated using sea born package. Reference 
genomes used were obtained from NCBI 
(GCA_009832495.1, GCA_902162135.1, 
GCA_902164415.1, GCA_902161575.1, 
GCA_009832645.1, GCA_009832455.1, 
GCA_009832635.1, GCA_009832485.1, 
GCA_005166365.1, GCA_009832445.1, 
GCA_009832455.1, GCA_001373175.1 and 
GCA_902161935.1), with the CARD database used 
for prediction of AMR genes.
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additional studies are required to more fully evaluate  
the role of probiotics during key early-life stages (Mueller 
et al. 2015).

As indicated above, formula feeding is correlated 
with a higher neonatal ARG burden, while breastfed 
infants appear to have less ARGs and also fewer  
diarrhoea associated hospitalisations (Pärnänen et  al. 
2021). The action of breast milk is likely combinatory; 
via transfer to pathogen specific IgA (in colostrum) 
and also provisions of HMOs that selectively feed  
beneficial bacteria like Bifidobacterium, which enhances 
colonisation resistance in the early-life gut (Kapourchali 
& Cresci 2020). Thus, increased breast feeding and/or  
access to donor breast milk banks may help to reduce 
carriage of MDR bacteria and also overall ARG within  
the wider microbiota (Nadimpalli et al. 2020).

The ‘complete the antibiotic course’ as dogma for 
reducing infections and AMR has been brought into 
question, with, for example, short antibiotic courses for 
pneumonia (5 days instead of 7 or 10 days) apparently 
equally effective as longer courses for uncomplicated 
infections (otitis media and streptococcal pharyngitis) 
(Langford & Morris 2017). Indeed, a BMJ study  
highlighted there is no evidence that stopping  
antibiotic courses early (or giving a shorter course  
overall) increases AMR, while taking for longer periods 
may increase the risk of resistance. Thus, improving 
antibiotic stewardship and bridging the clinical and 
public setting is key (Llewelyn et  al. 2017). For infants, 
a recent study using antibiotic spectrum index (ASI), 
indicated new opportunities to improve antibiotic 
stewardship, and highlighted the utility for using this 
metric for comparing antibiotic exposures among  
NICU populations (Sullivan et  al. 2022). However, 
work on these metrics to drive prescription changes,  
including linking to clinical outcomes, are required, and 
how this would work in broader community settings 
(Gerber et al. 2017).

Further strategies that are, and could be exploited, 
to prevent the emergence of AMR; include vaccines, 

new narrow-spectrum antimicrobials against drug 
resistant pathogens, and phage therapy (Micoli et  al. 
2021, Diamantis et  al. 2022, Huang et  al. 2022). Next-
generation probiotics also have the potential to 
re-establish colonisation resistance, eliminate potential 
pathogens from the gut, and reduce antibiotic-resistant  
bacteria and their infections. This may also include 
mining the microbiota for strains that produce novel 
antimicrobials that target specific pathogenic taxa.  
Given, the significant interest in harnessing the  
microbiota as novel therapies, including those 
against drug-resistant infections, e.g. prevention of 
recurrence of Clostridioides difficile infection (CDI) in 
adults, recently approved by the FDA (REBYOTA from  
Ferring Pharmaceuticals), there is a huge scope for more 
targeted and personalised approaches (FDA, Ferring, 2  
December /2022).

Conclusions and future perspectives

We face a clear and present danger related to AMR 
and associated overuse of antibiotics which has, and 
will continue to, significantly increase morbidity and  
mortality rates, particular in vulnerable infant  
populations. There are numerous open questions in 
this area that must be tackled using a multidisciplinary 
approach (Table 2). In particular, antibiotics disrupt 
the burgeoning early-life gut microbial communities  
which may also further exacerbate AMR and neonatal 
infections, including those caused by Enterococcus 
spp. Global and national action plans and improved  
awareness through effective communication, education 
and training for clinicians, the public and patients  
is key to counter the AMR challenge. However, there is a 
pressing need to address these issues in LMICs, given that 
children under 5 who died from AMR infections were 
nearly all (99.65%) from these resource-poor settings.

Insights into the gut resistome and impact of  
HGT on dissemination and carriage of ARGs are urgently 

Table 2 Outstanding questions.

Questions

1. To what extent are antibiotic resistance genes in commensals a threat to human (infant) health?
2. How does the maternal gut microbiome impact colonisation against AMR pathogen and/or infection?
3. What are the actual HGT rates in the early-life gut – what mobile genetic elements are important, and is this driven 

by increasing intake of antibiotics?
4. What is the carriage of Enterococcus and ARG determinants in healthy infants, and do these strains act as a 

reservoir for serious nosocomial infections?
5. As Enterococcus may also be a normal member of the early-life gut microbiota, can we also mine this genus for 

development of new probiotics and as a source of targeted novel antimicrobials?
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required, particularly within the dynamic early-life gut 
microbiota. The same ‘niche’ may also be harnessed for 
development of next-generation probiotics and novel 
antimicrobial strategies with additional studies in this 
area potentially providing new avenues for therapy 
development.
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