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RESEARCH HIGHLIGHTS 1 

• Virtual globes can help raise public awareness of local landscape benefits 2 

• Virtual globe applications can be customised to describe landscape features better 3 

• Collaboration with many stakeholders from project outset brings significant benefit 4 

• Schoolchildren are confident users of virtual globe visualisations 5 

• Compartmentalisation aids modification and transferability of visualisation tools 6 

 7 

ABSTRACT 8 

Our wellbeing depends upon the services provided by ecosystems and their components. Despite 9 

recent advances in academic understanding of ecosystem services, and consideration in UK 10 

national environmental policy, a greater awareness is needed at community and individual levels. 11 

Dynamic features of virtual globe applications have considerable potential for helping convey 12 

the multi-dimensional context of ecosystem services and promoting general awareness. In a case 13 

study targeting residents in a small urban fringe river catchment in Norfolk, UK, representatives 14 

from local authorities and responsible agencies collaborated with scientists to produce extensive 15 

customisation of virtual globes in this context. By implementing a virtual flight over the 16 

catchment, different views and scales are traversed to set the context for landscape features and 17 

ecosystem services. Characteristic sites, e.g. supplying cultural services, are displayed and 18 

relationships with the natural environment are explained using linked on-screen text. 19 

Implementation is cost-effective and described for practitioners in ecosystem and landscape 20 

management, who may be inexperienced in landscape visualisation. Supplied as three pre-21 

packaged virtual tours, products are made available for download and are publicised at a variety 22 

of engagement events, including teaching events with schoolchildren. The tours have attracted 23 



 
 

public interest and generated positive feedback about improving knowledge of local natural 24 

assets.  Schoolchildren show confidence with the interface, but supplementary problem-based 25 

activities can improve learning opportunities. The capacity of virtual globes to support more 26 

participatory involvement of the public in local ecosystem management may increase in the 27 

future, but such visualisations can already help promote community awareness of local landscape 28 

benefits.  29 

 30 
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 33 
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1. Introduction 1 

1.1 Individual and community awareness of landscape benefits  2 

Human well-being is inescapably tied to the natural environment. A landscape unit, such as a 3 

river catchment, can regulate the flow of water, provide crops and livestock, support nutrient 4 

cycling and supply landscape features for aesthetic enjoyment (e.g. Maltby et al., 2011). The 5 

benefits that humans obtain from the natural environment have been formalised in academic 6 

publications and government documents as ‘ecosystem services’ (e.g. Fisher, Turner & Morling, 7 

2009; Millennium Ecosystem Assessment, 2005) and this approach and nomenclature is gaining 8 

traction with decision makers and stakeholders (e.g. Potschin, Haines-Young, & Fish, 2011).  9 

As natural and anthropogenic stresses continue to threaten the ability of the natural 10 

environment to maintain ecosystem services, a greater societal consciousness about human 11 

dependencies on terrestrial, freshwater and marine ecosystems is desperately needed. There have 12 

been great advances in academic understanding of the state of the natural environment and its 13 

value to society, for example through the pioneering work of the United Kingdom National 14 

Ecosystem Assessment (UK-NEA, 2011). Other countries – including Spain, Germany, Israel 15 

and the United States – are at different stages of developing similar ecosystem assessments. 16 

Adopting an ecosystem service approach to policy and decision making is a pragmatic way to 17 

examine the links between ecosystems and human well-being and to promote sustainable use in 18 

an equitable way. A range of actors, however, from national governments to individuals and 19 

communities, need to play roles in the initiation and implementation of responses to secure and 20 

improve the future delivery of ecosystem services.  21 

An individual can act as a participant in the landscape, a processor of information from 22 

the landscape and a performer of biological and physical change (Zube, 1987). Such an 23 
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individual, however, may be unaware of these roles and their potential to conflict with, or 24 

enhance, underpinning landscape structures and processes. While society has some appreciation 25 

of the benefits that the natural environment provides through the supply of food and clean water, 26 

environmental settings which deliver recreational opportunities (Brown, Montag, & Lyon, 2012), 27 

and even sequestration of carbon to mitigate climate change (Wild & McCarthy, 2010), a greater 28 

awareness at individual and community levels is needed to raise understanding of environmental 29 

assets and their value (UK-NEA, 2011). In a UK-government commissioned qualitative study, a 30 

stratified socio-demographic sample of respondents understood the concept of ‘ecosystem 31 

services’ but did not find the terminology useful without new evidence and reasons to listen 32 

(Defra, 2007). While the UK-NEA improved the evidence base at a national level, particularly 33 

with reference to ascribing value, this new knowledge has not filtered to public documents and 34 

vocabulary. Whether formal terminology is used or not, it is important for individuals to 35 

recognise that the natural environment delivers a flow of societal benefits that can be both 36 

tangible (e.g. drinking water) and intangible (e.g. aesthetic enjoyment).   37 

 38 

1.2 Potential for promoting awareness through visualisation 39 

Raising environmental awareness is an important first step towards increasing voluntary actions 40 

and community participation in decision-making. Digital landscape visualisation is a device with 41 

considerable potential in this context. As noted by Sheppard (2012, p.403), visualisations can 42 

“help people to know, see and recognise what was previously vague, abstract or hidden” which 43 

makes them particularly relevant for increasing public appreciation of ecosystem services. One 44 

of many remaining challenges in integrating the concept of ecosystem services in everyday 45 
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landscape planning, management and decision-making, is the definition of appropriate 46 

visualisation techniques (de Groot, Alkemade, Braat, Hein & Willemen, 2010). 47 

Visual representations (maps, images and computer graphics) are powerful means of 48 

conveying landscape characteristics and can provide a common language in discussions on 49 

planning issues between technical and non-technical participants (e.g. MacEachren & Brewer, 50 

2004; Sheppard, 2012; Van den Brink, Van Lammeren, Van de Velde & Däne, 2007). In 51 

particular, spatial referencing can be an effective and intuitive shared framework in which to 52 

synthesise data (Wood, Dykes, Slingsby & Clarke, 2007). Geographic-based visualisations have 53 

demonstrated benefits in improving communication, understanding and ultimately action, for 54 

example in the landscape planning process (Pettit, Bishop, Sposito, Aurambout & Sheth, 2012) 55 

and improving foresight and action with respect to climate change (Sheppard, 2012).  56 

Traditional visual media include, for example, physical models, diagrams, charts and 57 

maps, and these have been used as communication tools for centuries. More recently, 58 

technological and scientific advances have enabled representation of increasingly complex 59 

information in multiple dimensions (Lange & Bishop, 2005). The use of photomontages, two- 60 

and three-dimensional visualisations to ascertain public landscape preference have been widely 61 

discussed in the urban and rural planning literature (e.g. Laing, Davies, & Scott, 2005; Dramstad, 62 

Tveit, Fjellstad, & Fry, 2006; Lange, Hehl-Lange & Brewer, 2008; Ode, Fry, Tveit, Messager, & 63 

Miller, 2009; Mell, Henneberry, Hehl-Lange & Keskin, 2013; Todorova, Asakwa, & Aikoh, 64 

2004). Three-dimensional visualisation of a place on Earth using a virtual globe offers more 65 

interactive possibilities than traditional static two-dimensional mapping, such as permitting 66 

direct manipulation of the interface for real-time browsing of satellite imagery and aerial 67 

photographs. Several studies have demonstrated that virtual globes can increase the level of 68 
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engagement with scientific data, transferring ‘known’ information to the public domain in 69 

formats that permit a high level of user interaction with the data (e.g. Aurambout, Pettit & Lewis, 70 

2008; Pettit et al., 2012; Sheppard & Cizek, 2009). Four-dimensional representation offers 71 

further possibilities for greater uptake and understanding. For example, virtual globes can depict 72 

past environments through geological modelling (De Paor & Whitmeyer, 2011), display 73 

scientific datasets e.g. of snow and ice cover (Ballagh et al., 2011), or show how events unfold 74 

using time sequencing of spatial content (e.g. Polczynski & Polczynski, 2013; Schroth, Pond, 75 

Muir-Owen, Campbell & Sheppard, 2009). As such, virtual globes have been used to help users 76 

interpret their past and present environment and plan for the future (e.g. Pettit, Raymond, Bryan, 77 

& Lewis, 2011; Schroth et al., 2011). Virtual globes are also used by NGOs and activist groups 78 

to disseminate information about their activities and concerns, e.g. through Google Earth’s 79 

‘global awareness layers’ (Elwood, 2010; Parks, 2009). Such dynamic alternatives could have 80 

significant advantages over traditional 2-D maps for representing and communicating changing 81 

bundles of ecosystem services in space and time (de Groot et al., 2010).  82 

Visualisations are now a typical component of landscape research and practice (Lange, 83 

2011); they are standard mechanisms to communicate activities concerned with the natural and 84 

urban environments of the past and present, and the creation of future environments. In practice, 85 

however, landscape visualisation for public information and community involvement requires a 86 

grasp of a range of disciplines including cartography, computer science, and cognitive science 87 

(MacFarlane, Stagg, Turner, & Lievesley 2005). Aspiring landscape visualisers will also have to 88 

manage possible public unfamiliarity with geospatial technology (Ball, 2002) and consult 89 

specialised texts on usability engineering and human-computer interaction (e.g. Haklay, 2010; 90 

Haklay & Tobon, 2003; Neilson 1993). Visualisation developers should also have a wider 91 
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appreciation of the cultural, social and political implications of contemporary visualisation 92 

methods (Elwood, 2010) and reference to specialised sub-disciplines, such as critical geographic 93 

information systems (GIS) and public participatory GIS, PPGIS (Ball, 2002; Elwood & Ghose, 94 

2001; Sieber, 2006), may be relevant. While this plethora of literature correspondingly provides 95 

substantial support for the novice, landscape practitioners may also face various additional 96 

challenges such as limited budgets, time and personnel, and organisational restrictions such as 97 

access to sources of assistance and collaborative networks and the ‘fit’ with organisational 98 

mission or priorities (Elwood & Ghose, 2001; MacFarlane et al., 2005; Paar, 2006).  99 

 100 

1.3 Aims and scope 101 

The aim of this study was to design visualisations to enhance community awareness of the 102 

tangible and intangible benefits which they obtain from a local river catchment. In practice this 103 

involved developing a set of communication tools for a virtual globe environment and then 104 

disseminating these products through community engagement and education opportunities. 105 

Implementation details are presented here for researchers and non-experts in visualisation 106 

software, such as planning practitioners from local authorities and representatives from wildlife 107 

charities and civil society organisations. These tools are particularly suitable for engagement 108 

with small or less well-resourced, communities.  109 

The methodology outlined below begins by establishing user needs and introducing the 110 

study area: a small calcareous river system draining a catchment within an urban fringe area of 111 

Norfolk, UK. Consultation between scientists, local authorities and other responsible agencies 112 

helped establish themes for the visualisations and provided a regular and frequent source of 113 

solicited feedback. This collaboration was central to the research design. The ultimate 114 
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effectiveness of the visualisations will only be apparent over several years, but the approach is 115 

evaluated in terms of the utility of the tools, their initial uptake and participant feedback. Based 116 

on this research experience, challenges for similar endeavours are identified and 117 

recommendations for customisation of landscape visualisations are offered. 118 

 119 

2. Study context and users 120 

The Sustainable Urban Fringes (SURF) Project is an EU Initiative to realise the value of 121 

landscapes which link urban and rural environments. Urban fringes face specific challenges due 122 

to environmental pressures and changing demographics; these include conflicts between 123 

planning and sustainable development, fragmented habitats, declining biodiversity and 124 

deteriorating water quality. Furthermore, the use of the natural environment for outdoor 125 

recreation is potentially inhibited due to poor access to the countryside and a lack of engagement 126 

from socio-economically deprived local communities. Under the auspices of SURF, the 127 

Gaywood Valley Project adopted an ecosystem approach and sought to unlock the potential of 128 

the River Gaywood and its catchment as a multifunctional landscape for local people (see 129 

Potschin et al. 2011). The visualisation tools presented here were a fundamental part of a public 130 

engagement programme with a remit to raise awareness of the local landscape and its value to 131 

society. The project team, consisting of practitioners in the catchment from local authorities and 132 

civil society organisations, sought the assistance of academic researchers in the design and 133 

implementation of the visualisation tools.   134 

The Gaywood catchment has a total area of just under 60 km2 and a main river length of 135 

approximately 12 km (Fig. 1, boundary as defined by the project team). This relatively small 136 

lowland catchment supports valuable riparian and aquatic ecosystems through a rolling chalk 137 
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landscape. Downstream, the river runs through (and under) the urban centre of King’s Lynn, 138 

Norfolk, where it joins the Great Ouse and the North Sea through The Wash embayment.  139 

 140 

<Fig. 1>  141 

 142 

Within the upper and middle catchment there are important wildlife habitats, including 143 

heathland, woodland and wetland, with national and international designations such as Site of 144 

Special Scientific Interest, County Wildlife Site, National Nature Reserve, Special Area of 145 

Conservation and RAMSAR wetland. Other locations are nationally important from a 146 

geodiversity perspective, e.g. outcrops that have contributed stage names to UK stratigraphy 147 

(Lower Cretaceous Dersingham Formation, for example) and landforms that provide evidence 148 

for past climates (Holt-Wilson, 2010). Management of surface water flows is important in the 149 

context of drainage and as part of the flood defence system. The majority of the town of King’s 150 

Lynn is within the hydrological boundary of the Gaywood catchment and the river runs through 151 

a park which is a significant urban green space for recreational use. Rural villages and sites of 152 

historical importance, e.g. monuments, earthworks and ruins, are dotted throughout the 153 

catchment. Outside of King’s Lynn, the landscape is predominantly agricultural land, with a 154 

range of arable crops and grazing of livestock. The Gaywood catchment thus contributes to the 155 

delivery of cultural, provisioning, regulating and supporting ecosystem services as defined by the 156 

Millennium Ecosystem Assessment (2005).  157 

Many of the settlements close to the river, particularly housing estates on the eastern side 158 

of King’s Lynn, are among the most socially deprived parts of England (source: Index of 159 

Multiple Deprivation 2007). Initial consultation with the project team revealed that there is 160 



8 
 

generally little connection with, or use of, the nearby countryside by urban residents. Moreover, 161 

the general public did not identify with Gaywood Valley as a place or landscape. This presented 162 

an immediate challenge as place-names provide the basis of geographic referencing in normal 163 

human discourse (Goodchild, 2007). Place attachment, past experiences, and knowledge of 164 

historic uses, influence individual preferences towards present values and landscape change 165 

(Ball, 2002; Brown & Raymond, 2007; Hanley et al., 2009; Zube, 1987). Visualisation tools 166 

were required to respond first to this need by generating an identifiable landscape unit and a 167 

foundation from which to build increased engagement by nearby residents. Tools would also 168 

explain the various pathways of benefits from the natural environment to people (ecosystem 169 

services) and finally encourage more active involvement in the catchment.   170 

The early plan had been to create static photorealistic images (e.g. Lovett, Appleton, & 171 

Jones, 2009) of current and potential future views from a series of vantage points around the 172 

Gaywood catchment. Following the initial discussions, however, it was decided that providing a 173 

greater degree of user interactivity through virtual touring would have benefits for orientation 174 

and establishing the requisite local context for the consideration of ecosystem services (e.g. see 175 

Defra, 2007). Collaboratively, the decision was also made not to use the visualisation tools for 176 

presentation of potential and uncertain landscape change, although tools would ultimately 177 

maintain the functionality to be adapted to incorporate such issues.  178 

Visualisations responded to two coinciding user needs: (a) the agenda of practitioners in 179 

the catchment, who would take primary responsibility for dissemination of the final tools; and 180 

(b) the perceived learning needs of the public. Education, at all ages, is essential for increasing 181 

public awareness of the importance of nature conservation and stimulating action by civic and 182 

voluntary groups (UK-NEA, 2011). Visualisation tools were designed to permit guided and 183 
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exploratory visual analysis of ecosystem services in the catchment. The tools assumed a default 184 

single user environment, namely individual use of the tools (at home) by the general public and 185 

for teachers to direct learning with schoolchildren in the classroom.  186 

 187 

3. Materials and methods 188 

3.1 Data and visualisation content  189 

Based on early discussions with the practitioners in the catchment, content for the visualisations 190 

was organised in three themes: (i) Introduction to Gaywood Valley; (ii) Geology and Past 191 

Climates; and (iii) Green Infrastructure. Descriptive examples linking local catchment services to 192 

the community were integrated into the themes. The Introduction theme served to orientate users, 193 

identify the Gaywood Valley catchment and present a few tangible locally-relevant examples of 194 

ecosystem services (e.g. the Gaywood catchment provides drinking water). The second theme 195 

was created to illustrate the link between the types of rocks that outcrop at the surface, their 196 

changes with depth and conditions under which they formed. Geodiversity underpins and 197 

delivers many vital ecosystem services (Gray, Gordon & Brown, 2103), and this theme was 198 

essential for providing context (e.g. porous Norfolk chalk delivers groundwater storage). The 199 

temporal range was defined by the age of the rocks and sediments in Gaywood Valley (i.e. 200 

Jurassic to Quaternary) (see Holt-Wilson, 2010). This encapsulated a variety of events and 201 

significant environmental changes, e.g. widespread global volcanism during the Cretaceous, the 202 

extinction of the dinosaurs at the Cretaceous-Tertiary boundary, ice sheets moving across 203 

Norfolk in the Quaternary with associated changes in sea-level and recent climate change. 204 

Finally, the green infrastructure theme sought to encourage physical exploration of the landscape 205 

by displaying public rights of way, cycle routes, health walks and accessible green space.  206 
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The ability to digitally represent the natural environment is highly dependent on data 207 

availability and quality. Integrating data of diverse types holistically to make a coherent picture 208 

is one of the core advantages of visualisation (Sheppard, 2012) and information from a variety of 209 

literary, photographic or scientific sources was collated and spatially referenced where 210 

appropriate (see also Schroth et al., 2009, for further information on data gathering and 211 

preparation for virtual globes). As far as practical, data were open access to ease redistribution.  212 

Photographs depicting features of the contemporary Gaywood Valley landscape were 213 

sourced from the Geograph Britain and Ireland Project (Editor, in press b). Paper maps from the 214 

British Geological Survey (1999) and Norfolk Geodiversity Partnership (e.g. Holt-Wilson, 2010) 215 

were used to support interpretation for a cross-section and stratigraphic section (vertical changes 216 

of bedrock with depth). Geospatial data were obtained from project partners at Norfolk County 217 

Council e.g. boundaries for land designations, areas of green infrastructure and public rights of 218 

way. Details were also extracted from published public documents, e.g. health, heritage and 219 

biodiversity walks for King’s Lynn (Editor, in press c). Practitioner knowledge was used to 220 

identify further locations of local cultural value.   221 

 222 

3.2 Software  223 

Virtual globes allow a graphical user interface for exploration of high-resolution satellite 224 

imagery and aerial photography through spatial and temporal navigation tools. Access to 225 

ancillary geographic information such as geographic borders, places, roads and terrain (digital 226 

elevation) is also standard. Client-side architecture resides in an application downloaded and 227 

installed on the user’s computer, which interacts with a server over the Internet for requesting 228 

data. Data are typically streamed from servers in response to user interaction but virtual globes 229 
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can also cache imagery on the user’s computer, thereby not only providing a very smooth 230 

experience once the data have loaded on to the computer but also permitting offline viewing. 231 

Google Earth was selected as the platform for visualisation tool development from a number of 232 

available virtual globes e.g. NASA World Wind, Microsoft Bing Maps, ESRI Arc Explorer (see 233 

reviews in Aurambout et al., 2008; Schroth et al., 2011; Tuttle, Anderson & Huff, 2008). An 234 

important factor was that the basic version of this platform is free to download and this was 235 

beneficial for the dissemination of the products. Additionally, Google Earth has a considerable 236 

archive of associated online information, an established support system with developer forums, 237 

and is compatible with tools to help with customisation, such as (free) Trimble SketchUp.  238 

Custom visualisations developed for Google Earth sit on top of the native imagery. Such 239 

content is in the form of files (not software modifications, plug-ins nor add-ons) which are 240 

automatically recognised by a host system with Google Earth software installed. Tailored 241 

geographic content is supplied to Google Earth via Keyhole Markup Language (KML) which is a 242 

simple human-readable scripting language (see Wernecke, 2009). Visualisation tools for the 243 

Gaywood Valley Project were produced by extensive manual KML scripting undertaken in a 244 

simple text editing program (Notepad++; http://notepad-plus-plus.org/). Current versions of the 245 

tools were developed using KML version 2.2 scripting and optimised for the standard (free) 246 

Google Earth version 6.0 running on a Windows Operating System. Final output was packaged 247 

into a single KMZ archive, a compressed folder, which can be hosted publicly on a web server 248 

and shared. 249 

 250 

3.3 Design decisions 251 
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Non-expert users must navigate an interface with a computer system that embeds a language, 252 

world view and concepts that may be different to their own work or home view (Haklay & 253 

Tobon, 2003). Creation of any worthwhile visualisation tool requires adequate understanding of 254 

the end users (Andrienko et al., 2010). Understanding user characteristics, their requirements and 255 

goals is central to the design process and can improve usability (Haklay, 2010). Here, specific 256 

additional content was developed to run within the stand-alone Google Earth application; this 257 

consequently inherited the default usability and functionality of this web-mapping application. 258 

Within the custom scripting, additional signposting and progressive disclosure of information 259 

attempted to cater for users of all experiences and abilities, and ensure that the tools were 260 

efficient, effective, engaging, error tolerant, and easy to learn (Haklay & Zafiri, 2008). Döllner 261 

(2005) also provided specific guidance on improving usability of the virtual environment by 262 

employing spatial (e.g. camera position, orientation and movement) and structural constraints 263 

(e.g. addition or removal of thematic layers).  264 

Tool functionalities and format were the result of design decisions that were sympathetic 265 

to the framework for good visualisation presentation established by Sheppard and Cizek (2009). 266 

These guidelines for good practice pertain to access to visual information, interest, 267 

representativeness, accuracy, visual clarity, framing and presentation, and legitimacy of virtual 268 

globes (Table 1). Additionally, tool appearance was influenced by recommendations from 269 

published research on visualisation representativeness and scale (e.g. Appleton & Lovett, 2003; 270 

Pettit et al., 2012), use of colour and symbology (e.g. Brewer, 2005; British Cartographic 271 

Society, 2008; Robinson, Morrison, Muehrcke, Kimberling, & Guptill, 1995), and subjectivity of 272 

developer perspectives on the input data, content and display format (e.g. MacFarlane et al., 273 

2005; Monmonier, 1996; Wood & Fels, 2008).  274 
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Human short-term memory can only maintain a maximum of seven information units or 275 

facts simultaneously and repetition or elaboration is needed to transfer these units to long-term 276 

memory (see e.g. Ball, 2002). Auxiliary text was needed to provide a visual commentary or a 277 

‘virtual chauffeur’. Drawing on recommendations from surveys on public perception of 278 

ecosystem services (Defra, 2007; UK-NEA, 2011), specific academic terms were avoided and 279 

significant consideration was given to the appropriate level of detail for these specific audiences.  280 

<Table 1> 281 

Effective customisation of the Google Earth interface begins with an appreciation that 282 

KML is based on a nested set of elements. A parent element contains several child elements that 283 

establish the initial field of view and styles for cartography that are inherited by all descendants. 284 

Subsequent elements in a KML script associate data with positional geometries e.g. pop-up 285 

balloons for sites of interest (called placemark elements) and images superimposed on the screen 286 

or ground (called overlay elements). KML scripting is used to customise the basic characteristics 287 

of these elements, for example name, description, and view. The hierarchy of elements in the 288 

KML scripting controls overlap of elements in the field of view, therefore this should be 289 

carefully considered. Branches to the lineage can be introduced, such as ‘network links’ as a 290 

mechanism for connecting multiple KML files and auxiliary data, e.g. illustrations and 291 

photographs (see Wernecke, 2009; Wood et al. 2007). Once a structure for organising files is 292 

established, further revisions are straightforward. A simplification of the data file hierarchy used 293 

in the visualisation tools is shown in Fig. 2. Three-dimensional models were added for 294 

educational benefit and interest. These were drawn in SketchUp and exported to COLLADA 295 

files which were then packaged within the KMZ (Fig. 2) and encoded as placemarks in the main 296 



14 
 

KML. The touring-related KML element ‘animated update’ allowed the altitude of the model to 297 

be altered by the developer as part of the tour sequence, thereby creating motion.  298 

<Fig. 2>  299 

 Customisable elements within Google Earth enabled locally-relevant pathways for the 300 

delivery of ecosystem services (and derived goods) to be emphasised within the three tools. 301 

Pathways were a descriptive mechanism to connect the services of the catchment to beneficiaries 302 

without using technical terminology. Table 2 outlines the design of elements for the main local 303 

pathways incorporated within the visualisations (adopting the Millennium Ecosystem 304 

Assessment, 2005, definition for ecosystem services). Supporting services (e.g. soil formation, 305 

water cycling, and nutrient cycling) are not considered final ecosystem services as they are 306 

necessary for the production of all other ecosystem services (UK-NEA, 2011). Other final 307 

ecosystem services, such as climate regulation, have global-scale pathways to the community 308 

that were communicated more implicitly through the tools. Equable climate in Gaywood Valley, 309 

for example, is a benefit that was introduced with reference to past average temperature, 310 

sedimentary rock formation (e.g. chalk in warm shallow seas), movement of glaciers, sea level 311 

change, and present day anthropogenic climate change.  312 

<Table 2> 313 

 314 

3.4 In-development review  315 

Talking to users during the implementation stage can help improve usability (Haklay, 2010). A 316 

cycle of discussions to identify relevant features and test visualisation styles is a common 317 

approach for visualisation development and tools often develop iteratively (e.g. Steinitz, 2012; 318 
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Williams, Ford, Bishop, Loiterton & Hickey, 2007).  Two particular consultation sessions were 319 

integral to tool development.   320 

A prototype virtual fly-through-the-valley tour was discussed with the practitioners. 321 

Following a practical demonstration, the group was asked for feedback e.g. regarding individual 322 

thematic layers of data, proposed sites typifying the catchment and general visualisation format. 323 

Participants responded favourably to the dynamic tour (and had been involved in the initial 324 

decision to use a virtual globe format). However, they also identified features for improvement: 325 

the prototype tour gave insufficient time to read text in placemarks; there were too few sites of 326 

interest; some photographs were outdated and not representative of the current landscape; and 327 

there was too much overt use of technical terminology in site descriptions. Edits were 328 

subsequently made to the duration of pauses, further placemarks were added, photographs were 329 

updated and nomenclature was revised.  330 

The first public consultation exercise evaluated pilot tools with the general public 331 

attending the official launch of the SURF Gaywood Valley Project at Green Quay, King’s Lynn 332 

(May 2011). A portable visualisation display was used to facilitate individual and small group 333 

discussion at this general open-day event. Constructive criticism was provided on the speed of 334 

the tour (again, too fast to allow all information to be absorbed) and terminology (again, too 335 

technical). Following further design modifications, the tools were officially released to the 336 

public.  337 

 338 

4. Final visualisation tools 339 

A visualisation tool under each theme is available for download as an independent KMZ archive 340 

less than 4 MB in size. All accompanying data are provided within the KMZ (e.g. photographs 341 
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and 3D models, see Fig. 2) and they can be saved, distributed and used offline (download files 342 

from: http://tinyurl.com/GE-Opener; http://tinyurl.com/GE-Geol; and http://tinyurl.com/GE-343 

Green - save to computer hard drive to run). By unzipping the archive, the KML scripting can 344 

also be interrogated by aspiring visualisers (see Wernecke, 2009). 345 

Google Earth will launch after the user double-clicks the KMZ archive called 346 

‘Introduction to Gaywood Valley’. The user then sees a screen overlay displaying a welcome 347 

message and basic operating instructions. After doubling-clicking on the ‘TOUR’ (network-) link 348 

the user encounters another screen overlay with a short description of the catchment. The user 349 

then follows instructions to start the tour and the camera angle rotates and zooms to frame the 350 

catchment (see discussion in Döllner, 2005). The tour continues without user interaction, 351 

automatically opening a series of text balloons and waiting to allow the user to read. This 352 

highlights areas of interest and gives a general overview of catchment features. The viewing 353 

angle then changes as the camera zooms to the Gaywood River source and the user is taken on a 354 

virtual fly-through down the catchment towards the river mouth. All these elements were 355 

designed to describe synergistically the pathway pertaining to water provision (Table 2). At 356 

specific sites (placemarks depicted by custom arrow icons), the tour pauses and a balloon opens 357 

providing further information (e.g. Fig.3). Photographs and text within the balloons are 358 

referenced so that the user can access the information source. The user can also navigate to 359 

further information by clicking on hyperlinks, which will open in a web browser. Some sites 360 

include 3D models (Fig. 3). A screen overlay allows the user to see where they are in the 361 

catchment (e.g. top-right of Fig. 3). The tour progresses downstream (changing camera angle and 362 

altitude) following input from the user (i.e. play button, bottom of Fig. 3). For instance, the tour 363 

pauses at selected sites of interest and so forth. Finally, a screen overlay informs the user that the 364 
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tour is over and provides acknowledgements. However, the user can override the tour at any time 365 

to explore the virtual environment independently. The tour will resume from its last position 366 

when the play button is pressed.  367 

<Fig. 3> 368 

Fig. 4 provides screen-shots of the viewing window from the ‘Geology and Past 369 

Climates’ tool. This tool operates in a similar way to the Introduction tool (described above). 370 

Due to the complexity of some of the concepts under this theme, however, the Phanerozoic and 371 

Quaternary eras were provided as separate tours within the tool. Screen overlays in both tours 372 

were used to provide an extensive visual commentary for the user. A key functionality of this 373 

tool was the interest and educational benefit provided by a geological cross-section (3D model) 374 

appearing from the ground (after De Paor & Whitmeyer, 2011; Walsh, 2009). Fig. 4 (part a 375 

through c) shows the movement of the cross-section, update of screen overlays (including 376 

vertical section) and rotation of camera angle. A 3D model and screen overlays describe the 377 

movement and action of glaciers across Norfolk. All these customised Google Earth elements 378 

work together to describe how Norfolk’s geodiversity underpins provisioning, cultural and 379 

regulating ecosystem services in the Gaywood catchment (Table 2).  380 

<Fig. 4>  381 

Independent exploration was the emphasis of the ‘Green Infrastructure’ tool and as such 382 

it did not include a touring component. An initial screen overlay encouraged the user to 383 

interrogate a suite of placemarks (describing recreational sites, Table 2) and multiple thematic 384 

layers were placed entirely under user control.  385 

 386 

5. Engagement activities 387 
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To enable enhancement of community awareness of ecosystem services it was imperative to 388 

provide equal access to data and information for all sectors of the community (Table 1). The 389 

tools were made available to the general public by way of a university-hosted website in October 390 

2011 (http://tinyurl.com/GE-UEA-blog) and a dedicated Gaywood Valley Project website. 391 

Public release was advertised by general exposure, e.g. website newsfeeds and social media, and 392 

targeted activities, e.g. a project newsletter to subscribers and oral presentations with live 393 

demonstrations of the tools at public open day and local planning practitioner events. Visits to 394 

the university-hosted website were monitored (anonymous counts of unique visitors only). By 395 

the end of June 2012, the website had received 447 unique views with particular peaks following 396 

advertisements (Fig. 5). There were also repeat visits from some IP addresses suggesting visitors 397 

returned to further investigate the tools.   398 

<Fig. 5> 399 

Activities were also conducted at two primary schools in the Gaywood Valley. 400 

Accompanied by teachers and classroom assistants, the researchers ran 1-1.5 h sessions with two 401 

classes of Key Stage 2 children (8-11 year olds). The visualisation tools were augmented with a 402 

custom quiz, and supplemented with two extra activities: a Global Positioning System exercise in 403 

the playground and a geology activity using rock samples and microscopes. Links between the 404 

Google Earth content and the supplementary activities were emphasised and the theme of the day 405 

was investigating the Gaywood Valley. Multiple presentation formats were chosen following 406 

research that different media styles can complement virtual globes by suiting different learning 407 

styles (Schroth et al., 2011).  Engaging problem-based activities sought to maximise learning 408 

potential (Johnson, Lang & Zophy, 2011; Schultz, Kerski & Patterson, 2008), thereby avoiding 409 

insufficient analysis in typical virtual globe-based lessons (Allen, 2007).  410 
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Children used the visualisation tools to derive answers for the Google Earth quiz. The 411 

quiz aimed to enforce benefit pathways, such as chalk providing an aquifer for drinking water 412 

and providing construction materials (Table 2). Despite no prior experience with the virtual 413 

globe visualisations, the children used the mouse competently to navigate the system and were 414 

able to interact effectively with the content i.e. pausing, rewinding or stopping the tour entirely to 415 

explore the virtual world to search for answers or clues. Neither children nor teachers required 416 

intervention or special instructions to use the tools or drive the software (Haklay & Tobon, 417 

2003). Perhaps in response to teachers’ pedagogic style (Bodzin, Anastasio & Kulo, 2014), or 418 

available resources, it was apparent that use of the instructional materials and tools varied 419 

between teachers. Researchers acted as observers or facilitators in different classrooms 420 

dependent on the role taken by the teacher, i.e. as leader or participant. In one classroom, the 421 

students used the visualisation tools in small groups (7 or 8 children) and answered the quiz 422 

collaboratively. In the second classroom, the students sat and worked quietly in pairs. Although 423 

the children’s answers to the quiz were not graded, they were used to facilitate one-on-one and 424 

small-group discussion about the benefit pathways.  425 

Teachers and children were asked to complete questionnaires at the end of the events. 426 

The feedback sheet for children consisted of simple ranking exercises (three-level Likert) and 427 

dichotomous questions on the usability of the tools and learning outcomes. There was also space 428 

to write a sentence summarising what they had learnt. Teachers and classroom assistants were 429 

prompted to give lengthier, qualitative replies via a different questionnaire. As there were only a 430 

limited number of child participants (n ≈ 60) and responses received by return (n = 21), formal 431 

quantitative analysis of questionnaires from schoolchildren is not especially meaningful.  432 
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Some qualitative findings, however, are provided. The children were asked to answer the 433 

question: “Thinking about all activities today, what did you learn?” by completing the sentence: 434 

“Today I learnt…”; eight children wrote about the physical appearance of rocks, their age (five 435 

correctly recalling 90 million years old for chalk) or composition (e.g. “Today I learnt… that one 436 

bit of [chalk] is made out of little [skeletons]”). Five (different) children wrote about the size, 437 

location or history of the Gaywood Valley (e.g. “Today I learnt… about what the town looked 438 

like a long time ago”; “Today I learnt… that our classroom used to be water”).  439 

Most children delivered feedback that they had leant “lots” or “quite a bit” about the 440 

Gaywood Valley. These learning outcomes were echoed in the comments provided by the 441 

teachers, e.g. “They [now] know where it [Gaywood Valley] is!” and “their [the children’s] 442 

interest has been started and they would like to share their knowledge and to learn more”. The 443 

teacher’s thought that the diversity of activities worked well, e.g. “each activity proved to be 444 

inspiring for different children” but observed that the mode of delivery relied too heavily on 445 

independent reading (difficult for this age group). Collectively, children gave feedback that 446 

although they had enjoyed the event, they would have liked more time to complete the Google 447 

Earth quiz.  448 

These initial findings from activities with Gaywood Valley schoolchildren suggest that 449 

Google Earth tools have considerable potential for enhancing children’s knowledge about the 450 

catchment and its history. These children were able to use the tools to answers direct questions 451 

about benefits pathways (e.g. “What can chalk be used for?”) and retained some knowledge 452 

about abiotic diversity in the catchment.  453 

 454 

6. Discussion and an agenda for future research 455 
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6.1 Capacity for promoting community awareness of landscape benefits using virtual globes 456 

A recent survey suggests that many children in England are losing connection with local natural 457 

environments, particularly those who live in urban areas (Dillon & Dickie, 2012). While there is 458 

no direct reflection of the influence of having children in the household on concern for the 459 

environment, children can be a strong motivator for adults to take outdoor recreational visits and 460 

appreciate the natural environment (Stewart & Costley, 2013). Locally-relevant problems have 461 

shown to be motivating contexts to provide students with reasons to learn more about an 462 

environmental issue (Bodzin et al., 2014). Thus, the Gaywood Valley Project may provide a 463 

personally relevant and meaningful setting for wider discussion of ecosystem services. Precedent 464 

for using virtual globes as teaching tools has been established in the disciplines of geography 465 

(Schultz et al., 2008; Tate, 2012), geomorphology (e.g. Allen, 2007) and geosciences (e.g. 466 

Johnson et al., 2011). This project demonstrates that these visualisation tools have the potential 467 

to be included in formal learning about ecosystem services. The design benefits of Google Earth 468 

activities for learning could be improved by designing curriculum materials to align directly with 469 

classroom contexts and providing instructional materials for teachers which permit customisation 470 

(see Bodzin et al. 2014). For example, learning activities could have greater relevancy if tailored 471 

to reading age.  472 

An ecosystem approach is a way to frame and unite interdisciplinary research under a 473 

common agenda. This research shows that virtual globes have characteristic functionalities that 474 

make them particularly suited for the communication of the spatio-temporal, multi-faceted 475 

principles of ecosystem services (Table 2). For example, the touring capability in Google Earth 476 

allows different spatial and temporal scales to be traversed to set appropriate detail or wider 477 

context. Narrated fly-through tours can be exploited to describe the pathways between 478 
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capabilities and benefits, and descriptions of stocks and flows of services (albeit the terminology 479 

may not be explicit). Additionally, KML is based on a hierarchy of nested elements which, when 480 

understood by the visualisation developer, can allow a single file to express spatial relationships 481 

through description and overlay or, conversely, reduce overlap to improve visual clarity; again, 482 

this functionality suits the multiple spatio-temporal concepts of ecosystem services. Other useful 483 

virtual globe traits include access to spatial contextual information (i.e. the backdrop of aerial 484 

imagery and ancillary geographic information), placemarks for interrogation and hyperlinks to 485 

other information. Three-dimensional models and animation provide an additional means of 486 

capturing interest. These traits can also be tailored to explain ecosystem characteristics. 487 

Initial meetings with the project team revealed that there was little knowledge of the 488 

study area. It was therefore fundamental to provide orientation and establish a location that was 489 

recognisable by the local population; these visualisations have provided that georeferencing for 490 

‘Gaywood Valley’. To build a collective understanding of the importance of ecosystem services 491 

in the catchment, visualisations may be best placed in a physical space to facilitate collective 492 

discussion (e.g. a meeting hall) (Sieber, 2006). Consultations and engagement activities provided 493 

descriptive feedback that the public, schoolchildren in particular, began to identify with 494 

Gaywood Valley catchment and its benefits to society. It is difficult, however, to separate the 495 

effect of the visualisations from the other activities of the SURF Gaywood Valley Project and 496 

outcomes will inevitably be long-term. 497 

 498 

6.2 Audience accessibility and usability 499 

In Great Britain, 22 million households (84%) now have Internet access and 38 million adults 500 

(76%) access the Internet every day (ONS, 2014). Personal computers are now ubiquitous in the 501 
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developed world and users are accustomed to fast download speeds and near-instant transmission 502 

or receipt of information. In-vehicle satellite navigation systems and digital maps with drapes of 503 

aerial photography are familiar media for geographical exploration (e.g. Google Maps and 504 

Microsoft Bing Maps). Spatio-temporal analysis is no longer restricted to specialists (Goodchild, 505 

2007; Unwin, 2005) and is performed routinely for journey planning (Andrienko et al., 2010). 506 

The general public has become familiar with the concept of ‘zoom’ and simple navigation to a 507 

place or street address, and this is also shown by this research. Further, in 2014 computer 508 

programming became part of the national curriculum in primary and secondary schools in 509 

England. By the time they reach the age of 11, schoolchildren will be taught how to design and 510 

write programs. All child participants in this study had a computer at home (although Internet 511 

speeds are still limited in some rural areas of Norfolk). Teachers interested in these technologies, 512 

could also direct the pedagogic focus inward, to teach about scripting and visualisation. 513 

Accessibility and interest are two key benefits of using virtual globes to provide 514 

landscape visualisations (e.g. Pettit et al., 2011; Sheppard & Cizek, 2009). An indication of 515 

public interest in these visualisations is demonstrated by visits to the website hosting the tools 516 

and participation in engagement events. This research could be extended to improve 517 

understanding of participation rates to see, for example, if uptake (downloads) varied with 518 

publicity or different visualisation media. This has been identified as a research priority for 519 

PPGIS (see Brown & Kytta, 2014). In a survey ranking different visualisation media for 520 

communicating the impact of climate change, Schroth et al. (2009) found that respondents who 521 

preferred posters had a non-interactive learning style and strongly rejected the virtual globe. 522 

Anti-technology prejudice and misconceptions has been a considerable barrier to overcome in 523 

using visualisations to engage the public about local issues (Ball, 2002), but such cynicism was 524 
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not observed among participants in this study. Augmentation of the visual tools with sound, to 525 

avoid overload of the visual sense (e.g. Ball, 2002), and (embedded) videos were considered in 526 

the implementation stage but there were concerns about minimising the file size. 527 

There is a general paucity of evaluations of visualisation effectiveness (e.g. Pettit et al., 528 

2011) perhaps due to logistic problems of evaluating long-term use of tools (e.g. Bishop et al., 529 

2013) and knowledge transfer (e.g. Cash et al., 2003). In this study, researchers made 530 

observations of behaviour in classroom and performed a simple usability evaluation, i.e. an 531 

objective assessment of the user’s ability to answer questions and perform tasks (Bishop et al., 532 

2013). Formal testing of the design, implementation and usability of the Google Earth tools 533 

could be performed, such as use of additional software to record interactions between users and 534 

the system (Bishop et al., 2013; Haklay & Tobon, 2003; Neilson, 1993) and before/ after tests of 535 

beliefs and attitudes towards ecosystem services.  Despite difficulties quantifying competence of 536 

the visualisations, this research provides case study experience of responding to tangible social 537 

needs with virtual globes. Visualisations were tailored to a particular local study area, and 538 

described local benefit pathways, but such tools have great potential for application to other 539 

landscapes and scales. 540 

 541 

6.3 Longevity, adaptability and transferability 542 

The Internet is changing not only from day to day, but from second to second (Crampton, 2010). 543 

Virtual globe software and their applications are changing so rapidly that some of the more 544 

technical or methodological details discussed in this paper undoubtedly will be outdated by the 545 

time it is published. There is also a wider evolution of the state of the art for GIS-based 546 

landscape visualisation. For example, the increasingly pervasive use of smart phones and tablet 547 
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computers signals a new era in digital communication and provides a new arena for landscape 548 

visualisation. Current research is investigating the use of augmented reality to communicate 549 

information about ecosystem services in the Gaywood Valley and other river catchments (Taigel, 550 

Lovett, & Appleton, 2014). However, customising a virtual globe is very cost effective compared 551 

to more sophisticated techniques of landscape visualisation (Lovett et al., 2009) and the 552 

techniques for best practice discussed here (e.g. Table 1; Fig. 2) can be readily adapted to other 553 

locations. Inequalities in Internet access, and lack of technology and knowledge, however, may 554 

prove prohibitive for use of this approach outside the developed world. For more information on 555 

the persistent digital divide, see Crampton (2010). 556 

Virtual globe customisations, such as the visualisation tools here, have a practical 557 

longevity due to automatic update of aerial imagery and ancillary geographical information. 558 

Furthermore, if required, the framework illustrated in Fig. 2 permits further modification or 559 

extension of individual KML elements. During this research, this compartmentalisation and 560 

adaptability was especially relevant during review phases and in facilitating the maintenance of 561 

full functionality across major software upgrades (in particular the transition from Google Earth 562 

version 5 to version 6). In general, however, changes in technology during the period of 563 

development tended to be backwards compatible and resulted in increased functionality (see also 564 

Wood et al., 2007). While customisation of KML elements involves writing bespoke code, some 565 

level of KML scripting is accessible to most non-experts (see Wernecke, 2009) and semi-566 

automated creation of KML code is possible through proprietary and non-proprietary software 567 

(e.g. Ballagh et al., 2011; Polczynski & Polczynski, 2013).  568 

Based on this experience, general recommendations for effective customisation of virtual 569 

globes are: (i) collaboration with a range of stakeholders from an early stage; (ii) adherence to 570 
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guidelines (Table 1) to ensure general validity appropriate to purpose; (iii) organisation of tour 571 

elements to permit easy modifications in response to feedback.  572 

 573 

7. Agendas, framing, empowerment and further research 574 

7.1 An agenda for promoting community awareness of ecosystem services   575 

The right of the public to participate in environmental decision-making and the inherently 576 

political nature of planning are now taken for granted (Cullingworth & Nadin, 2006). In Europe, 577 

for instance, the Aarhus Convention, EU INSPIRE and EU Water Framework Directive have 578 

given substantial impetus to moving from an ‘inform and consult’ form of public involvement, 579 

typically at the end of the decision-making process, towards higher levels of public interaction 580 

(e.g. Benson, Jordon, & Huitema, 2012; Hillman, 2009; Van den Brink et al., 2007). Several 581 

integrated catchment management programmes document local values and empower local 582 

knowledge and expertise (e.g. Morris & Morris, 2005; Raymond et al., 2009) and the use of 583 

spatial technologies in this process has been recognised (e.g. Goodchild, 2007; Macleod et al., 584 

2007). Despite investment in pilot catchment projects and increasing activity by river trusts (e.g. 585 

Catchment Change Management Hub, see Editor, in press a) progress towards such integration 586 

and engagement has been quite uneven across the UK. These issues have implications for the 587 

way ecosystem services are measured and integrated into planning and environmental 588 

management. 589 

Despite the growing body of literature on ecosystem services (Fisher et al., 2009), 590 

challenges remain to integrate the concept of ecosystem services and associated values in 591 

landscape planning, management and decision making (Daily et al., 2009; de Groot et al., 2010). 592 

To foster sustainable development improved effectiveness in the transfer of scientific 593 
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information is needed to bridge interfaces between science and policy, knowledge and action 594 

(Cash et al., 2003). Notwithstanding the challenges of embedding an ecosystem approach in 595 

policy making, the UK-NEA generated a substantial research impact at a national level, 596 

including a major and explicitly acknowledged influence upon the UK Government’s agenda for 597 

the natural environment. Policy objectives set in the 2011 Natural Environment White Paper 598 

support a move towards a landscape-scale approach to conservation and raising local awareness 599 

of, and the value placed on, the services provided by the natural environment. Government and 600 

its agencies, local authorities, wildlife charities, landowners, and communities have a crucial role 601 

to play in effecting these changes.  602 

Going forward, the best use of the ecosystem services framework and enabling conditions 603 

will be through a holistic and integrated approach to the natural environment. One example is the 604 

move to integrated catchment management which seeks to increase the dialogue between 605 

scientists, policy-makers and stakeholders in order to ameliorate pressures and help sustain 606 

multiple services for both society and nature (e.g. Falkenmark, Gottschalk, Lundqvist & 607 

Wouters, 2004; Macleod et al., 2007). While these are global-scale issues involving a range of 608 

actors, ecosystem services are inherently spatially sensitive and their maintenance often requires 609 

some engagement with communities at more local levels. Undoubtedly, geographical 610 

visualisation is a powerful and established medium for conveying information to the general 611 

public, but virtual globes also have potential to support more participatory involvement.   612 

The use of geospatial technologies to participate in civic processes such as mapping and 613 

decision making has been referred to as ‘public participation GIS’ or PPGIS. Modes of public 614 

participation GIS differ markedly, however, depending on who defines it and their agenda 615 

(Sieber, 2006). Applying a loose definition, evidence of public involvement in this project could 616 
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be classed as mere tokenism PPGIS (e.g. number of hits on a website) (Sieber, 2006), two-way 617 

conversations during tool implementation, and observations of tool usability by children. 618 

Broadly, however, the goal was consistent with that of PPGIS, namely to include and empower 619 

marginalised populations (see Brown et al., 2012), such as those living in the urban fringe, by 620 

involving them in early discussions about their landscape and ecosystem services. The goals of 621 

different actors in this collaborative effort may have been competing, contradictory or less than 622 

altruistic (Sieber, 2006) and their (our) framing of issues ultimately effected which actors were 623 

empowered (Dunn, 2007; White et al., 2010).  Specific groups, such as those with potential to 624 

influence land use planning and action, could have been targeted as ‘communities of interest’ 625 

(Fish, 2011). 626 

Another way of involving the public is to engage them with visualisations during 627 

ecosystem service assessment. As positioned by Goodchild, “citizens possess one important 628 

advantage over experts: knowledge of, and access to, local ground truth” (2009, p.8). Surveys of 629 

public preference and attitudes have been used for mapping social and cultural values for 630 

landscapes and ecosystem services (e.g. Alessa et al., 2008; Plieninger, Dijks, Oteros-Rozas & 631 

Bieling, 2013; Raymond et al. 2009; Sherrouse et al., 2011). Such research, however, faces 632 

challenges from public unfamiliarity with the ecosystem services framework; terminology is 633 

typically translated into a less technical, easier to understand format and then reframed for 634 

analysis (Plieninger et al., 2013; Raymond et al., 2009).  635 

 636 

7.2 Visualising the future 637 

There is scope for using virtual globes for wider topic exploration in the field of ecosystem 638 

research. Changes to landscapes are inevitable due to policy, market and natural environment 639 
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drivers. Land use change has far-reaching consequences for biodiversity, the delivery of 640 

ecosystem services and, accordingly, human well-being. The use of scenario based studies to 641 

assess future land use and consequences for ecosystem services is correspondingly growing (e.g. 642 

Haines-Young, Paterson & Potschin, 2011; UK NEA, 2011). Economic valuation is one way to 643 

standardise how these impacts are captured and has become essential for decision-makers faced 644 

with weighing up the consequences of different policy options or future scenarios (e.g. Bateman 645 

et al., 2013). Three- and four-dimensional visualisations, and in particular virtual reality 646 

simulations, move away from the abstracted environment of typical economic experiments and 647 

have shown to provide options to participants that are easier to evaluate (e.g. Bateman, Day, 648 

Jones & Jude 2009; Fiore, Harrison, Huges & Rustrom, 2009). Dynamic visualisation methods, 649 

in particular, may hold advantages for representing changing ecosystem services over time (de 650 

Groot et al., 2010). To be truly useful, however, visualised scenarios should be developed in real-651 

time while participants are exploring options (Barndt, 2002). Integrating visualisations with 652 

underlying models has been identified as one of the next steps for landscape and urban planning 653 

research (Schroth et al. 2009; Lange, 2011). 654 

Combining the representation of space, environmental processes and time has the 655 

potential to provide new insights to aid the understanding of changes in the location-specific 656 

environmental functions of ecosystem services (Aspinall, 2009). It is becoming increasingly 657 

possible to link sources of spatial data (e.g. environmental models), technology for handling such 658 

data (e.g. a GIS) and visualisation media (e.g. virtual globes). At a basic level, further research 659 

could focus on improved coupling of scientific model output and visualisations e.g. to allow 660 

visual analytics (see Andrienko et al., 2010) or verification of model outcomes (Schroth et al., 661 

2009). The degree of integration will likely vary by project (Brimicombe, 2010), for example, 662 
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from simple file exchange to fully-integrated spatially distributed environmental models (see 663 

Fedra, 1996). While possessing some basic functionality for spatial analysis, such as distance 664 

measurement, a virtual globe is not a GIS. Text within a template KML for Google Earth, 665 

however, could be updated with real-time outputs from a GIS or environmental model. Scripting 666 

could be autonomously updated with a readable coding language, such as Python. Coupling 667 

environmental models with GIS and other spatial data technologies may also have benefits for 668 

the translation of science to practice and policy (Aspinall, 2009). 669 

 670 

8. Conclusions 671 

The importance of an ecosystem approach is becoming more widely recognised in landscape and 672 

urban planning. There is considerable interest from new or existing landscape scale partnerships 673 

for guidance on how the approach can be integrated into existing activities and future work 674 

(Porter et al., 2014).  675 

An ecosystem approach challenges society to be interested and accountable for the 676 

environment we live in. Society has a responsibility to respect inextricable ties between human 677 

well-being and ecosystem health. An individual has a responsibility to recognise their local 678 

landscape and their role within it. A landscape visualisation has a capability to raise awareness of 679 

the present and future ecosystem values and in doing so the aspiring visualiser has a 680 

responsibility to provide appropriate and effective communication tools.  681 

Effectiveness of virtual globes for promoting awareness of ecosystem services is 682 

inevitably linked to an adequate understanding of end users. A framework for tool development 683 

has been outlined in this paper, centred on collaboration with a range of actors. Visualisation 684 

tools were designed with a view to fitness for purpose, while observing criteria for ensuring 685 
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general validity, and content was structured so that it was easy to modify and update. Once 686 

created, such existing templates can be readily adapted as a cost-effective solution to increasing 687 

awareness of relevant issues in other locations.  688 

Customising a virtual globe such as Google Earth in the manner described establishes a 689 

baseline from which a more aware (and active) role of the public can be fostered. Virtual globe 690 

visualisations can equip society to rise to a call for greater public involvement in realising the 691 

value of nature’s assets and societal reliance on these, and ultimately recognising the necessity 692 

for a sustainable form of development. 693 

 694 

 695 

  696 
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Table 1.  Designing landscape visualisation tools using guidelines for good practice (criteria 

from Sheppard & Cizek, 2009) 

 

 

Criteria (and description) Functions implemented in the visualisation tools  

  

Access to visual information 

(provide easy access in a range of 

forms) 

  

- Provide freely downloadable tools 

- Plan engagement activities and a range of publicity 

Interest (engage the audience) - Use dynamic display such as virtual tours 

- Use three-dimensional models 

- Allow user interrogation and interactivity 

 

Accuracy  and representativeness 

(simulate actual or expected 

appearance of the landscape at 

appropriate level of detail) 

- Traverse different views and scales 

- Establish sites typifying the landscape (through consultation with 

local experts) 

- Combine realistic landscape elements with more abstract 

components for a synergistic mix of detail and context 

- Relate to ground photographs 

 

Visual clarity (communicate content 

clearly) 

 

- Partition information into three themes to reduce overlap and 

clutter 

- Use changes in hue to represent categorical differences in data  

- Avoid colours similar to aerial imagery  

- Use transparency if appropriate  

- Permit overlap of data and information where this may be useful 

for the user 

 

Legitimacy (provide defensible 

information) 

 

- Avoid controversial or emotive information, or subjective 

interpretation 

- Provide data sources and metadata where appropriate 

 

Framing and presentation (include 

neutral contextual information) 
- Provide foreground information 

- Avoid technical terminology or explain in simple language 
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Table 2.  Google Earth elements used to explain the pathway of benefits from ecosystems to 

people. (Visualisation tool theme: IGV = Introduction to Gaywood Valley; GPC = Geology and 

Past Climates; GI = Green Infrastructure).   

 

Final ecosystem 

services (and 

derived goods) 

Locally-relevant pathways to 

individuals and communities 

Google Earth elements used  

   

PROVISIONING   

Water supply (drinking 

water) 

Norfolk’s chalk aquifer provides 

groundwater storage and River 

Gaywood arises from freshwater 

springs at Grimston. 

- Multi-geometry placemarks (line and 

polygon) delineate the river and the 

draining area of the catchment (IGV). 

- A placemark balloon provides an 

explicit description of pathway (IGV).  

- A tour links placemarks as a low-level 

flight from river source to mouth (IGV). 

 

Crops and livestock 

(food) 

Well-drained and fertile soils 

support Norfolk agriculture 

(dominantly arable crops).  

- A screen overlay provides an explicit 

description of pathway (GPC). 

- A ground overlay shows the distribution 

of fertile quaternary deposits (GPC). 

- A tour (with placemark balloons and 

screen overlays) highlights the 

formation and role of alluvium in the 

catchment (GPC). 

 

Abiotic diversity 

(construction materials, 

fossils) 

Local Norfolk sands, iron-rich 

sandstone (carstone) and white 

chalk are used as building materials. 

St Mary Magdalen’s Church, 

Sandringham, is mostly made from 

local carstone.   

- Placemarks locate quarries, describe 

extraction of bedrock and provide 

photographs (IGV; GPC). 

- A placemark with photograph of 

building made from local stone (GPC). 

- A tour links a ground overlay of 

outcrops, a screen overlay of a vertical 

section and an animated 3D cross-

section and placemarks (GPC).  

   

CULTURAL   

Wild species diversity 

and environmental 

settings (aesthetic value 

and recreation) 

Glaciations shaped the chalk into 

the rolling landscape typical of 

Norfolk. Heathland, woodland and 

wetland now combine to provide 

important habitats. At several sites 

(e.g. Roydon Common), these 

habitats are protected, but remain 

accessible. 

- Animated 3D models and screen 

overlays describe the role of glaciers 

(GPC).  

- Placemarks locate access points for 

designated areas, describe the habitat 

and provide photographs (IGV). 

- Placemarks locate the start of health 

walks and river access points (GI). 

   

REGULATING   

Hazard regulation (flood 

control) 

Surface water infiltrates through 

grassland and well-drained soils. 

River flow (discharge) can be 

managed through meander 

restoration and controlled flooding. 

- A placemark describes channel changes 

using historical aerial imagery (IGV). 

- Sea-level changes are depicted by 

ground overlays of elevation and 

accompanying screen overlays (GPC). 
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Commons Licence). 

 

Fig. 4  

The Geology and Past Climates Tool links outcrops, stratigraphy and a 3D cross-section through 

a series of screen overlays which serve as a narrative during a tour (sequence a through c). 

Ground overlay of geological outcrops and screen overlay for a stratigraphic section based upon 

DiGMapGB-625 data and 1:50 000 Provisional Series data, with the permission of the British 

Geological Survey.  

 

Fig. 5  

Summary of engagement activities: left-hand panel shows publicity activities for the tools; right-

hand panel shows corresponding monthly visitors to the website (*from website launch on Oct 

24 to Oct 31). 
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Fig. 3 
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Fig. 4 
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