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Abstract: Physical activity has a strong influence on mental and physical health and is essential in
healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide
a reliable and economical measure of activities of daily living (ADLs) by capturing movements
through, e.g., accelerometers and gyroscopes. This study explores the potential of using classical
machine learning and deep learning approaches to classify the most common ADLs: walking, sitting,
standing, and lying. We validate the results on the ADAPT dataset, the most detailed dataset to date
of inertial sensor data, synchronised with high frame-rate video labelled data recorded in a free-living
environment from older adults living independently. The findings suggest that both approaches can
accurately classify ADLs, showing high potential in profiling ADL patterns of the elderly population
in free-living conditions. In particular, both long short-term memory (LSTM) networks and Support
Vector Machines combined with ReliefF feature selection performed equally well, achieving around
97% F-score in profiling ADLs.

Keywords: physical activity classification; older adults; classical machine learning; deep learning;
free living; wearable sensors

1. Introduction

Physical inactivity is classified as one of the four leading factors causing mortality.
It contributes to 6% of worldwide deaths [1]. It is considered one of the primary causes
of life-threatening diseases, since inactive lifestyles can trigger the prevalence of health
conditions such as breast cancer, colon cancer, heart disease, and diabetes [1]. On the
other hand, physical activity (PA) is essential to improve the quality of life and functional
health of the elderly population. Promoting physical activity in daily life can improve
physical and mental health, particularly at an older age [2,3]. A study by the European
Commission suggested that the elderly population in the EU is expected to increase above
150 million by 2060 [4], and that this will require health and public infrastructures to take
extraordinary measures to accommodate the ever-increasing elderly population and to
promote healthy ageing and wellbeing. Therefore, there is a clear need to develop feasible
and sustainable methods that can potentially monitor the activities of daily living (ADLs) of
the elderly population. By capturing accelerations and angular velocities, wearable inertial
measurement units (IMU) can provide unobtrusive, reliable, and low-cost measurement
of ADLs.
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Several wearable IMU-based physical activity classification (PAC) systems have been
developed in the past. They can be broadly categorized into two primary machine learning
(ML) branches, i.e., classical ML and deep learning.

The processing pipeline of classical ML-based PAC systems [5,6] consists of several
stages: pre-processing (e.g., denoising, filtering), feature engineering (time and frequency
domain descriptors), feature selection, and classification algorithms (e.g., support vector
machines (SVM) [7], decision trees [8], k-nearest neighbours [9], and artificial neural
networks [10]). In the feature engineering stage, handcrafted features are extracted by
relying on the domain knowledge and, sometimes, on the biomechanical characteristics
of human motion. Such a process provides an acceptable level of performance to classify
ADLs. However, this manual stage could lead to potentially important information being
missed [11].

Conversely, deep learning [12] automatically performs feature extraction without
human intervention. The deep learning algorithms, or deep neural networks (DNNs), learn
complex features automatically by adding non-linearity in the feature space (which is often
overlooked in handcrafted feature extraction). This approach enables the DNN to learn
complex patterns from the underlying raw data streams. The performance of such DNNs
depends to a high degree on various hyperparameters linked to the optimization procedure
and on the internal architecture of the DNN. The commonly used deep learning algorithms
comprise (but are not limited to) convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and long short-term memory (LSTM) networks [13]. The existence
of CNN [14] and RNN [15] deep learning algorithms goes back to the 1990s; however,
these algorithms were unable to gain much attention due to the unavailability of powerful
computational resources and a sufficient amount of data. More recently, deep learning
algorithms have seen unprecedented levels of participation in almost every domain, rang-
ing from digital health [16], energy forecasting [17], autonomous cars [18], and speech
recognition [19], to the finance industry [20], due to the availability of high-performance
computing resources and the presence of a growing amount of labelled data to train ma-
chine learning models. These deep learning algorithms have also gathered significant
attention from the research community working in the domain of PAC. Therefore, several
deep learning-based PAC systems have been developed in the last few years to classify
ADLs [21–28]. However, these deep learning-based systems were mostly trained and tested
on young adults [22,26,29,30], while very few systems have been developed for older adults
focusing on PAC [31] and falls [32].

None of the PAC systems developed so far on older adults’ data have been validated
in free-living conditions. In a previous benchmark study [33], we highlighted that ADLs
performed in free-living conditions are different from those performed in laboratory set-
tings or constrained environments. The performance of existing classical ML-based PAC
systems highly deteriorates when tested in free-living conditions. This is because ADLs
performed in a laboratory-based environment lack ecological validity and differ from
those performed in free-living conditions. Therefore, PAC systems designed for elderly
populations in free-living conditions should ideally be trained and tested on data recorded
in the same age group and setting. The benchmark study [33] also highlighted that the
performance of such PAC systems is highly dependant on several factors: the dataset, the
number and placement of sensors, the feature set, the feature extraction window size, and
the classifier.

In light of this, we previously developed a classical ML-based PAC system for older
adults to classify their ADLs in free-living conditions [34]. The current work continues
our previous efforts by developing deep learning-based PAC systems which have never
been trained and/or tested on the elderly population, to the best of our knowledge. Using
a fully validated free-living dataset of older adults’ ADLs, we aim to compare classical
ML-based PAC systems and deep learning-based PAC systems. Recently, only a couple
of studies [35,36] have investigated the performance of classical ML versus deep learning



Sensors 2021, 21, 4669 3 of 13

algorithms. Nevertheless, these studies focused on young adults performing ADLs in
a laboratory-constrained environment.

In summary, the objectives of the current study are:

1. To develop a physical activity classification (PAC) system for an older population in
free-living conditions using a deep learning approach.

2. To compare the performance between classical machine learning-based PAC system
and deep learning-based PAC system.

2. Materials and Methods
2.1. Dataset

The dataset used in this study is a subset of a larger dataset collected by the Depart-
ment of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences
at the Norwegian University of Science and Technology (NTNU) under the ADAPT project
(A Personalized Fall Risk Assessment System for promoting independent living) [37]. The
ADAPT dataset was collected in free-living conditions, where the subjects were free to
perform ADLs in an unsupervised way. The way of performing activities was natural and
unstructured. A total of 20 older adults (76.4 ± 5.6 years) participated in the protocol, per-
forming various ADLs. The subjects were instrumented in the lab (i.e., they wore sensors to
record movements and a chest-mounted camera to obtain labels of activities), after which
they went home to perform the ADLs in free-living conditions. Subjects were instructed to
naturally perform their usual ADLs, but to include a set of defined activities as a part of the
free-living protocol, without any instruction or supervision on how to perform them. The
activities classified in this work were: sitting, standing, walking, lying. A subset of four of
the sensors used in the (out-of-the-lab) free-living protocol from the ADAPT dataset was
analysed in this study. The choice of this subset was motivated by the highest performance
(F-score) achieved in our earlier work [34]. The subset of sensors is presented in Figure 1,
and the sampling frequency of sensors was 100 Hz. The chest-mounted camera shown in
Figure 1 served as ground truth [37] to validate the performance (F-score) of sensor-based
PAC systems.

Figure 1. Set of IMU sensors analysed from ADAPT dataset.
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Five raters performed the video labelling of the subjects’ movements using the video
recordings obtained through the chest-mounted camera, achieving a very high inter-rater
reliability of above 90% in labelling the free-living ADLs.

2.2. Splitting Training and Testing Data

Each IMU sensor contains six signals (3 for linear acceleration, 3 for angular velocity),
resulting in 24 signals. Windows of 5 sec were used, resulting in windows of 500 samples
(W). The window length of 5 sec was chosen to maintain consistency with our earlier
work [34] and provide comparable results. The N windows were divided into training
and testing before developing the ML models and analysing their performance. The data
samples of 16 participants out of 20 were used in this study. The data of the remaining
4 participants were not used due to technical issues with the wrist sensor. The dataset of the
16 participants contained a total of 36,139 windows. A data split was performed following
the 70%(train)/30%(test)% method (which is one of the common methods to cross-validate
the performance of machine learning models). Data from 11 participants were used to
train the ML model (N = 26,115 windows), and the remaining data from 5 participants’
(N = 10,024) were used to test the performance of the trained model, as presented in
Table 1. The F-score was used as a performance measure for the comparative analysis of
PAC systems and will be used interchangeably with performance throughout this study.

Table 1. Training and testing data split, giving the number of sample windows per participant and
classified activity.

Subjects Walk Sit Stand Lie Split
1 237 1001 449 54
2 187 454 119 13
3 559 1661 801 0 Testing
4 306 2493 406 0
5 297 593 362 32
6 493 2078 441 234
7 644 1803 729 19
8 323 568 495 23
9 349 1053 554 37

10 347 1762 654 35
11 576 617 1503 2 Training
12 664 836 1293 0
13 405 1027 589 13
14 442 1871 774 0
15 289 711 285 24
16 222 969 335 27

Total
windows 6340 19,497 9789 513

Each integer value shows the total number of windows. A single window is equal to 5 sec or 500 data samples,
e.g., the Lying class contains 513 windows.

2.3. Splitting Training and Testing Data

The LSTM network (a variant of RNN) was used as the deep learning algorithm to
develop the PAC system. The LSTM networks were shown to perform better [38] over
simple RNNs, due to their ability to remember long-term dependencies of time series
data. The LSTM network remembers data dependencies through the explicit memory
cells allocated within its architecture and stores information regarding when to keep or
forget information from long data sequences. The training data of the four wearable IMU
sensors (Figure 1) was fed into the LSTM network. The input data structure is presented in
Figure 2. The N windows show the total number of data instances across all participants
in the training and testing scenarios (Table 1). The specifications of the proposed LSTM
model for the PAC system developed are listed in Table 2.



Sensors 2021, 21, 4669 5 of 13

Figure 2. The long short-term memory (LSTM) network’s input data structure.

Table 2. Specifications of the proposed long short-term memory (LSTM) model for the physical
activity classification (PAC).

Parameter Value

Window Size N (500 samples)

Sampling frequency 100 Hz

Number of features/signals 24 (F)

Training data feature space (26,115, 500, 24)

Training data label space (26,115, 1)

Testing data feature space (10,024, 500, 24)

Training data label space (10,024, 1)

Cost Function Softmax Cross Entropy [39]

Optimizer Adam Optimizer [40]

LSTM Layers 2

No of Hidden Units 32

Activation function ReLU [41]

Regularization L2 regularization

Learning rate 0.0025

Batch size 1500

Loss function Softmax cross entropy with logits

Software used Tensflow with GPU

System used Lenovo Legion 5 Ryzen 7 16GB 512GB SSD
RTX 2060 15.6” Win10 Home Gaming Laptop

LSTM = long short-term memory; ReLU = Rectified Linear Unit.

2.4. Classical Machine Learning Algorithm for PAC

The methodology used in this study is the same as the one proposed previously [34].
However, instead of using leave-one-subject-out cross-validation, this study used the
training and testing data split presented in Table 1. The performance analysis of classical
machine learning-based PAC used the same set of sensors highlighted in Figure 1.

The set of features extracted from the wearable sensors are represented in Table A1 in
Appendix A. Three feature selection approaches were used, combined with a weighted
SVM classifier to compute the overall performance and performance by class. The feature
selection approaches are: correlation-based feature selection (CFS) [42], fast correlation-
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based filter (FCBF) [43] and ReliefF [44]. The performance of all features, without using
any feature selection approach (Table A1, PAC-All-Feat) was also computed.

The F-score was computed as a performance measure to compare the classical machine
learning with the deep learning PAC system using the expression below:

Fc − score =
2 ∗ TPc

2 ∗ TPc + FPc + FNc
× 100

where TP = True Positive, TN = True Negative, FN = False Negative, and FP = False Positive.
The subscript “c” is used to denote class metrics. The overall F-score was calculated by
averaging the F-score of all classes.

3. Results and Discussion
3.1. Performance Analysis of LSTM based PAC System

The LSTM-based PAC system performed well in classifying the ADLs of older people,
achieving an overall F-score of 97.23%. The performances by class using the test set for
walking, sitting, standing, and lying, as well as overall performances, are presented in
Table 3, in which the results of the classical machine learning and deep learning approaches
are compared. The respective confusion matrix for the LSTM-based PAC system is shown
in Table 4.

Table 3. Performance analysis of different PAC systems using the test set.

ADLs
Classified

PAC-LSTM
(%)

PAC-All-Feat
(%)

PAC-CFS
(%)

PAC-FCBF
(%)

PAC-ReliefF
(%)

Walking 94.48 92.65 93.32 86.91 93.48

Sitting 99.90 99.81 99.68 99.69 99.95

Standing 96.09 95.48 95.29 91.58 95.41

Lying 98.46 89.39 84.72 86.49 98.46

Overall
F-score 97.23 94.33 93.25 91.17 96.83

ADL = activities of daily living; PAC = physical activity classification; LSTM = long short-term memory;
CFS = correlation-based feature selection; FCBF = fast correlation-based filter.

Table 4. Confusion matrix obtained using the proposed LSTM-based PAC system using the test set.

Predicted Class

A
ct

ua
lC

la
ss

Walking Sitting Standing Lying

Walking 1464 3 118 0

Sitting 2 6197 3 0

Standing 48 1 2088 0

Lying 0 3 0 96

It is evident from the findings that the LSTM-based PAC system can classify each
ADL with a very high F-score of above 94%, which confirms the strength of deep learning
methods. The sitting and lying classes achieved the highest F-score, at around 99%,
while the walking and standing classes demonstrated lower scores (94.48% and 96.09%,
respectively).

The detailed performance analysis of LSTM-based PAC system using a different sensor
combination is presented in Appendix B (see Table A2). It is quite evident from the findings
that the LSTM-based PAC system developed using combinations of sensors (two or more)
outperformed the single-sensor-based system. A plateau in performance is achieved when
three sensors are used, beyond which adding more sensors does not improve performance.
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3.2. Performance Analysis of Classical Machine Learning Based PAC System

The classification performances obtained through the four scenarios obtained from
machine learning-based PAC systems are presented in Table 3, and the corresponding
confusion matrices are shown in Table 5. These performances were obtained using the
same dataset and train/test data split used for the LSTM-based PAC system reported
in Table 1. All the classical machine learning-based PAC systems were able to perform
well with an acceptable performance level (F-score > 90%, Table 1). The best performance
(F-score) was obtained using the ReliefF-based PAC system; this produced an F-score of
96.83%, which is quite promising and shows the capabilities of the proposed PAC system
in classifying ADLs. The second-best performance, of 94.33%, was achieved using all the
feature sets. The PAC systems developed on correlation-based feature selection methods,
i.e., PAC-CFS and PAC-FCBF, achieved slightly lower F-scores of 93.25% and 91.17%,
respectively. To illustrate the impact of feature selection on the PAC system’s performance,
the number of features used by each classical machine learning-based PAC system is
presented in Table 6. Table 6 shows that CFS and FCBF selected the smallest number of
features among all the feature sets analysed and still performed well in classifying the
four analysed ADLs. The CFS- and FCBF-based PAC systems used 18 and 17 features,
respectively, and the ReliefF-based PAC system used 105 features. The total number of
features, without any feature selection approach, was 326. This significant reduction in
the feature sets of the correlation-based feature selection methods (CFS, FCBF) could be
explained by a slight performance degradation compared to the other two approaches
(all-feature set, ReliefF). However, the difference in the performance of these systems was
less than 3% and, interestingly, the correlation-based feature selection methods reduced
the feature set size up to 94%. The reduction in the feature set can significantly reduce
the computational complexity, making the system more feasible and applicable in real-life
conditions, which is in line with our earlier findings [34]. The high performance of ReliefF
is in line with our earlier analysis [34], where it was shown that ReliefF achieves better
performance when the PAC system is implemented over multi-sensor feature sets (which
is the scenario in the present study).

Table 5. Confusion matrix of the PAC system using (a) all features (b) CFS (c) FCBF (d) ReliefF.

(a)→ All features (b)→CFS

Predicted class Predicted class

A
ct

ua
lc

la
ss

Walking Sitting Standing Lying Walking Sitting Standing Lying

Walking 1449 1 136 0 Walking 1424 0 162 0

Sitting 18 6181 3 0 Sitting 1 6164 4 33

Standing 58 0 2079 0 Standing 41 0 2096 0

Lying 17 2 0 80 Lying 0 2 0 97

(c)→ FCBF (d)→ ReliefF

Predicted class Predicted class

A
ct

ua
lc

la
ss

Walking Sitting Standing Lying Walking Sitting Standing Lying

Walking 1268 0 318 0 Walking 1442 1 143 0

Sitting 4 6167 4 27 Sitting 1 6200 1 0

Standing 60 0 2077 0 Standing 56 0 2081 0

Lying 0 3 0 96 Lying 0 3 0 96
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Table 6. Number of features used in the classical machine learning based PAC system.

Feature Selection Technique Number of Features

All features (no feature selection) 326

CFS 18

FCBF 17

ReliefF 105

3.3. Classical Machine Learning Versus Deep Learning: Which Is Better?

The overall performances obtained through classical machine learning algorithms and
LSTM-based deep learning algorithms (see Table 3) suggest that both methodologies can
accurately classify the ADLs. The best PAC system obtained in classical machine learning
approaches is based on the feature set obtained through ReliefF, and its performance is
quite close to the one obtained through deep learning, with a difference of 0.4% (97.23%
vs. 96.83%). To get a better insight into class performance, the F-score obtained through
all PAC systems is depicted in Figure 3, for both the classical machine learning- and the
deep learning-based approaches. All the ADLs, i.e., sitting, standing, walking, and lying,
are accurately classified by these PAC systems (PAC-ReliefF, PAC-LSTM) with very high
performance by class (above 90%) and the differences in performance among these PAC
systems for all classified ADLs are minimal (less than 1%, Table 3—columns 2 and 6).

Figure 3. Performance analysis of the classical machine learning and deep learning based
PAC systems.

Moreover, the confusion matrices obtained from the PAC systems (Tables 4 and 5)
suggest that the walking and standing classes are quite often confused with each other in
both cases, i.e., in classical machine learning and deep learning, which is the reason for their
low F-score. This could be because three out of the four IMU sensors (chest, lower back,
and thigh—see Figure 1) have a similar orientation during standing and walking, which
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could have contributed to this slight degradation in the performance and confusion among
the classes. On the contrary, the sitting and lying classes possibly have more distinctive
properties, as three out of the four IMU sensors (thigh, chest, lower back) change their
orientation from sitting to lying.

Therefore, we can suggest that neither of the approaches, i.e., classical or deep learn-
ing, outperformed the other in this work. This result could be related to the fact that
a plateau in performance was reached, suggesting that after reaching a certain level of
performance, further enhancement might not be possible, regardless of which of the
two machine learning approaches is used, as there is a narrow range for improvement and
from which to differentiate between the performances of the various PAC systems. Recently,
Baldominos et al. [36] performed a similar type of analysis to observe classical machine
learning performance versus CNN-based PAC systems (although they analysed the ADLs
of younger adults in a constrained environment, rather than in free-living conditions, and
they used a CNN instead of an LSTM network). They concluded that the classical machine
learning PAC system performed better than the deep learning-based PAC system, which
suggests that deep learning methods are not always optimal when referring to wearable
sensors based on physical activity classification systems. Their finding is somewhat in line
with our present work, as our proposed classical machine learning and deep learning PAC
systems performed equally well, with marginal performance difference (<0.4%).

The findings of our study are interesting and show the similar strength of classical
and deep learning-based PAC systems in profiling the free-living activities of an elderly
population. However, it is essential to mention that the dataset analysed in this study,
although quite unique, is not very large, and the nature of the classified activities might
not be very challenging in terms of DNNs, as they perform better on larger datasets. PAC
systems might behave differently when exploited on datasets from larger cohorts and
different populations, with a larger number of activity classes, but this requires further
validation in a future study. These observations emphasize that the choice of an appropriate
ML algorithm (classical ML or deep learning) depends, to a high degree, on the nature of
the problem domain and the quality and the quantity of the labelled dataset. However,
it is important to highlight that the dataset used in the study is the first of its kind, in
that it included older people in free-living conditions, and underwent an extensive and
detailed validation/ground truth annotation process by multiple raters [37]. Moreover,
the performance of free-living protocols in the home environment generated more natural
patterns and distributions of ADLs than could be obtained in a laboratory-based setup [45].
Future work should focus on exploring other DNNs, such as CNNs or hybrid CNN–LSTMs,
or using a temporal CNN as a feature extractor and then feeding the results to a classical
ML classifier, such as an SVM.

4. Conclusions

This study investigated the performance of classical machine learning-based PAC
systems and a deep learning-based PAC system. The dataset used in this study was based
on the activities of daily living performed by older people in free-living conditions. There
were no constraints on how and when to perform a specific activity, and the participants
performed the study protocol in their residential settings. A subset of four wearable inertial
sensors from the ADAPT study was analysed in order to classify the daily living activities.
The classical machine learning-based PAC system was developed by applying weighted
SVM and feature selection. The deep learning-based PAC system was developed using
the LSTM approach, by directly feeding in the raw data from the inertial sensors. This
study demonstrated that both approaches (classical machine learning and deep learning)
can accurately classify the daily living activities of the elderly population with very high
performance (F-scores of around 97%). Neither approach was found to be clearly superior
to the other, suggesting that both the machine learning and deep learning approaches can
classify the activities equally well, in terms of the dataset used in this work.
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Appendix A

Features Used in Classical Machine Learning based PAC System

Table A1. Features Computed from Each Signal.

Feature # Feature Description Feature # Feature Description

1–3 Mean of acceleration (x, y, z) a 40–42 Variance of angular velocity (x, y, z)

4–6 Variance of acceleration (x, y, z) 43–45 Correlation between axes of angular
velocity (x, y, z)

7–9 Correlation between axes of acceleration
(x, y, z) 46–48 Energy of angular velocity (x, y, z)

10–12 Energy of body acceleration (BA) component
(x, y, z) 49 SMA of the angular velocity

13 Signal magnitude area (SMA) of
BA component 50 Mean of MV of angular velocity

14
Tilt angle obtained from gravitational

acceleration (GA) component in
vertical direction

51 Variance of MV of angular velocity

15–17 Mean of GA components (x, y, z) 52 Energy of MV of angular velocity

18 Mean of magnitude vector (MV) of
BA component 53–55 Mean of jerk signal from angular

velocity (x, y, z)

19 Variance of MV of BA component 56–58 Variance of jerk signal from angular
velocity (x, y, z)

20 Energy of MV of BA component 59–61
Correlation between the axes of the

jerk signal from angular velocity
(x, y, z)

21–23 Mean of jerk signal from acceleration (x, y, z) 62–64 Energy of jerk signal from angular
velocity (x, y, z)

24–26 Variance of jerk signal from acceleration
(x, y, z) 65 SMA of the jerk signal from

angular velocity

27–29 Correlation between the axes of jerk signal
from acceleration (x, y, z) 66 Mean of MV of jerk signal from

angular velocity

30–32 Energy of the jerk signal from acceleration
(x, y, z) 67 Variance of MV of jerk signal from

angular velocity
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Table A1. Cont.

Feature # Feature Description Feature # Feature Description

33 SMA of the jerk signal from acceleration 68 Energy of MV of jerk signal from
angular velocity

34 Mean of MV of jerk signal from acceleration 69–71 b
Attenuation constant between

sensor combinations of acceleration
(x, y, z)

35 Variance of MV of jerk signal
from acceleration 72–74 b Correlation between sensor

combinations of acceleration (x, y, z)

36 Energy of MV of jerk signal from acceleration 75–77 b
Correlation between sensor

combinations of angular velocity
signal (x, y, z)

37–39 Mean of angular velocity (x, y, z)
a x, y, z show that all three axes of the signal (can be raw acceleration, BA component, angular velocity, jerk etc.) are used to compute the
respective features. b Features from 69–74 were considered only if a sensor combination was analyzed.

Appendix B

Performance Analysis of LSTM based PAC System on Test Set

Table A2. Performance analysis (F-score) of LSTM-based PAC system using different sensor locations.

Sensor Combination Walking Sitting Standing Lying Overall F-Score

L5 85.2 % 95.0 % 80.7 % 76.9 % 84.4 %

Wrist (W) 71.5 % 89.7 % 64.2 % 0.0 % 56.3 %

Thigh (T) 95.0 % 99.1 % 96.4 % 0.0 % 72.6 %

Chest (C) 71.4 % 86.1 % 61.7 % 98.5 % 79.4 %

T + L5 94.2 % 99.6 % 95.9 % 81.4 % 92.8 %

T + C + L5 94.2 % 99.9 % 95.9 % 99.5 % 97.3 %

T + C + L5 + W 94.5 99.9 96.1 98.5 97.2
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