DECOMPOSITION NUMBERS FOR ROUQUIER BLOCKS OF ARIKI-KOIKE
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SINEAD LYLE

ABSTRACT. Let H = Hrn(gq, Q) denote an Ariki-Koike algebra over a field of characteristic p > 0. For each
r-multipartition X of n, there exists a H-module S* and for each Kleshchev r-multipartition g of n, there
exists an irreducible H-module D#. Given a multipartition A and a Kleshchev multipartition p both lying
in a Rouquier block such that A and p have the same multicore, we give a closed formula for the graded
decomposition number [S? : D¥], when p = 0 or when each component of p has fewer than p removable
e-rim hooks.

1. INTRODUCTION

Let H = H,n(g, Q) denote an Ariki-Koike algebra. These algebras were introduced by Ariki and Koike [2]
as a simultaneous generalization of the Hecke algebras of type A, when r = 1 and type B, when r = 2. In
a natural generalization of the combinatorics which appear in the type A case, there is a class of important
‘H-modules, called Specht modules, which are indexed by the set of r-multipartitions of n. When H is
semisimple, these Specht modules form a complete set of non-isomorphic irreducible H-modules; otherwise,
the simple modules appear as the heads of a subset of the Specht modules.

One of the most important open problems in the representation theory of the Ariki-Koike algebras is to
determine the multiplicity [S? : D] of a simple module D* as a composition factor of a Specht module S*;
it also seems to be a very difficult problem. Even when r = 1, there are very few cases where there is a closed
formula for these decomposition numbers. However when r = 1, the decomposition numbers are known for
certain blocks called Rouquier blocks or RoCK blocks.

The Rouquier blocks for the Hecke algebras of type A were defined by Rouquier [37]. Due to work on
them by Chuang and Kessar [8], many authors refer to them as RoCK (Rouquier or Chuang-Kessar) blocks.
Chuang and Kessar showed that a Rouquier block of F,&,, of weight w < p is Morita equivalent to the
principal block of &,1&,,, and hence they were able to prove Broué’s abelian defect group conjecture for the
Rouquier blocks; Chuang and Rouquier [9] later extended the proof of the conjecture to all blocks of F,&,,
by showing that any block of weight w is derived equivalent to a Rouquier block. There is an elegant closed
formula for the decomposition numbers of Specht modules lying in Rouquier blocks, proved by Leclerc and
Miyachi [30] when p = 0; by Chuang and Tan [11] for the symmetric group algebra when p < wj; and by
James, Mathas and the author [25] for a Hecke algebra over a field of characteristic p < w. Apart from the
value of knowing decomposition numbers, this explicit formula has been used to study the other aspects of
the Hecke algebras. Decomposition numbers for the Rouquier blocks were recently used in the proof that all
blocks of of weight at least 2 in quantum characteristic e > 2 are Schurian-infinite [3]; they appear in the
classification of the irreducible Specht modules when e > 2 [15]; they were used in the first construction of
homomorphism spaces of dimension larger than 1 between Specht modules when e > 2 [14]; and they provide
a starting point for many results about Specht modules in blocks of small weight [17,/19].

In [32], we introduced the notion of Rouquier blocks for the Ariki-Koike algebras, as a natural generalization
of the Rouquier blocks for the Hecke algebras of type A. The description of Rouquier blocks we give is in
terms of abacus combinatorics. Analogously to [41], we use the term RoCK block to refer to a block which
is Scopes equivalent to a Rouquier block; although our main theorem is stated (and proved) for Rouquier
blocks, similar results hold for any RoCK block. Given the known results for r = 1, it is natural to ask
whether it is possible to have a closed formula for the decomposition numbers for the Rouquier blocks of the
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Ariki-Koike algebras. This paper gives a partial answer. When H is defined over a field of characteristic 0
we give such a formula for the graded multiplicity [S> : D#], where A and p lie in a Rouquier block and
have a common multicore. The formula also holds when the characteristic of the field is larger than the
number of removable e-rim hooks in every component of p. Additional motivation for our results is given
by work of Muth, Speyer and Sutton [36] who show that these decomposition numbers should be related to
decomposition numbers for cell modules in the cyclotomic wreath-zigzag algebra.

We summarize the main results of the paper. We will define notation rigorously in later sections; for now,
we just indicate where the definitions can be found.

Suppose that A and p are both r-multipartitions of n lying in a Rouquier block, with g e-regular, and
that A and p have a common multicore. For 0 <k <7 —1and 0 <i <e— 1, let A¥ (resp. p¥) denote the
quotient on runner 7 of the abacus configuration of the kth component of A (resp ,u) we define these terms

in Section 2.3 Set

g)‘”(v)=vw(>\)—w(m 2 2 Z Z (H 1:[051; ’“C kﬁ’“ "“c)\k( 1)/> i 0~~vgflc$6'v{\~“/£;1'

aerJrl Bel'r "/GF:_H del'n

We define w(A) in Section The terms cgl_”at are generalized Littlewood-Richardson coefficients, which
are defined in Section and I'} is the set of (s x f)-matrices whose entries are partitions; we give more
details in Section Bl R

Let {sx | A an r-multipartition} denote the standard basis of the Fock space representation F* of U, (sl.),
which appears in Section For each e-regular r-multipartition p, let G(u) denote the canonical basis
vector of F® indexed by pu and suppose that

G l'l’) = Zdiu(v)sk
A

Theorem A. Suppose that X and p are r-multipartitions of n with p e-regular. Suppose further that A and
p belong to a Rouquier block and that they have the same multicore. Then

M (V) = gau(v).

Applying (the graded version of) Ariki’s Theorem [1}6] to Theorem we immediately obtain the following
result.

Theorem B. Let H = H,,(q, Q) be an Ariki-Koike algebra defined over a field of characteristic 0 and
suppose that A and p are r-multipartitions of n with p a Kleshchev multipartition. Suppose further that A
and p belong to a Rouquier block and that they have the same multicore. Then the graded multiplicity of the
simple module D* as a composition factor of the Specht module S™ is

[S* : DM],y = gap(v).
Using the cyclotomic ¢g-Schur algebra, we may extend this result to fields of prime characteristic.

Theorem C. Let H = H, (¢, Q) be an Ariki-Koike algebra defined over a field of characteristic p > 0 and
suppose that A and p are r-multipartitions of n with pu a Kleshchev multipartition. Suppose further that A
and p belong to a Rouquier block, that they have the same multicore and that no component of p has p or

more removable e-rim hooks. Then the graded multiplicity of the simple module D* as a composition factor
of the Specht module S is

[S)‘ : DP], = gan(v).
Let S,.,, denote the cyclotomic g-Schur algebra corresponding to an Ariki-Koike algebra H.,.,, (g, Q); see [35]

for details. For A an r-multipartition of n, let A(X) denote the Weyl module indexed by A and L(A) the
simple module indexed by A. We prove the next conjecture in the case that u is e-regular.

Conjecture D. Suppose that S, ,, is a cyclotomic q-Schur algebra as above defined over a field of character-
istic p = 0. Suppose that A and p are r-multipartitions of n which lie in a Rouquier block and which have
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the same multicore and that p = 0 or no component of p has p or more removable e-rim hooks. Then the
multiplicity of L(p) as a composition factor of A(X) is given by

r—le—1 sk sk N
i i Ay & & =}
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We prove Theorem [A] using a variation on an algorithm of Fayers [20]. The variation is very similar to
the method employed in [25] to determine the decomposition numbers for the Rouquier blocks when r = 1
in that we find elements f (:9) e U, (g[e) whose action on the standard basis elements sy € F¢ where the
multipartitions obtained by adding s e-rim hooks to [A] belong to a Rouquier block is particularly nice.
Combined with results of Fayers, this enables us to compute the transition coeflicients diu(v) under the
assumptions of Theorem [A] As noted above, we may then use Ariki’s theorem to prove Theorem [B]

The paper is structured as follows. In Section [2] we recall the definitions that we will need, including
background on the Ariki-Koike algebras, multipartitions and abacuses, Rouquier blocks, the Fock space
representation and Ariki’s theorem, and Littlewood-Richardson coefficients. Although we include some new
results which will be used later, most of this material is standard.

In Sectionwe move on to the proof of the main results. In Section We introduce the coefficients gy, (v)
and consider some of their properties. In Section we define the elements f(*7) and in Proposition we
describe the action of f(*) on a standard basis element s,, where the resulting basis elements are indexed
by multipartitions lying in a Rouquier block. This enables us to describe the action of f(*/) on a truncated
canonical basis element Q(v), which is given in Proposition Having set up our machinery, we then prove
Theorem [A] in Section [3:3] The proof is given by a triple induction, firstly on 7, secondly on the number of
removable e-rim hooks in the first component of p and lastly using a total order on the first component of .

In Section we introduce the cyclotomic g-Schur algebra. Working in this algebra and applying the
Schur functor, we prove Theorem [C] In Section we note how our results also apply to blocks which are
Scopes equivalent to the Rouquier blocks. Finally, in Section we briefly discuss some open questions
related to our results.

2. BACKGROUND AND DEFINITIONS

Throughout this paper, the letters n,r and e will be used to represent non-negative integers, with n > 0,
r>1and e > 2. Given e, we will take I = {0,1,...,e — 1} which we may identify with Z/eZ; in particular,
once e is established, we will assume I is understood and will not define it. The symbol a will be used to
represent an element of I”.

2.1. Multipartitions and Young diagrams. For n > 0, we define a partition of n to be a sequence
A = (A1, A2, ...) of non-negative integers such that A\; > Ay > ... and >}, ; \i = n. When writing a partition,
we usually omit the zeros at the end and gather together equal terms, so that (3,3,2,1,1,0,0,...) = (32,2,12).
Let A, denote the set of partitions of n and let A = | J,,-, An denote the set of all partitions. We write & to
denote the unique partition of 0. If A € A,,, we write |A| = n.

For r > 1, we say that an r-multipartition, or multipartition, of n is an r-tuple of partitions A =
A XD XC=D) such that ZZ;%) INF)| = n; we write |A| = n. Note that, contrary to the usual conven-
tion, the components of our multipartitions are labelled from 0 to r — 1 rather than from 1 to r. We write
A}, to denote the set of r-multipartitions of n and A” = J,,., A}, to denote the set of all r-multipartitions.
Let @" denote the unique r-multipartition of 0. For e > 2, we say that A € A is e-regular if no e non-zero
parts of A are the same, and we say that A € A" is e-regular if each component of A is an e-regular partition.
Let Af,, denote the set of e-regular r-multipartitions.

Now fix e = 2. Suppose that A € A" and a = (ag,a1,...,a,—1) € I". The Young diagram of X is the set

A] = {(z,y,k) € Zog X Zag x {0,1...7 — 1} | y < AP},

To each node (z,y, k) € [A] we associate its residue, resq (2,9, k) = ar +y — 2 mod e; using the identification
above we assume that resq(z,y, k) € I. We define the residue set of A to be the multiset Resg (A) = {res(n) |
ne [A]}
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We say that n € [A] is a removable node of [A] if the diagram containing the nodes [A]\{n} is the diagram
of a multipartition. Similarly we say that n ¢ [A] is an addable node of [A] if the diagram containing the
nodes [A] U {n} is the diagram of a multipartition. If a removable (resp. addable) node has residue 4, we refer
to it as a removable (resp. addable) i-node. Let rem;(A) (resp. add;(A)) denote the set of removable (resp.
addable) i-nodes of A. If n, = (z,y,k),n, = (2', 9y, k") € Zg X Z>o x {0,1,...,7 — 1} then we say that n; is
above ng if k < k' orif k =k and x < 2.

The rim of [A] consists of the nodes {(z,y,k) € [A] | (x+ 1,y +1,k) ¢ [A]} and if [ > 1 then an [-rim hook
of [A] is a connected subset of the rim of size [.

2.2. The Ariki-Koike algebra. We refer the reader to [35] for a survey of the Ariki-Koike algebras and
to 28] for the relationship between the Ariki-Koike algebras and the cyclotomic Khovanov-Lauda-Rouquier
algebras.

Fix r 2 1 and n > 0 and let F be a field of characteristic p > 0. Suppose ¢ € F\{0} and Q =
(Qo,...,Qr—1) € F". The Ariki-Koike algebra H = H,,(q,Q) is the unital associative F-algebra with
generators Ty, 11, ..., T,—1 and relations

(Ti+q)(T: —1) = 0, forl<i<n-—1,
TZ‘TJ‘ = TjTi, f0f0<i,j<ﬂ—1,|i—j|>l,
TiTiTi = TipaTiTiva, forl<i<n-—2
(To — Qo) ... (To —Qr—1) = 0,
To ToTy = TyToTiTo.

Define e > 2 to be minimal such that 1+q+---+¢°"! = 0, or set e = o0 if no such value exists. Throughout
this paper we shall assume that e is finite and we shall refer to e as the quantum characteristic of H. We
shall further assume that each Q. is a power of ¢, that is, there exists @ = (ag,a1,...,a,-1) € I" such that
Qr = q* for 0 < k <r—1. We call a the e-multicharge corresponding to H.

For each multipartition A € A” one may define a H-module S* called a Specht module and when # is
semisimple the set {S* | A € A"} forms a complete set of non-isomorphic irreducible H-modules. There
is a subset A% < A7 such that the simple modules arise as the heads of the Specht modules in the set
{S* | p € A?}. We denote the simple modules as D* so that {D* | p € A%} is a complete set of non-
isomorphic irreducible H-modules.

The Specht modules we use are dual to the Specht modules defined in [13] so that A% is a subset of the
e-regular multipartitions; see |18] for the connections between the two conventions. We use this definition for
two reasons: firstly so that our description of the decomposition numbers is consistent with the well-known
formula for decomposition numbers of Rouquier blocks when r = 1 [11,25/30] and secondly so that our
notation is consistent with an algorithm of Fayers [20] which informs our computations. We let A® =, -, A
and call the elements of A® Kleshchev multipartitions, although elsewhere in the literature, our Kleshchev
multipartitions are often refered to as conjugate Kleshchev multipartitions. If » = 1, they are simply the
e-regular partitions. Otherwise, these is a recursive method that will test whether A € A" is a Kleshchev
multipartition. A Kleshchev multipartition is always e-regular so we have the inclusions A® < AL, = A".

If X e A” and p € A2, let [S? : D] denote the multiplicity of the simple module D* as a composition factor
of the Specht module S*; these numbers are called decomposition numbers. Determining the decomposition
numbers is one of the most important open problems in the representation theory of the Ariki-Koike algebras.
Even when r = 1, there are very few cases when a closed formula for decomposition numbers is known. We
note that the decomposition numbers depend only on e, p and a, not on the actual values of ¢ and Q.

In [5], it was shown that the Ariki-Koike algebra H is isomorphic to a cyclotomic Khovanov-Lauda-
Rouquier algebra of type A. These are Z-graded algebras and it was further shown in [7] that there is a
corresponding Z-grading on the Specht modules. Using these results one may define graded decomposition
numbers [S? : D#], € N[v,v~!]; we recover the original decomposition numbers by setting v = 1. For more
details, see [28].

All of the composition factors of a Specht module S* belong to the same block, and so we can think about
a Specht module lying in a specific block or two Specht modules lying in the same block; it is clear that if
[S* : D#] # 0 then S* and S* lie in the same block.
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Proposition 2.1 ( |33, Theorem 2.11]). Suppose that H = H,n(q, Q) has e-multicharge a. Let X, p € Al .
Then S* and S* lie in the same block of H if and only if Resq(X) = Resq ().

2.3. The abacus. For the remainder of Section [2] we fix e > 2.
The abacus was first introduced by James [24] as a way to represent partitions. Suppose that A =
(M, A2,...) € A and a € I. Define the -set

Bo(\) ={Ni—itali>1}

We encode a partition as an abacus configuration. Our abacus will have e runners, labelled 0,1,...,e — 1
from left to right. The positions on the abacus are labelled in order by the elements of Z such that the
runners congruent to ¢ modulo e lie on runner ¢, for 0 < i < e—1. Given A € A and a € I, we form the
resulting abacus configuration by putting a bead at each element of the S-set B, ().

Ezample. Let A\ = (10%,8,4,2,13) and let a = 3. Then
B, () = (12,11,8,3,0, -2, —3, -4, 6,7, -8,...).

If e = 5 then the corresponding abacus configuration is given by

where we assume that the runners extend infinitely up and down the page with beads above the levels shown
and empty positions below the levels shown.

Given an abacus configuration corresponding to a partition A and a € I, it is straightforward to recover
a and hence \. Let 9 be the (-set of the configuration and choose x such that b € B for all b < ze. If
M = #{be B :b> xe} then a = M mod e. In the example above, with e = 5, we can count 13 beads and
so, as expected, a = 3.

If » = 1 it is well-known that removing a e-rim hook from a Young diagram corresponds to moving a
bead up one position on the corresponding abacus configuration. The partition A obtained by removing all
possible e-rim hooks of A, or equally, by moving all beads up as high as possible on the abacus configuration,
is called the e-core (or core) of A\ and the number of hooks removed to get to the core is called the e-weight
(or weight) of .

Proposition 2.2 ( [31]). Suppose that r = 1, that a = (a) and that A\, € A. Then Resq((A)) = Resq((1))
if and only A and p have the same core and the same weight.

We now want to translate this to higher levels. Let a € I" and A € A". The abacus configuration of A with
respect to a is the r-tuple of abacuses where abacus k has S-numbers B,, (AR, for 0 < k < r — 1. Erasing
a removable i-node from component k of [A] corresponds to moving a bead on runner i of abacus k back by
one position, that is, to runner ¢ — 1 (or from runner 0 to runner e — 1).

In an analogue of the r = 1 case, we define the multicore A of a multipartition A to be the multipartition
obtained by removing all possible e-rim hooks from all components of [A]. We define h(\) = (|A| —|A|)/e to
be the number of e-rim hooks removed in order to get to the multicore.

We now define two equivalence relations on the set A". Let a € I" and suppose A, u € A".

e Say that A ~4 p if Resq(A) = Resq(p).
e Say that A ~4 p if XA and p have the same multicore and h(A) = h(p).

In fact, the relation ~, is independent of @ as the process of adding and removing e-rim hooks from
a multipartition does not depend on the e-multicharge. Following Proposition [2.1) we refer to the ~g,-
equivalence classes as blocks. Proposition shows that if A a4 p then A ~, p. The converse is true (again
by Proposition if r = 1; but is false in general for r > 1.
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Ezample. Let r = 2 and e = 3 and suppose a = (0,1). Let X = ((9,7,5,3,12),(22,12)). Then the ~g-
equivalence class of X splits into five ~4-equivalence classes with representatives below.

Suppose now that A € A" and a € I". For each 0 < k < r — 1, consider the S-numbers %ak()\(k)). For
0<i<e—1,let B¥ = {be B, (A\®)|b=1i mod e} and let €¥ = {(b—i)/e | b e B¥}. Then each ¢ is a
[B-set and so corresponds to a partition which we denote by )\f We define the quotient of A to be the r-tuple
of elements of A¢ given by

atA) = (A, A0, A2 ), A AL - AL ), O AT AT,
Note that

r—le—1
h(A) = >0 DA
k=0 i=0
We also define
r—le—1
wA) =Y Y (e—i+k—1)AF];

k=0i=0
we will see this function again in Section [3] Note that if C' is a ~4-equivalence class in A™ with h(X) = h for
any A € C' then the elements of C are in bijection with the tuples

(()\ga )‘87 R A2—1)7 ()‘(1)3 AL LR} Ai—l)v R ()‘S_la )‘I_la ceey )‘Z:}))
with Y320 35 [Mf] = .

2.4. Rouquier blocks. The Rouquier blocks for Ariki-Koike algebras were recently introduced by the author
as a generalization of the Rouquier blocks previously defined when r = 1 [32]. The definition we give here is
equivalent. For the remainder of Section 2] we fix an e-multicharge a € I". Let Ae A". For0 <i<e—1
and 0 < k <r — 1, define

b—1i 3
b¥(X) = max {(cf) |be Ba, (A¥)) and b=14 mod e} .
We can think of b¥(X) as the lowest level in runner i of component k of the abacus configuration of A which
contains a bead. Note that if A ~4 p then b¥(X) = b¥(p) for all i, k. For 1 <i<e—land 0 <k <r—1,
define
F(A) = bF(A) = bf ().
We say that A is a Rouquier multipartition if
h(X) <of(A) +1

foralll1<i<e—1and 0 <k <r—1. Wesay that a ~g-equivalence class B of A" is a Rouquier block if
each A € B is a Rouquier multipartition. As observed in [32], if > 2, it is perfectly possible to have XA ~4 p
with A a Rouquier multipartition and g not. But if A ~, p then A is a Rouquier multipartition if and only
if p is a Rouquier multipartition.

Let R* < A" denote the set of multipartitions that belong to Rouquier blocks. We return to the last
example.

Example. Let r = 2 and e = 3 and suppose a = (0,1). Let A = ((9,7,5,3,12),(22,12)). Then the ~q-
equivalence class of A is a Rouquier block. To see this, it is sufficient to consider the five ~,-equivalence
classes.
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For each multipartition g in the first class (which only contains one multipartition) we have

Similarly we can see that the other four classes contain only Rouquier multipartitions.

In fact, it follows from |12 Corollary 5.2] that it is sufficient to check the Rouquier condition on the classes
obtained by adding hooks to the ‘core block’ of the equivalence class, that is, the classes with the maximal
number of removable e-rim hooks.

Given a multipartition g € R®, we may easily use the abacus to determine whether it is e-regular.

Lemma 2.3 (|10, Lemma 4.1 (1)]). Suppose that p € R* with

qt(“’) = ((:U‘gnu‘(l)v te nug—l)v (.u(l)hu“%v e 7ui—1)’ T (MO 17//1-_17 e a/lgj))-
Then  is e-reqular if and only if uk = @ for0 <k <r —1.

2.5. The Fock space representation of Z/Iv(sA[e). Let U denote the quantized enveloping algebra U =
Uy (f:[e) There exists a representation F* of U whose basis {sx | A € A"} is indexed by multipartitions and
where the action of U depends on a. We call F* the Fock space representation of &/. The U-submodule M*
generated by sgr is isomorphic to the irreducible highest weight module V(T) for some dominant integral
weight T of U. This module has a canonical basis (in the sense of Lusztig and Kashiwara) and so we may
write the canonical basis elements in terms of the standard basis above. The canonical basis elements can be
indexed by the set of Kleshchev multipartitions; following the conjecture by Lascoux, Leclerc and Thibon [29],
Ariki 1) proved that the transition coefficients between the canonical basis and the standard basis evaluated
at v = 1 are exactly the decomposition numbers [S>‘ : D*] which appear in the representation theory of the
Ariki-Koike algebras, where the algebras are defined over a field of characteristic 0. It was later shown [6]
that in fact the transition coefficients are equal to the graded decomposition numbers [S* : D¥],.

We are therefore interested in computing the canonical basis vectors for M®. There are various algorithms
which will perform this computation; we use the main ideas of an algorithm of Fayers [20] which computes
canonical basis vectors for a U-module M®?® where M® < M®* C Fe,

Below we describe only the concepts that we need for this paper; for a full description of the algebra U
and its action on the Fock space F%, we refer the reader to [29]. They may also find it useful to refer to [20].

Let U = U, (5:[6). This is a Q(v)-algebra with generators e;, f; for i € I and v" for h € PV; the relations
may be found in [29]. There exists a Q-linear automorphism ~ : & — U called the bar involution determined
by

€ = e, ﬁ:fm U:vila ’Uihzvih'
Let F* be the Q(v)-vector space with basis {sx | A € A"}. This becomes a U-module under the action
described in [29]; it is sufficient for us to describe the action of f; which we do below. Let M® be the
submodule generated by sgr. We can define a bar involution on M® which is compatible with the bar
involution on U by setting

Sor = Sgr and um =um for all u e U and me M*®.

Then M® has a canonical basis {G*(u) | p € A®} which is uniquely determined subject to the following
properties. For € A%,

o G*(p) = G*(p).

e Suppose G*(u) = X zcar A3, (v)sa where dS, (v) € Q(v). Then
- dg,(v) =1; and
— d},,(v) € vZ[v] for A # p.
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As explained in |20, Section 2.5], it is possible to extend the bar involution on M® to the whole of F*
so that there exists a canonical basis {G*(A) | A € A"} for F* which satisfies the conditions above. For
A, pe A7, we define d§ ,(v) € Q(v) to be the coefficient which appears in the sum

G 1) = Y} A (v)sn
AeAT

Ariki’s theorem relates the coefficients d$ N(v) evaluated at v = 1 to the decomposition numbers for the Ariki-
Koike algebras over fields of characteristic 0. Brundan and Kleshchev later showed that d$ “(v) is exactly the
graded decomposition number.

Theorem 2.4 ( |1,6]). Let H = H, (g, Q) be an Ariki-Koike algebra over a field of characteristic 0, where H
has quantum characteristic e and a € I" is such that ¢** = Q. for all 0 < k < r — 1. Suppose that X\, € A},
with p e A%. Then
[S* : D*], = d,,(v).
Let F° = {z € F* | T = z} denote the set of bar-invariant elements of 7®. The next result is used
implicitly in [20] and elsewhere.

Lemma 2.5. We have

Fr= { Z b (V)G () | bu(v) € Q(v) and by (v) = by (v) for all pe AT)} .

HEAT

Proof. Take x =3} 1\, bu(v)G*(p) € F. Then

T= ) bu()G(n) = Y bu(v)G(w)

HEAT HEAT

and equating coefficients, we have T = « if and only if b, (v) = b, (v) for all e A”. d

Corollary 2.6. Suppose that © = Y\ \- caSx € F° where cx € Z[v]. Then

x = Z cuG ().

pHEA”
Cu€Z

As shown in [20, Proposition 4.2], the space M®* with basis {G*(u) | p € Al .} is a U-submodule of

F°. Since every Kleshchev multipartition is e-regular, we have M® c M®® < F®. Fayers described an
algorithm to compute the coefficients d3, (v) where p € Af,. The following results are easy consequences of
his algorithm.

Lemma 2.7. Suppose that A, p € A" with p € Al

reg*t
o dS,,(v) =0 unless Resq(A) = Resq(p). In particular, p and X must have the same size.
o Suppose that |p| = |A[. Then dj,,(v) =1 and dS,(v) = 0 unless @] = 2O,

Now suppose r = 2. If A = (MO XD AC=1) e A7 et A = AD XDy e AT T a =
(ag,ai,...,ar—1) € I", write @ = (ay,...,a,—1).
Lemma 2.8 ( |20, Corollary 3.2]). Suppose r =2 and that A€ A", pe AT, with n(© = A\ = @. Then

reg
Su(v) = d, (v).

For i € I and m > 0, we write fi(m) = f"/[m]!, the quantum divided power. We describe the action of
the divided powers fi(m) on the standard basis of F¢. If v € A", write v ~=% X if [A] is formed from [v] by
adding m nodes all of residue i. If v =% X set

N(v,A) = Z #{m e add;(v) | m is above n} — #{m € rem;(\) | m is above n}.
ne[A\[v]
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Then
fi(m)SV: Z NN g

mei
v—A

As we have seen previously, adding a node of residue ¢ to a multipartition v corresponds to moving a bead
on the abacus configuration of v from runner ¢ — 1 to runner i. By identifying the basis elements s, with
abacus configurations, we observe the action of fi(m) on s,.

Ezample. Let r =2 and e = 3. Take a = (2,1) and v = ((4,35,2,1), (2%,1%)). Consider f@s,,.

(2)
1

Note that it is straightforward to read N(v,A) from the abacus. Let v € A” and for 0 < k < r — 1 let
BKF) = B, (v*)) be the set of B-numbers for ¥(*). Then there is a bijection between addable i-nodes of v
and elements of the set

{(b,k)eZ x{0,1,....,r —1} | b¢ B® b+1eB® andb=i—1 mod e}

with (b, k) lying above (b', k') if and only if k¥ < k¥ or k = k' and b < &’. A similar construction exists for
removable i-nodes.
The next example illustrates Proposition

Ezample. Let r = 2 and e = 3. Take a = (0,2) and v = ((6,4,2%12),(7,5,3%,22,12)). Consider
(2) £(2) £(2)
J1 R o s

(2) £(2) £(2)
St fo +v + 02 ;
+v + 02 + 02 + 03 ?
+ v2 + 1)3 + v4 T

The final result, which follows from [29], is used in Fayers’ algorithm [20].

Lemma 2.9 ( [29]). Suppose that u € A™ with u(© e-reqular. Let i° = (@, u™M, ..., u"=V). Then there
exists f = fi(j“)f-(t”’l) . fi(ltl) € U such that

ig—1
fspe = s+ 2 ba(v)sa + Z ba(v)sa
A=(A,uM, . prmh) A~p
A~ (agy i A IOl
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where b (v) € N[v,v™1] for all X. In particular, if u) is an e-core then the middle term above is empty.

2.6. Littlewood-Richardson coefficients. The Littlewood-Richardson coefficients appear naturally in the
representation theory of the symmetric groups &,, over the complex numbers. We give a brief introduction
to them here; for more details, and for a combinatorial description of how to compute them, we refer the
reader to [21, Chapter 5].

For A € A, we let S2 denote the irreducible C&,-module corresponding to A. If o, 3 € A with |a| = n and
|8 = m then we have

SE®SC Teterrom= 2 CasS
An+m

for some non-negative integers ch. If a, B, A € A with |a|+|8| = || then céﬁ is the corresponding Littlewood-

Richardson coefficient. We extend the definition to arbitrary , 8, A € A by setting ¢} 5 = 0 if [a| + |8] # |A].
Since the tensor product is associative, we can generalize this definition. Suppose that ¢ > 1 and
Q1,Q9,...,ap € A with a; - n; for each i. Let n = 22:1 n; and let G = G,,, x G, X ... x S,,. Then

a a a; 4CS, A A

SRS ®...®5¢" Teg"= Z Carag..arOC
An

A

. . A
for some non-negative integers c AT

o as...ap 0 and we call ¢
If [A] # o] + ... + || we set ¢ o, o, = 0.
Using the properties of the tensor product, we can see that the generalized Littlewood-Richardson coeffi-

cients satisfy the following recursive equation. We have c)) = d, and for ¢t > 2 we have

A _ § A B .
calag...at - Calﬁcag“ozt?
BeA

, a generalized Littlewood-Richardson coefficient.

note that for ¢+ = 2, this formula is self-referential. Also note that if A\,a € A then ¢}, = drq-

For the rest of this section, we use the convention that unless otherwise stated, all sums are over A,
with the understanding that only partitions of the right size contribute to the sum. Recall that if X is a
partition of » then ) is the conjugate partition, that is, the partition of n such that the Young diagram of
the 1-multipartition (\’) is given by the set of nodes

[(A)] = {(z,y,1) € Zsg x Z=g x {1} | & < Ay}
Lemma 2.10 ( |23, Theorem 6.7]). Suppose A€ A. Then
Y =Spest,
where S([(:ln) is the 1-dimensional sign representation.
The following results are well-known.
Lemma 2.11. Suppose that o, 3,7, A€ A. Then
C/o\z/’ﬂ/ = Cg\é,ﬁ = Cga,
AN o AN o A O
2 CacCpy = Z CBoCay = 2 CyoCap-
Proof. The equalities in the first equation follow from Lemma and the symmetry of the tensor product.

Then all the terms in the second equation are equal to cé G- O
The proof of the following result again uses the properties of the tensor product.

Lemma 2.12 ( |11, Lemma 2.2]). Let v,7,0 € A and let t = 0. Then
t
M o o l/l T
25y = 25 2, s hary:
2 1=00o,8
The next result follows immediately from the definition of the Littlewood-Richardson coefficients.

Lemma 2.13. Letve A, and s = 1. Suppose A € A,15. Then
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o ci‘(ls) = 14f [v] < [A] and no two nodes of [A|\[V] lie in the same row, and cf/‘(ls) = 0 otherwise.
o cl),‘(s) =1 if [v] < [A\] and no two nodes of [\]\[V] lie in the same column, and cl),‘(s) = 0 otherwise.
We can rephrase Lemma [2.13]in terms of S-numbers.

Lemma 2.14. Let v € A, and s = 1. Let a € I and suppose that B = B,(v). Suppose that A € A, 15 and
that € = B,(N\). Suppose that

{beB|b¢ €} ={b1,ba,..., b}, {ceC|c¢ B} ={c1,c0,...,c},

where by < bpy1 and ¢y < cpyq for 1 <t/ < t; note that these sets do have the same size and that they
. t
satisfy > _q(cy —by) = s. Then

o Couey=11f
by <ci<by<cy<...<by<ci and if by < b < cy for somet’ then be B N ¢
and cf,‘(lb,) = 0 otherwise.
)\ _ .
* Chis) = 1if
by <cp <by<co<...<b<c and if by <b < cy for somet then b¢ B U C;

and ci‘(s) = 0 otherwise.

We end with a more complicated result that we will use later. If d € A’ we use the convention that
d=(dd', ... d~1).

Lemma 2.15. Let s > 0 and r = 1 and suppose that 0 < m < r — 1. Suppose n,v e A". Then

r—1 . . N
E E 2 § | | 4§ g n ]
CVk"/kC’Yk+16kCek(lzk) C'Y7'

~YEATTL JeAT €A zo+...+zr—1=5 \k=0

Y Y Y Oy (n L ()> 12)< T e >cg:‘i.

~YEAT SEAT eEA™ zo+...+2Zm—1 k=m+1
+Z=s

In particular, setting m = 0 we have
r—1 k k k 0 1
5 é ’ %} ) "
IPID YDV || GRS P ol oA ) (it P
~EATHL SEAT €€AT z2o+...+2zr—1=5 \k=0 YEAT EAT
Proof. We have

IRV IED YN () LR I

~eAT+1 FeEAT €A zo+...+zr_1=5

503 % (Tl

~YEATTL JeAT €EAT zo+...+2zr—1=5 \k=0

r—2
S5 x (M)
k

57‘ 1 §r—1 7]7 1 2
Cyr—1yr=1Cyrer—1Cor 1(1%r— 1)07

YEAT SeAT ee AT zo+...+2r—1=5 =0

VIO D VD N || R I

YEAT §eAT—1 eeAT—1 Zo+...+2r—2
+Z=s

=2 k k 1
B 5 sk n* ot n"
S DDV (| CRERIEIN S R
~YEAT §EAT eeAT—1 zo+...+2r—2 \k=0

+Z=s

[\3

l/7 1 N7 1(1Z)
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and so the result holds for m = r — 1. Suppose now that 0 < m < r — 2 and that the equation holds for
m + 1. Then

Z Z Z Z 1:[ kk k+1 kcnk(lzk) Cgr

~YEAT+1 §eAT €A zot...+2r_1=5

m . . r—1 . ® 1
— 5 5k n smtl sk—1 5k 0
- Z Z Z Z ] lcv Ry Cykttek Cek (12) | Comttymt1(12) Coph=1Cphqk | C5ra
~YEAT SeA” ee A1 Zo-‘ré.-‘rzm k=0 k=m+2
+Z=s
m—1

sk sk n*
YD YD YD SN [/ CI SO

~EAT §eEAT ee A+ zo+...+2Zm—1 k=0
tZatZv=s

6777, 6777, ,,7‘"1 m+1 ,,7771
Cymaym Cym+1em Com (12a)Cpymt1ym+1(12p) 1_[ C kn k—lC Vk Csr—1
k=m+2

Z Z Z Z H Cyk kC k41 kan(lzk)

~YEAT deA” ee A+ zo+...+2m—1 \ k=0

+Zo+Zp=s
r—1
06771 06m Cnm C(;m-%—l Cg ¢ k—1 g k ¢ r—1
um,-ym ,Yerlem Em(IZa) Vm+1g ,ym+1(1zb) ,Yknk—l Vk'yk 57‘_1
g k=m+2

= 2 2 2 Z 2 1_[ Cl,k kC k+1 kCZ:(lzk)

A0y ymE2 L yT—1 SEAT €EA™ 2o+ A Zm—1
+Zo+Zy=s

r—1

6m+1 §m nm g 5k—1 5k r—1
Zcum mcl,7n+lg Z C,Ym+16mC€7,L(1ZQ)C,Y,,,L+1(1zb) C,Yknk—lcyk,yk Csr—1
ymtL em k=m+2

= Z Z Z 2 Z H Cuk kc k1 kcgfuzm

A0y ymt2 L Ar=1 §EAT €EA™ Zo+...+2Zm—1
+Z=s

5™ smt1 sk— 5k nr—l
Z cl,m,ymc,,mH Ecgnmcém(ﬁ) 1_[ c,y k=1 Cphk | Csroa by Lemma [2.12
9 k=m+2

- 2 2, 2 PIDINED) H sl

VO’.“’,Ym ,Y"m,+27“_,,yr—1 507“_,6711—1 5n1+1,_“75r—1 eeA™ zo+...+2Zm—_1

+Z=s
d 67n+1 5 r—1
Zcum m(12)Cgnm Cym+1g 1_[ C Rk —1Cpkk C:;]r71
k=m+2
m—1 . . X .
5 5 n" 5 H 6 n""
~YEAT §eAT eeA™ zo+...+2m -1 \ k=0 k=m+1

+Z=s

and so the equation holds for m — 1. Hence by induction the equation holds for all 0 < m < r—1, and setting
m = 0 we get the final result. O

3. DECOMPOSITION NUMBERS

Throughout this section, we fix the parameters » > 1 and e > 2. If a € I" is an e-multicharge, recall that
R® is the set of multipartitions which belong to Rouquier blocks (with respect to that e-multicharge). If
A, p € R® then X ~, p if A and p have the same size and the same multicore.
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From an r-tuple of abacus configurations we can read off not just the corresponding multipartition but also
the underlying e-multicharge. Since we think of the Rouquier multipartitions in terms of abacus configura-
tions, a Rouquier block carries with it an inherent e-multicharge. Hence from now on, we set R = | J,.;» R*
and when we talk about a Rouquier block we shall assume that the e-multicharge is understood. If A, p € R®
for some a € I", we will drop the a in our notation and write A ~ p instead of A ~4 p, dxp(v) instead of
dgﬂ(v) and so forth. Set Ryeg = R N Al to be the set of e-regular multipartions which belong to Rouquier
blocks. Set

C={(Ap) ER X Ryeg | A~ pu}.

In this section we determine a closed formula for dx,(v), where (X, ) € R, in terms of sums of products of
Littlewood-Richardson coefficients. By Theorem this formula also describes the graded decomposition
number [S* : D#], where H is defined over a field of characteristic 0. We begin by defining coefficients
gxap(v) € N[v,v71] and describing some of their properties; we then show that they are equal to the transition
coefficients dx, (v).

3.1. The coefficients gx,(v). If A € R, we will assume that
qt(A) = ((>\8, )‘(1)3 cet )‘2—1)7 (A(l)a )‘%a LRRE )‘é—l)v R ()‘6_17 )\;_17 te AZ:}))

and we shall use A\¥ to denote the ith part of the quotient corresponding to M) without further explanation.
When the multicore is understood, we shall abuse notation by identifying A with its quotient.

For s, f = 1, let I'} denote the set of s x f matrices whose entries are partitions. The rows of each
matrix are indexed by the set {0,1,...,s — 1} and the columns by the set {0,1,...,f —1}. For a € I'y and
0<k<s—1,0<i<f—1,welet a¥ € A denote the entry in the row indexed by k and the column indexed
by 1.

Suppose that (A, ) € R°. Recall from Lemma that this implies that uf = @ for all 0 < k < r — 1.
Define

Gan(v) = vV K T Y (H HC kg€ i"ﬂk k“cgt( m)’) CS&W%-WS Cprpear, (31
k=0 i=C(

Q€D | BeDT yeprt! 8elT
We find it helpful to arrange the terms in the double product into an array.

Ezample. Let r = 2 and e = 3 and suppose (X, u) € R®. Then

068 060 cao
oS 9P u3vs
Cag ,\0 650 )\0 CJD >\0
LAJ()\)—OJ(H) 048 876 ,60(&0)/ 061'71 60(‘10)/ 05272 /82((13),
gau(v) = v IO p . ;
ael? Bel2 vel'd §el'? c c? c
87 3 155 pivi u%vé
5 ,\1 51 ,\1 55 ,\2

1
¢ 150’)’3 ﬁg(al)/ ¢ 1/81’)’f B1(0‘2)/ ¢ 15272 5 (0‘3)/

V)

Where'yg:%o:'yg:ﬁ:'y%:% = .
Lemma 3.1. If r =1 then

gku(v) = )~ Z Z 1_[ Otzﬁz Bz(awl)/

Q0;---50e B0, Be—1 1=0

where

lazzi(lvl—lu])for%ma 8= 1+ 3 (181 = 1X%) foro<ie1,

Jj=0
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and

e—1 —

WA) —w() = X (e —i = 1) (N = |?]) = Z (1191 = 1A91).

=0 =0

Proof. If r = 1 then the only terms ¥ which contribute to the sum are those where 7% = @ for k = 0,1 and
0 <i < e— 1. Then the only terms §? which contribute must satisfy 60 = u for 0 < i < e — 1 and we see
that ga,(v) is indeed given by the formula indicated. The terms «; and 8; which contribute to the sum must
satisfy

| + 18] = |1, 18] + |cvis1| = [AY), for0<i<e-—1

and so noting that |ud| = 0, it is clear that such |a;| and |B;| are as stated. The first part of the formula
for w(A) — w(p) follows from the definition and the second part follows because since A ~ p we have

-1 -1
Yizo N =200 gl -

It is well-known that the formula in Lemma gives the graded decomposition numbers for the Rouquier
blocks in characteristic 0 when r = 1 [30], and this will later form the base step in our inductive argument
to prove the main theorem.

The terms cfo o .o and c,y o 721 which appear at the Equation ensure that the only terms ~¥

071" Te—1
which contribute to the sum satisfy v¥ = @ for k = 0,7 and 0 < i < e — 1. This means that we do not have
to specify the size of the partitions af and so forth that appear in the sum as only partitions of the right size
will contribute.

Lemma 3.2. The only terms o, 3,7, 8 which contribute to Equation [3-]] satisfy

k—le—1

Em—ZZ(W—W) forall0 <k <r—1,
1=0 i
i—1
Z<|)\k|_\ﬂj |%\+|k+1\)» forall0<k<r—1,0<i<e,
\65|=|M‘|+Z(WFIA?IH%I I’““I), forall0<k<r—1,0<i<e—1,
=0
|6f|:|uf|+|vf|, forall0<k<r—-1,0<i:<e-—1.

Proof. Assume that we have terms «, 3, v and § which contribute to Equation [3.1} Then for each 0 < k <
r—1land 0 <i<e—1we have
I = 18] + laial, 1071 = 15| + I7E] = 1o | + 18| + [ .

Now noting that Mo =g forall 0 < k <7 —1and 7] = &, the second condition above implies that 7§ = @
for 0 <k <rand af = Bf = @ for 0 <k <r— 1. From here, it is straightforward to see that we can indeed
write each term |, |8F], |0¥| as in Lemma [3.2] Now

r—le—1 r—le—1 r—le—1 r—le—1
> 2k =2 SN = Y (185 + lakal) = X0 Y (lak ] + 185 + = )
k=0 1=0 k=0 1=0 k=0 1=0 k=0 1=0
r—1 r—le—1 e—1
— Y1k = 3 2 (W =1k = X (el = k1) =0
k=0 k=0 1i=0 =0

so af = @ for all 0 < k < r — 1. We now use induction on k to show that the first equality of Lemma
holds. If k£ = 0, both sides of the equation are equal to 0, so suppose that 0 < k < r—1 and that the equation
holds for kK — 1. Then

I;Z;Zi(uﬂ—P\il) =IZZ§§;<|M§—|)J) 2 (|lh )\1;710
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e—1 e—1

k— k— k— k— k— k—
= S E Y (I 1B+ I = e = 185 = k)
i=0 i=0
e—1
k
= i |
=0
and so by induction, the first equation holds for all 0 < k < r — 1. O

We could give more restrictions on the size of the partitions vf that contribute to Equation using the
fact that |aF| > 0 and |3¥| = 0 for all possible i, k. However, we can easily see that for r > 2, it may be that
partitions of more than one size can contribute.

Ezample. Let r = 2 and e = 3. Suppose that (A, u) € R® with

at(p) = ((2,(1), (1)), (2,2,9)), at(A) = ((2,(1),2), (2, (1),9)).
Then there are two values of (o, 3,7, ) which contribute to gx,(v), namely

(G252 0 (g ) U ) wm
(G20 (G R (f0g) G

and after computing the Littlewood-Richardson coeflicients, we see that ga,(v) = 2v2.

We note that the coefficients gx,(v) do satisfy the properties of the transition coefficients dx,(v). It is not,
we admit, actually necessary to prove this since we will later show that they really are transition coefficients;
but the proof is not difficult and may satisfy the reader who prefers not to make assumptions ahead of time.

Lemma 3.3. Suppose (X, ) € R®. Then gan(v) =1 if X = p and ga, € vN[v] otherwise.

Proof. If X = p then by Lemma the only terms a;, 3, ~, d which contribute to Equationsatisfy |vk| =
laF| = 0, |Bk| = |\F| and |6¥| = |u¥| for all possible values of k,, so in fact must satisfy gF = 6F = A& = pF
and of = vF = @. It is then clear that gx,(v) = 1. So we want to show that if A # p and ga,(v) # 0 then
w(A) > w(p).

Take (A, pu) € R® and suppose that gx, # 0. Choose a, 3,7, as in Equation such that

r—1le—1
| | cgf c(s’k c)"]"c ot bond >0
wEYE T ak BER T B (ol ) ] TR vy T Ve ’

k=0 i=0
so that a, 3,7, & satisfy the conditions of Lemma [3.:2] Then
r—1 e r—le—1 r—1 e i—1
k k k k k k
IPNHEDIONAEDIDISN CHERT B vag)
k=0i=0 k=0 i=0 k=0i=0;=0
r—le—1

= >, M= i= 1) (M= lub| = b+ 1)

SDID NN CHE)
so that

WX —w(p) = Y 3o —i+ k- 1)1~ )
1=0

ii(l) e r—le—1
DI NHEDIWICHE)
k=0i=0 k=0 i=0
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_ i\z|+r~1 iz(lkﬁlflufl)igzrl* )1t = 1)

k=0i=0 k=
r—1 e r—1 1 e—1
- )3 (1 = 1351)
k=01=0 k=01=0 =0
r—1 e r—le—1
DN ES W
k=014=0 k=0i=0
Hence w(A) — w(p) = 0 with equality if and only if |af| = m| 0 for all ¢,k. But in this case, the
Littlewood-Richardson coefficients are non-zero if and only if u¥ = 6% = gF = )\k forall0 <i<e—1and
0<k<r—1 Thusif XA # p and g, # 0, we do indeed have w(A) —w(p) > 0. O

We now show that if the first components of A and p have no removable e-rim hooks then these components
do not contribute to gau(v).

Lemma 3.4. Suppose (A, p) € R® where h(A©) = h(u®) = 0. Let A = (AD,... ACD) and pp =
(), ... u=). Then
9an(v) = g5;(v).

Proof. Our assumptions are that

at(A) = ((2,2,...,9), Ag ALy Ab1) - (A0 AT AT,
qt(A) = ((Ao,&.-.,/\271),-~-,(>\6_1,>\§_1,-~,)\£_}))
qt(p) = (2,9, ...,2), (D, i1, i)y (Dopy o w2 )),
qt(i) = (2, Mla"'v/”’é—l)’ NG 17~-~,ue_1))-

Fors,f>1andeeI‘j¢,deﬁneéeF;+1 bysettingé?=0for0<i<f—1andéf:ef_1 for1<k<s
and 0 < ¢ < f —1. Then

r—2e—1
WICOED YR YU VD VRN ([ 2 SPYCCPPOTE. BRPD FE .
Iap\t) = o ’“ﬁ’“ 1 Cgh (afp1) ] T80y WO Ve

ael[ ) ey vele sery=" \k=0i=0

r—le—1 %
_ >\ 2 o}
SRR (0] G SESUE ) R S

ael[ ) ey vele sery=" \k=0i=0
r—le—1 /\k ; i
- 2 Z Z Z (H H C/L’C’yfcakﬁk k+1cﬂk(o‘z+1)/> C’Yg’y?.. ’YS 1cvgv1 L
ael'y, | Bel'l 7€Fr+1gepr k=0 i=0
= gap(1)
where we applied Lemma [3:2] in the penultimate step. Also

r—1le—1

W) —w() = 3, (e —i+k—1)(IA - |kl
k=01i=0
r—le—1
= > Do —i+k—1)(IA - k1)
k=11i=0
r—2e—1
= 3 Dl =i+ R (N - (k)
k=01=0
r—2e—1

= 4 (e—i+k— 1)(|)\k+1| k+1) 2 2 ()\k+1| k+1|)

i
o
-
|

o
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r—2e—1
IR B P E g}
k=01:=0
= w(A) —w(fi)
and so gau(v) = g5, (v) as required. O

3.2. Induction in the Fock space. Suppose that 1 < j<e—1and s> 1. Define

FED = O D e,

Define R* — R to be the set of multipartitions X lying in a Rouquier block which have the property that if
we add s e-rim hooks to A, the resulting multipartitions still lie in R; note that R is a union of Rouquier
blocks. Set R2., = R* n Rreg-

reg
Proposition 3.5. Suppose s > 1 and that T e R°. Let 1 < j <e—1 and set

(1) ={XeR| X and T have the same multicore and for 0 <k <r — 1,\F = 7F unless i = j — 1, j}.
Then

k

f(s,j)ST _ Z ZS: Z Hv(k+1)lk+kekc i 1(zk)c;\j§(14k)s>"

Aeli(T)xz=0 lo+...4+l,_1=x k=0
lo+..+Lp_1=s—x
Proof. When r = 1, the ungraded version of this result is |25, Lemma 3.6]. We first prove the ungraded
version of Proposition by reducing it to the r = 1 case. We want to consider

[ C L S SN AN A

where 7 satisfies the conditions of the proposition. Suppose that s, occurs as one of the terms in fés)s.,-, that
is, [v] is formed by adding s nodes of residue 0 to [7]. Suppose that pj nodes were added to [7(®)] so that
Po+p1+ ...+ p—1 =38 Then, by the assumptions on 7, for 0 < k < r — 1, [l/(k)] has at most p; addable
(e — 1) nodes. Hence any multipartition formed from v by adding s (e — 1)-nodes must again add pj nodes
to [ ] for all 0 < k < — 1. Continuing in this way, we see that the only terms that occur in f(*7) s, are
those formed by choosing some pg 4+ p1 + ... + pr—1 = s and, for 0 < k < r — 1, essentially applying f®»)
to the kth component of 7. Hence |25, Lemma 3.6] gives the ungraded version of Proposition

Before giving the graded result, we consider an example which illustrates how these induction sequences
occur. The reader may also find it helpful to read the proof of [25, Lemma 3.6].

Ezample. Let r = 1. Take j = 2 and s = 4. To save space, we have omitted the top lines of the abacuses.
Below we have qt(7) = (2,9, (1),2)) and qt(A) = ((2, (2), (1%), 2)).

' 8 g 30 9P K J
i J 99 1
4:0 4:3 T 4:1 71 4:2 7

We now consider the graded version of Proposition Assume that sy occurs in f(*7) s, with non-zero
coefficient. Then there exist lo,...,l,—1,%0,...,4—1 with Z;;(l)(lk +{) = s and
Ak Ak

C‘I—.i—l(lk) ¢ i(12") 1
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for all 0 < k < r — 1. Hence by Lemma )\k 1 is formed from T 1 by adding horizontal strips in
non-overlapping rows and )\k is formed from by adding vertical strlps in non-overlapping columns. We

have a sequence of multlpartltlons

5:0 s:e—1 s:e—2 s:j+2 s:j+1 s:1 s:2 s

T—T1le) —>T(e—1)—> ... —>7(+2) — T +1) > 7(1) S ... > T1() =X\
Let
N = N(7,71(e)) + Z N(r(m+1),7(m))+ N(7(j + 1), 7 +ZN 1), 7(m))
m=j+1 m=2

so that the coefficient of sy in f(*) s, is vV,
Let 0 <k <7 — 1. If By, = B, (7(7) and B), = B,, (\*) then by Lemma there exist ¢y, ¢} > 0 and

. a}f<a’2€<...<a,’fk Withafsj—l modeandafe%k,afgé%;cforalll,

. b’f<b’2“<...<bfk withbfzj—l modeandbfe%;g,bfgt%kforalll,
. c’f<c’2“<...<cf,k with ¢f = j modeandc{“e‘Bk,c{“gé%;C for all [,
o d’f<d’§<...<df,k with df = j mod e and df € B, d; ¢ By, for all [,
such that
a¥ < bk <ab <bh < <atk<b’“<c’f<d’f<c’§<d’§<...<c§k<df;

and if b € Z is not in the list above then b € B, <= b e B,. (The middle inequality, bfk < c’f occurs

because we are in a Rouquier block.) We can further say that if b= j —1 mod e and there exists [ such that
ay < b < by then b¢ By and if c = j mod e and there exists [ such that ¢f < ¢ < dF then c € By. Let

— {g € Z | there exists 1 < < t;, such that af < ge+j — 1 < bF},
1 1
= {g € Z | there exists 1 < < t}, such that ¢} < ge +j < dJ}.

The idea is that these sets correspond to the rows of abacus k where, at various steps in the induction, we
will increase a f-number. Note that |[MF| = I, and |M¥| = ¢4.
We describe which g-numbers change at each induction step.

o 720 7(e): For each 0 < k < r — 1, on component k, increase the S-number of all beads in the set
{get+e—1|ge MF U MK} by 1.

o 7(m+1) X" 7(m) fore —1 = m > j + 1: For each 0 < k < r — 1, on component k, increase the
B-number of all beads in the set {ge +m—1|ge MFu Mk} by 1.

o T(j+1) =, 7(1): For each 0 < k < r — 1, on component k, increase the S-number of all beads in
the set {(g + 1)e | g € MF U M}} by 1.

e 7(m—1) X 7(m) for 1 < m < j—1: For each 0 < k < 7 — 1, on component k, increase the
B-number of all beads in the set {(g + )e + m — 1] ge MF U MX} by 1.

e 7(j —1) =L 7(j): For each 0 < k < r — 1, on component k, increase the S-number of all beads in
theset {ge+j—1|ge Mf} u{(g+1)e+j—1]|ge M5} by 1.

So for g € U;;(l) MF U M¥, we can consider the contribution made by g to N. First, consider the removable
and addable nodes from components | < k. At the first step of the induction, there are addable O-nodes
on component [ of v but no removable 0-nodes on component [ of A. At later steps, only removable nodes
contribute to the sum. The contribution is

2(591 ) = by(r) + 1) = Zbl )= b, 1 (7)) = K,

where we recall from Sectionthat bl () is the position of the last bead on runner i of abacus [ in the abacus
configuration for ¥. Now consider the removable and addable nodes from component k£ which contribute to
the sum. If g € M¥, then over the course of the inductions, there is an overall contribution of 0. If g € MF,
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then over the course of the inductions, there is an overall contribution of 1. Hence

r—1 r—1
N = D+ 1)+ > k| =D (k+ Dl + k.
k=0 gEJV[{c gEMéc k=0

There are two immediate consequences of Proposition [3.5] which will be important later.

Corollary 3.6. Suppose s > 0 and that 7 € R5. Let 1 < j < e—1. If f&is, = DA ba(v)sa, then
bx(v) € N[v] for all A e A".

Corollary 3.7. Suppose s > 0 and that T,0 € R® are such that T ~ o. Let 1 < j < e — 1. Suppose that
sy appears with non-zero coefficient in fD s and sx appears with non-zero coefficient in ) s,. Then
T~ o if and only if p ~ A.

Now suppose that p € Ryeg. Define
= gu@sn  and  Q(u) = Y gau(1)sa
AR AR

The heavy lifting for the proof of the main theorem is done by Proposition below. We first prove
an ungraded version of the proposition. We abuse notation slightly by identifying a multipartition with its

quotient.
When r = 1, Proposition appears as [25, Lemma 3.10 b)].

Proposition 3.8. Suppose s > 0 and that v € Rreg Let1<j<e—1. Then

f(s’j)Q(V) = Cn](ls)Q((ng'- -aV?—lvna V;')+17~ : ~7V2—1)7 (Vévylla .- -71/;—1)7- ) (Vg_lvyf_lw . 7V.::11))
neA
(3.2)

Proof. Let A € R. Let (1) denote the coefficient of the standard basis element sy € F on the left-hand side
of Equation and (I) the coefficient of s on the right-hand side of Equation By Proposition

r—le—1
c c d; C, c c
Z Z Z Z Z n n ’“ ek Takpk kit bk( ak, ) cged...c_ Tepet el

TV a€l'] | bel'] cerr+t del'y \k=01i=0

(H [l e i) 2 HC? L (@x) rk(l%)

k=01i#j—1,5 T xo+...+Tr—1 k=0
+yo+...+Yr—1=5

h AP 2] 7]
DI I (H [T o, >)CC

()

J . 7]1 1aEFr , bel'” ep7+1 del's \k=0i#j—1,j
T?,...,T;_l
r—1 d* dk k k k k k k
Z 1_[ 41 4= N B e At (3.3)
;c ) ;s f 1b? lc;c+11 bk_ (ak)/ k Ic Abk k+1 bk( k+1)/ Tjk_1(wk) T]k(lyk)

xo+...+xpr_1 k=0
+yo+...4+Yr—1=5

and applying the definitions we have

0 0 0 0 0
Z C 0(15 Z Z Z Z (HCV A/?Céoﬁo 1C 20( ?+1),> CfWOC(SoBO 1 ;f)(a(;Jrl)/

ael'y | Bely yeprt1 el \i#j

r—le—1
H H c C C)\k C@ Cg
V’“%’“ ’“/3’“ BHLEBE (k) | T8 YT ey

k=11i=0
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50 0

R0 VD YDl 5 A L SO S
v ’YO OBO 1 Bo(au-l)/ O 0(15) OBO 1 BO(O‘]+1),

a€el? | BETT pepr+! 8T \ij

r—le—1 .
H H R AN cZ cZ, (3.4)
vENE ok gy RTtTgE (ol ) | A0 0 T e )

k=1i=0

Now we look at some of the terms from the last line of Equation For fixed partitions d’C '?H, a;? 1

bj 1 Tie 1,7']’? where 0 < k < r — 1 we have
DI ST s SO
b 1 aj ’Cbk k+1 bk(a3+1)’ " (zr) ‘rk(lyk)
al,....a 3*1 B, b7 Tot..tTr_1

T tyot et ye— 1—9

k

k AR
-1 j
= Cc C C Cc .
DD D | T S S e
a0 Tfl bO bT 1 zo+...4+Tr—1
PARNLEY i dyot.. +y771_5

and applying Lemma [2.11| repeatedly

r—1

k k k

TR NP T VD VD LT S e

k+1 ek akb’C bk71Tka1 (a?)’(mk) (a;?Jrl)"r]’? b?(lz)
a0 7*1 bO 7*1 eo,_“ r—1  xo+...+Tr_1 k=0

N +Yot.AYr_1=5

k k: lc Tk

= ) Z 2 HC AR ]_ff;-tlc(kj k€ kbk%k) o) CoE ()

r—1 bO br—l €0,...,er—1  xot..ATro1
J +yo+...+yr71=s

J+1

a] ol

and applying Lemma

k

_ i1 Aj i I
- Z Z Z n ¢ k+1 ek bk 1T]'C—IC(]J+1)/ kc( j71),7;€cek(1zk)'

er=1 fO L fr=1lzi+..+z.=5 k=0 ’

We now substitute this expression back into Equation We also perform the change of variables

Tf_l — (a;?)’ and Tf — b;? for 0 < k < r — 1. Thus we see that

>y S (1111« o | B 0
‘ kbk k+1 bF(ak, ) cded...cQ_ Tepey el
ael? | bel'r ceprt+! del't \k=0i#j—1,j

d k k k k

k
IR D VI § SR ST 0 S e N
e 161_21 ak_ bk ROk k+1 ok bk _y(ak) bk (ak ) Cakbk Cek (17k)

J 1 -1 J
...,er=Ll fO fr=1zot+...+2,_1=5 k=0 I -

)\k %}
>y oy N (11T by Gty | et
0€1--Ce1

ael'y, bel"g ceTrtt del' \k=01i#j—1,j

k k
| | c j-1 ¢ i
lc k k k k+1 k k\r
Vio1€io1 ey g b yeity b (ag)

k k

Ay ~f o
Z 2 2 HC ; kc ek Cok (ot ot Cor (150 | Coper el (3.5)
Ler=1 fO fr=1zo+..+2r_1=5 k=0 o

Now we focus on the last line of Equation Applying Lemma [2.15 we have

ke k

Z Z Z Z Z nc "bkcbk(a D dz kcdk'*'l ek tj:k(lzk) g)cl Co_y

C] ]d dr—l €0,...,er=1 fO _ fr=1zo+...+2r_1=5k=0
3’
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r—1 _
Z Z Z <HC .kbkcbk f+1)/> C 0(15) (H Cd:f: lcdk ) 27‘ 116 e,

] d d7 le_ = 1 k=1

B a* =
-2 XX Hckbkcbk( R O 5 A ) % )

EeRSy

J

r—1 f0 r—1 = =
€] d, . dl T O f k= k=1
dJ A d* &
= c c . 1_[ c c c Corpr  or -
Z d9, Z}ir 1 3b3 < bO(aJH 0 0(1 kbk S bk(aﬁl)/ viey | TE0CT e
,C

]7

Finally, substituting this expression back into Equation we see that

0 )\O dO )\0 do
Z Z Z Z Hcvococclaobocbo(a 1) ¢ 0b0 1cbﬂ(a ¢, 9c9(12)

!
+1)
a€el7, | belT err+1 delr \ij Y RN !

r—le—1 k
A7 %) 2
C k kC kb" k+1cbk(a chcg...cgflcCSfl?-CZ—l'

k=1i=0
This is indeed equal to (1), completing the proof of the proposition. O
Proposition 3.9. Suppose s > 0 and that v € ng Let1<j<e—1. Then
f(S’J)Q cho(ls)Q 1/0, cee 1/?71,77, VJQH, el ngl), (V&7 1/117 el 1/;71)7 el (ug_l, uf_l, el ngll))
(3.6)

Proof. By Proposition if we set v = 1 in Equation both sides of the equation are equal to >}, asa
for some ) € N. We claim that both sides of Equation are then equal to

Zv“’()‘)_“’(“)_(e_j_l)sx,\s)\. (3.7)
Y
As before, we fix A and look for the coefficient of sy on both sides of the equation.
Let n be any multipartition with
qt(n) = ((V87 ) V‘;)fl’ m, Vj(‘)+1a ) V271)7 (V(%’ Vllv R Ve}fl)v (Vg 1a Vlrila SEER) Vg:ll))
where c” V(1) > 0. Then the coefficient of sy on the right-hand side of Equation [3.6]is equal to v* )=« () gy

where w(n) w(v) + (e —j — 1)s. So the right-hand side of Equation [3.6|is indeed equal to Equation
Now suppose that 7 ~ v. Then g,,(v) = v*(™M=“®g_ (1). If s appears in f(*7)s., it appears with

coefficient vM where
r—1

M = ) (k+ DA = I ]) + kOS] = |7f).

Thus we have a contribution to the sum of v™’ griv(1)sx where

M = w(r) Z (k4 DXl = 17 l) + KON = [7fD-
Now note that
r—1
W) = w(r) = Y (e =G+ RNl = 7)) + (e = + k= DIAS = I
k=0
r—1
= 226 =3 = DU = Il 1= i) + G DO = ) + K] = 175

=(e—j—1)s Zk+1 (IAF_1l = [ l) + KNS = 177]).
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Hence
M =wA) —w)—(e—j—1)s,
which is independent of the choice of 7. So the left-hand side of Equation [3.6is indeed equal to Equation

O
3.3. Proof of the main results.
Theorem 3.10. Suppose that (A, u) € R®. Then
dap(v) = gan(v).
Proof. Let p € Ryeg. We want to show that
G(p) = Z Iap(v)sa + Z dap (V). (3.8)
AR A~
A p

We prove this by induction, firstly on r, secondly on h(,u(o)) and thirdly using the a total order > on pu(?).
Suppose that » = 1. Then Equation holds by Lemma and |30, Corollary 10]. So suppose that r > 1,
that Theorem holds for r — 1 and that g € Ryeq. Suppose first that h(;(?)) = 0. Following Fayers [20],
if v = (O M vy e A7 we define = (v, vD) and ©7 = (@,0vW, ... v=D). Then
[t € Rycg and by the inductive hypothesis

G(ﬂ) = ZA g)\ﬂ(U)S)\ + ZA d)‘ﬂ(U)S)\.
AR i;z

Applying Lemma [2.8
G(®) = Y gsa@sat+ D, dsu(v)sa.
A2 A~i? Az
N A0 =g

Now (9 is e-regular and is an e-core. By Lemma there exists f = f,(t’”)f,(t'”‘l) - fi(fl) € U such that

iy g1

FGWE7) = Y oau@sx+ D) du@sa+ D) br(v)ss
Arp A~p A% T~
A©) (@ A©) =, (0 |7 <]
for some b, (v) € N[u~!, v], where we note that the identities 95 (v) = gap(v) follow from Lemma Now
F(G(#7)) € U° and of the coefficients in the sum, g, (v) € vN[v] for A # p and ds(v) € vN[v]. It is possible
that we have b, (v) ¢ vN[v], but this is of no consequence since by Lemma dxr(v) = 0if |7 < |AO)],
Thus we can conclude that

FGE7) =G+ Y, eG(r)

T~
<[]

for some ¢, € N[v~! + v], and equating terms we see that

G(H) = Z g)\“_(’U)S)‘ + Z d)\l,_(’U)S)‘
AR A~p
AZp
as required.
This completes the proof of Theorem @l for multipartitions g when h(u(?)) = 0. So now suppose that
h = h(p®) > 0 and that Theorem @ holds for all multipartitions in Ryes with fewer than h removable
e-rim hooks on the first component. Let H(u) be the set of partitions A ~ p such that |\¥| = |[u¥| for all
0<i<e—1land 0 <k <r—1 and define a total order > on H(u) by saying that X > 7 if A # n and the
minimal k such that A(*) # »(®) the minimal 4 such that \¥ # n¥ and the minimal 2 such that (A\F), # (7¥).
satisfy ()\Z(-k) Vo > (ngk) )z. Assume that the inductive hypothesis holds for all multipartitions n € H(u) where
w>n.
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Choose 1 < j < e — 1 such that u? # @. Let v be the partition whose Young diagram is obtained
by removing the first column from [M?], where we suppose that we remove s > 1 nodes. Let v be the
multipartition with the same multicore as g and

k_{y, k=0andi=j
(3

vi =+ )
i, otherwise.

By the inductive hypothesis,

Gv) = Z Iaw(V)sx + Z dap(V)sx = Q(v) + Z dxu (V)Sx.
ARV A~v A~V

A%y A%y
Now

FENGW) = fSIQ) + [0 Y daw(v)sx = D el Q) + f&7 Y dau(v)sa (3.9)

A~V n A~V
A%y A%y

by Proposition [3.9] where we use the terminology of that proposition so that

qt(ﬁ) = ((V87 cees V?qﬂ% VJQ+17 R Vg—1)7 (V(%, V117 B V;fl)’ R (Vgilv Vinilv R Vg:ll))
Now note that if XA ~ v but A # v then dx,(v) € vZ[v] from the definition of the canonical basis. Hence by
Proposition [3.5] we see that
FED N dap(@)sa = . be(v)sy

A~v T~H
AZv TH*UL

where br(v) € vZ[v] for all 7. (We note that for this step it is necessary to have p € Ryeg rather than just p
an e-regular Rouquier multipartition, since we need to apply Proposition to multipartitions 7 ~ p with
7 % u.) It follows by Corollary [2.6] that

JEDGW) = Y el G = Gp) + 3 €y, Gn) (3.10)
n pu>n

where the last equality follows from Lemma Now suppose A ~ p and consider the coefficient of sy in
f&IG(v). By Equation this coefficient is given by

dau(©) + Y €l dnu(v) = dap (V) + Y €y gnu(v)
> >
where the last step follows from the inductive hypothesis. However, by Equation [3.9] the coefficient is given
by

Ixp (v) + Z CZ]()(ls)gnu(v)
n
and so we have gx,(v) = dxn(v) as required. By induction, this completes the proof of Theorem O

The next theorem follows immediately by applying Theorem [2.4] to Theorem [3.10)

Theorem 3.11. Suppose that H,.(q, Q) is defined over a field of characteristic 0. Take A € Al, and pp € A
with (X, u) € R®. Then

[S* : D], = gau(v).

3.4. The cyclotomic ¢-Schur algebra and characteristic p. In order to look at the case where the
underlying field F has prime characteristic, we introduce a new player, the cyclotomic g-Schur algebra. For
the definition of this algebra and the construction of the Weyl modules, we refer the reader to |35 Section 4]
and for the graded theory we refer them to [39].

Let @ € I". Suppose that F is a field of characteristic p = 0. For n > 0, take H = H, (¢, Q) to be
an Ariki-Koike algebra over a field of characteristic p with quantum characteristic e where Qp = ¢ for
0 < k <r — 1. The cyclotomic g-Schur algebra is the endomorphism algebra

S_Endﬁ<@ Mu>

HEAT
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where each M* is a certain H-module. Then S is a cellular algebra in the sense of Graham and Lehrer [22].
It is quasi-hereditary, with the cell modules and the simple modules both indexed by the r-multipartitions of
n. If X € A7, the cell module indexed by A is called a Weyl module and is denoted A* and the simple module
indexed by A is denoted L*. For A, € A", let [A* : L#] denote the multiplicity of L* as a composition
factor of A*.

Work of Stroppel and Webster [39] has shown that there is a grading on the cyclotomic ¢g-Schur algebras
analogous to that of the Ariki-Koike algebras; we define [A* : L*], to be the graded multiplicity. Again,
when S is defined over a field of characteristic 0, the decomposition numbers are given by the transition
coeflicients for the Fock space.

Theorem 3.12 ( |39 Corollary 7.23]). Suppose that p =0 and let A, € Al,. Then
[A* : LH], = dap(v).

Over a field of arbitrary characteristic, the decomposition numbers for the cyclotomic ¢g-Schur algebras
agree with those for the Ariki-Koike algebras.

Theorem 3.13 ( [35, Theorem 5.1]). Suppose that A, € Al with pe A%. Then
[A*: L*] = [S* : D]
We define a partial order = on A, by saying that p = X if

-1 t -1 J
PNZEDWIEEDIESIED PV
k=0 i=1 k=0 i=1

forall0 <I<r—1andallt>0, and we write g =\ if p = X and p # A. The next results follow from the
construction of the cellular basis of S |35, Theorem 4.11] and the block structure of S |33, Theorem 2.11].

Proposition 3.14. Suppose that X\, e A].
o [AM: LK) =1 and [A* : L*] = 0 unless p = A.
o [A*: LH] =0 unless A ~ p.

The next result is an application of a theorem of Bowman and Speyer.

Proposition 3.15 ( |4, Corollary 3.15]). Suppose that r = 2, that X\, pu € A7, and that |NO| = |u©]|. Let
o= (O, p Y= MDDy and @ = (aq,. .., a,—1). Consider the decomposition numbers
[A(/\(O)) : L(“(O))] and [Aj‘ : LP] where the first is for a cyclotomic q-Schur algebra with e-multicharge (ag)
and the second for a cyclotomic q-Schur algebra with e-multicharge a. We have

[AX : LH] = [AC) L LA« LA,

Let 4 denote the Grothendieck group of & with [[M] denoting the element of ¢ corresponding to the
S-module M, so that [M] = [N] whenever the multiset of composition factors of M is equal to the multiset
of composition factors of N. By Proposition {TA* | A e A7} is a basis of 4. Set hy, = [A* : L*]. For
p e Al let PP denote the projective cover of the simple module L*. Then, by the properties of a cellular
algebra,

[PE] = > haulAM.
AeAT
Now let S° denote a cyclotomic g-Schur algebra with the same parameters r,n,e and a as S, but defined
over a field of characteristic 0. Let h§ ., denote the multiplicity of the simple S%module L* as a composition
factor of the S°-module A*. Let D (resp. Dg) denote the decomposition matrix of S (resp. SY), that is
the matrix whose rows and columns are indexed by the elements of A}, and where the (X, p)-entry is hx,
(resp. ho)‘”). We assume that the ordering on D and Dy is identical and is compatible with = so that by
Proposition the decomposition matrices are lower unitriangular.

The reference we give below is actually for the g-Schur algebra, but the proof for the cyclotomic ¢g-Schur

algebra is identical. The matrix A is known as an adjustment matrix.
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Theorem 3.16 ( [34, Theorem 6.35]). There exists a square lower unitriangular matriz A whose rows and
columns are indexed by the elements of Al and whose entries are non-negative integers such that
D = DyA.
Hence if A = (aryu) and A, p € A, we have
hap = Y, Mrtrp.

TEAT
Let i € I and m > 1. As in [40], we define an induction functor Tgm): Sy p-mod — S, m-mod with the
property that if v e A],
[a¥h ™= 3] 1AM
Y
The reader should compare with the action of fi(m) on s, in Section The functor 1 Em) is exact and so

[P 1 1M= > balP,

AEAT

n+m
for some by € N. Suppose that 1 < j <e—1 and s > 1. Define
100=157 0 157 0 117 0 150 0.0 1, 0 167
and compare the definition with that of f(*) € {{. Mirroring our notation in the previous section, if p € R

we set Q1) = Yanp Irn [AM], where g, = gan(1). Our set-up is then identical to that of Proposition
and so we obtain the following result.

Lemma 3.17. Suppose s >0 and that v e RS,,. Let 1 < j <e—1. Then

reg*

QW) 137= 3 ooy @A v ) (v T ).
neA

Lemma 3.18. Suppose s > 0 and that v € R®. Suppose that o ~ v,0 % v and v =>o. Suppose that € € R
is formed by adding s e-rim hooks to the first component of v. Suppose that for some 1 < j <e—1, [AT]

appears in the sum [A“] Tlgs) with non-zero coefficient. Then T = €.
Proof. Take all multipartitions as above and suppose that 7 = €. Then
7O = D] = PO 4+ se = |6 + se = |7V,

so we must have equalities throughout the equation. Thus 7) = ¢(®) and ) = v(%) for all k > 1. However,
thanks to the equality of the sizes of the first component and the dominance conditions, we have

t -1 t
v@ 430 = 3 e+ Y6,
i=1 k=1 i=1
t

-1 t
TP+ 30 2 3 e+ Y e,
k=1 =1 k=1 =1

forall 1 <I<r—1andt>0,so that in fact ¢®) = v for all k > 1. But o ~ v, so by Proposition we
have (¢(9) ~ (v(9) so that & ~ v, giving the required contradiction. O

>

~
|

==

Lemma 3.19. Suppose that pu, X € R with p ~ X and |uf| = |\?| for all 0 < i < e — 1. Suppose that
h(p®) =h(A) < p. Then hy, = 0.

Proof. Given the conditions on g and X\, we have |u(?] = |A\©)|. By [25, Proposition 3.3] we have that
[A()‘(O)) : L(Nm))] = 0. The lemma then follows from Proposition O

We are now ready to prove the main result of this section. Set gx, = gan(1).
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Theorem 3.20. Suppose that A ~ p where A € R and p € Ryeq. Suppose further that p =0 or h(,u(k)) <p
forall0 <k <r—1. Then

hAu = 9\u-
Proof. If p = 0 then the result follows from Theorem [3.12]and Theorem [3.10} so assume that p > 0. As in the
proof of Theorem we use multiple induction arguments. The case r = 1 appears as |25, Theorem 4.1].
So suppose that r > 1, that Theoremholds for r—1 and that p € R,eg With h(p®) <pfor0 <k <r—1.
Suppose first that h(;(?) = 0. For any A = (MO XD XC=D) e A" set A= AD L XC=1)) and set
a=(ay,...,a,_1). Then f1, (u(9) € Rireg. Suppose that A ~ p. If h(A(®) > 0 then p & A and hap = gap =0
so assume h(\(©) = 0, that is, \(9) = ;(°). Now, applying Proposition we have

hap = b0y uonhss = 95u = 9rn

where the middle step follows from the inductive hypothesis and Proposition and the last step follows
from Lemma Hence Theorem holds when h(u(®)) = 0.

Now suppose that p > h(u(?)) > 0 and that Theorem holds for all ¥ € Ryeg with h(v(®) < h(u(®)
and h(v®)) < pfor 1 <k <r—1. Choose 1 < j < e — 1 such that M? # &. Let v be the partition whose
Young diagram is obtained by removing the first column from [,u?], where we suppose that we remove s > 1
nodes. Let v be the multipartition with the same multicore as g and

k_{y, k=0andi=j,

vi =+ 3 )
i, otherwise.

By the inductive hypothesis,

[P*] = 2 9o [A7] + Z hou [A%] = Q(v) + Z hau [A7].
o I3 a0
Now by Lemma (3.1
[P 159= Q) 1) + Y hou [AT] 17= 31 Q) + 3 han [A7] 107
o~V n o~V

et 3% oFv

we also have

[PV 157 = 30 bellA] + 3 bel[A°]
eExXL E~ L
exp
for some b € N. Take n # ug such that CZ(IS) # 0 and define 1 as in the proof of Proposition By
Lemma we have hy, = 0. Take € ~ p such that b # 0.

o If € ® p then by Lemma@7 e mn and 50 hpe = 0.
o If e ~ p and e > then € = ,uf unless k = 0 and i = j. Hence by Lemma [3.19) hne = 0.

Thus the only way that we have hy,, = 0 is if

P11 = S [P + Y vl P

for some r. € N. Consider A ~ p. Then the coefficient of [A*] in [P¥]] TE.S) is
Z CZ(ls)gAn = Z CZ(ls)hX’? + 2 Tehe-
n n €

But by Theorem each n that appears in the sum above is such that ga, = hOAn < hag, and so we must
have gxn, = hay. Taking n = u, we complete the proof of the theorem. g

Theorem 3.21. Suppose that X\ ~ pu where A\, € R and p € A®. Suppose further that h(u™)) < p for all
0<k<r. Then

[S* : DH], = gau(v).
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Proof. The ungraded version of Theorem follows from Theorem [3.20] and Theorem [3.12] The graded
version follows from Theorem because there is a graded adjustment matrix that relates the graded
decomposition numbers in characteristic 0 and characteristic p [28, Section 10.3]. 0

3.5. Scopes equivalences. A celebrated paper of Scopes [38] proves certain equivalences between blocks
of the symmetric group algebra. Scopes’ paper, which was generalized by Jost [27] to the Hecke algebras
of type A, shows that the blocks are Morita equivalent and that there is a corresponding bijection between
the partitions in the respective blocks which preserves the decomposition matrices. As we explain below,
an generalization of the decomposition number result to the Ariki-Koike algebras was recently given by
Dell’Arciprete [12] and a generalization of the Morita equivalence is a special case of even more recent work
by Webster [41].
Fix an e-multicharge a € I". For 0 < i < e — 1, define ¢; : Z — Z by setting

b+1, b=i—1 mode
¢i(b) =4b—1, b=i mode,
0, otherwise.
Suppose A € A". Define ®;(\) to be the multipartition where the 8-set of component k is equal to @i(%’;k A)),
that is we obtain the abacus configuration of ®;(A) from that of A by swapping runners ¢ and ¢ + 1 on all

components (with a vertical shift if ¢ = 0).
The map ®; preserves ~4-equivalence classes.

Lemma 3.22 ( |16, Proposition 4.6]). Let A, € A”. Then X ~4 p if and only if P;(N) ~q ®;(1).

Let B be a ~q-equivalence class of A”. Say that the ~g-equivalence class B is formed from B by making
a Scopes move if B = ®,(B) for some 0 < i < e — 1 and no multipartition A € B has any addable i-nodes.
Let =g, be the equivalence relation on the ~g4-equivalence classes of A” generated by making Scopes moves;
we call this Scopes equivalence. If B =g, B then by composing the bijections ®;, <I>i_1 which give the Scopes
moves between B and B, we have a bijection ¢ : B — B.

Proposition 3.23 ( [12, Proposition 5.5]). Suppose that B and B are ~q-equivalence classes with B =g, B.
Suppose A, u € B with p a Kleshchev multipartition. Then ®(u) is a Kleshchev multipartition and we have
[S* : DH] = [S‘b()‘) : D‘b(“)].

Proposition 3.24 ( [41, Lemma 3.2]). Suppose that B and B are ~q-equivalence classes with B =g, B.
Then the blocks of the Ariki-Koike algebras corresponding to B and B are Morita equivalent.

Using Webster’s work and the results of [32, Section 3.3], we can describe when a block is Scopes equivalent
to a Rouquier block. Let A € A™ and recall the definition of b¥(X) from Subsection For0<i<e-—1,
define b¥ () = 2;5 b¥(X). By [16, Lemma 3.2], the function b} is constant on ~g4-equivalence classes, so if
B is such a class, we can define b (B). Define a total order < on {0,1,...,e — 1} by saying that

i < jif b¥(B) < b¥(B) or if b}(B) = b*(B) and i < j
and define 7 = 7(B) to be the permutation such that
0¥ 0y (B) < b\(B) <...<bl, ;) (B).
We say that a ~4-equivalence class B is a RoCK block if every A € B satifies
h(X) < hi(i)()‘) - [’fr(iq)()‘) +1
foralll<i<e—land 0<k<r-—1.

Proposition 3.25 ( [41, Proposition 4.3] & [32, Section 3.3|, Section 3.3). A ~q-equivalence class B is a
RoCK block if and only if it is Scopes equivalent to a Rouquier block.

We could equally have defined a RoCK block to be a block which is Scopes equivalent to a Rouquier
block and then given the equivalent combinatorial definition. Our terminology follows that of [41], although
Webster’s RoCK blocks are defined more generally; when applied to the Ariki-Koike algebras, the notations
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coincide. Applying Proposition we are now in a position to give some decomposition numbers for RoCK
blocks.

Theorem 3.26. Suppose that H, (¢, Q) is defined over a field of characteristic p = 0. Take A € A}, and
p € A2 such that X and p lie in a RoCK block R and A ~4 p. Let m = w(R) be the permutation deﬁned
above. Suppose that p =0 or h(u™) < p for all0 <k <r —1. Then

r—le—1 N
DM = Z Z 2 : E | | | | (%) z @
' - ¢ ¢ Cormr. -
[S ] ﬂ_( )'y kﬁk k+1 Bk(aw-l)/ 787(1)“-72_1 VAT ATy

Qel'7 | BETT err+1 8T \k=0i=0

3.6. Open questions. In Theorem [3.10, we show that dx,(v) = gau(v) for any (A, ) € R°, and in order to
obtain Theoremwe just ignore any p € Ryeq not indexed by a Kleshchev multipartition. The definition of
gap(v) does not depend on the common multicore of A and pu. However, the set A% "R,g does. Unfortunately
we do not have a non-recursive way of testing whether a multipartition in a Rouquier block is a Kleshchev
multipartition; that is, we would like an analogue of Lemma [2.3] for r > 1.

Ezxample. Let e = 2 and r = 2 and let

v(1) = » v(2) = o v@) = ;o v = :
(1) = v m(2) = o m(3) = , k() = %
The 2-regular multipartitions are v(2),v(4), p(2) and p(4), and dy (3)u(y) (V) = dp@)ue)(v) forall 1 <z <

and y = 2,4. However v(2) and v(4) are Kleshchev multipartitions whereas p(2) and p(4 ) are not.

If r = 1, we are able to express the decomposition numbers [S* : DH], in terms of other (unknown)
decomposition numbers.

Proposition 3.27 ( |25, Proposition 4.3]). Let r = 1. Suppose that g € Ryeq and X ~ p. Set
T(u) = {r~ s |70 = ] Jor all0 < i < e~ 1}.
Then

Z g)\‘r T

TeT ()

We were initially hopeful that an analogue of this result held for » > 2. We do not have any examples
that contradict it, however we do not think it is likely to hold. When v % u, we have no control over the
entries a,,, of the adjustment matrix.

In Conjecture D] we conjectured that we have a formula for the decomposition numbers [A(X) : L(p)] for
the cyclotomic g-Schur algebras where A ~ p lie in a Rouquier block that holds for arbitrary p, rather than

p e-regular as in Theorem The formula differs from g, (1) only by the addition of a term ¢, | _,.
OLOQO...OCO

In |25 Corollary 3.12], we proved Conjecture @] in the case that r = 1 using a runner-removal result of James
and Mathas [26]. Unfortunately we do not have an analogue of the runner removal theorem for r > 1.
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