
Formal and Empirical Studies of

Counting Behaviour in ReLU RNNs

Nadine El-Naggar1, Andrew Ryzhikov2, Laure Daviaud3, Pranava Madhyastha1, and
Tillman Weyde1

1City, University of London, UK
2University of East Anglia, UK

3University of Oxford, UK

Abstract

In recent years, the discussion about systematicity of neural network learning has gained re-
newed interest, in particular the formal analysis of neural network behaviour. In this paper, we
investigate the capability of single-cell ReLU RNN models to demonstrate precise counting be-
haviour. Formally, we start by characterising the semi-Dyck-1 language and semi-Dyck-1 counter
machine that can be implemented by a single Rectified Linear Unit (ReLU) cell. We define three
Counter Indicator Conditions (CICs) on the weights of a ReLU cell and show that fulfilling these
conditions is equivalent to accepting the semi-Dyck-1 language, i.e. to perform exact counting.
Empirically, we study the ability of single-cell ReLU RNNs to learn to count by training and
testing them on different datasets of Dyck-1 and semi-Dyck-1 strings. While networks that satisfy
the CICs count exactly and thus correctly even on very long strings, the trained networks exhibit
a wide range of results and never satisfy the CICs exactly. We investigate the effect of deviating
from the CICs and find that configurations that fulfil the CICs are not at a minimum of the loss
function in the most common setups. This is consistent with observations in previous research
indicating that training ReLU networks for counting tasks often leads to poor results. We finally
discuss implications of these results and possible avenues for improving network behaviour.

1 Introduction

Recurrent Neural Networks (RNNs) have been demonstrated to be Turing complete, and thus are
theoretically capable of performing any computable task [Siegelmann and Sontag, 1992]. However,
there is a long-standing debate on the ability of neural networks to learn and generalise systematically
since Fodor and Pylyshyn [1988]. Counting is one systematic process that is fundamental to many
computational systems that process sequential data. It enables the system to keep track of occurrences,
identify patterns, and make predictions based on past observations. Counting is relevant for natural
language processing tasks such as language modelling, speech recognition, and machine translation.
Furthermore, it is a fundamental cognitive ability that also plays an important role in human language
understanding and comprehension [Le Corre et al., 2006, Gelman and Gallistel, 2004] and mathematical
reasoning.

For learning systems, the question is what constitutes counting, how it can be defined, and how
we can determine if the learning of counting behaviour has been successful. This is often approached
through formal languages, especially Dyck-1, and by framing counting as a classification or prediction
task. While some formal aspects of RNNs have been studied, there are few specific results on counting
available to our knowledge. Empirical studies on the ability of RNNs to count have addressed mainly
LSTMs, while ReLU RNNs are under-explored. This may be due to ReLU RNNs being notoriously
difficult to train. RNNs in general are relatively inefficient at training time, while the training of
Transformer models [Vaswani et al., 2017] is easy to parallelise and scale, which has been exploited in
large language models, such as LaMDA [Thoppilan et al., 2022] or ChatGPT/GPT-4 [OpenAI, 2023].
However, there has been significant recent progress in designing efficiently trainable RNNs that can
offer efficient training and generation [Gu et al., 2022, Peng et al., 2023, Orvieto et al., 2023].

1

In this paper, we investigate the counting behaviour of ReLU RNNs by reduction to a single cell. We
characterise the counting capability of a single ReLU RNN cell as a formal language, the semi-Dyck-1
language, with a grammar and an abstract counter machine. We identify three Counter Indicator
Conditions (CICs) on the weights of a ReLU RNN, and prove that for correct counting behaviour of
a single-cell ReLU RNN it is necessary and sufficient that the network fulfils these three CICs. We
empirically validate that ReLU RNNs that fulfil the CICs indeed show the desired counting behaviour
even for very long strings. However, our experiments also show that learning the CICs is challenging
and we identify a misalignment between the two commonly used loss functions and the CICs as a
potential cause.

Our main contributions in this paper are:

� A characterisation of the counting capabilities of ReLU RNNs with a grammar for the semi-
Dyck-1 language and an abstract counter machine that accepts this language.

� The definition of three Counter Indicator Conditions on a single-cell ReLU RNN with a proof
that fulfilling them is equivalent to the network accepting the semi-Dyck-1 language.

� An empirical evaluation of the behaviour of ReLU RNNs, showing that they do not learn to
fulfil the Counter Indicator Conditions in a common training setup and identifying causes for
this result.

2 Related Work

RNNs are a powerful computational model, capable of computing any function if appropriately config-
ured, and Turing complete with both sigmoid and ReLU activation functions [Siegelmann and Sontag,
1992, Chen et al., 2018]. However, systematicity in NN learning has been debated for over 30 years
[see Fodor and Pylyshyn, 1988, Marcus et al., 1999, Lake and Baroni, 2018, inter alia]. In this debate,
mostly an intuitive notion of systematicity has been used. Often examples of datasets or benchmarks
have been used to capture the desired capabilities, such as the SCAN task [Lake and Baroni, 2018]
and more recently the extensive BIG-Bench for large language models [Srivastava et al., 2022].

A different approach to defining systematic behaviour is the use of formal languages. The Chomsky
hierarchy [Chomsky, 1957] has regular languages on its first level that are accepted by finite state
automata (FSA) [Sipser, 1996, de la Higuera, 2010]. The next level, context-free languages, that are
defined by a context-free grammar, can be accepted by a stack machine. While FSA are insufficient for
infinite counting because of their finite state space, stack machines are more than is needed for simple
counting functionality. Dyck languages [Rozenberg and Salomaa, 1997, Hopcroft and Ullman, 1969,
Chomsky, 1956, Duchon, 2000] are context-free languages which consist of strings of well balanced
brackets where an opening bracket is pushed onto the stack and a closing bracket pops the stack. In
the case of some simple context-free languages such as Dyck-1 and 𝑎𝑛𝑏𝑛, a stack can be reduced to
a single counter, i.e. we store the number of items on the stack rather than the items themselves.
These automata can be cast as Minsky machines [Minsky, 1967], which are monosymbolic pushdown
automata. More general abstract counter machines have been defined by Fischer et al. [1968] and later
adaptations followed by Merrill [2020].

Gers and Schmidhuber [2001] already train LSTMs to predict the next token in the context-free
language 𝑎𝑛𝑏𝑛 and the context-sensitive language 𝑎𝑛𝑏𝑛𝑐𝑛. There is recently a renewed interest in the
abilities of RNNs to count and accept different formal languages. Weiss et al. [2018] show that RNNs
with squashing activation functions, such as Elman RNNs and GRUs, do not have the capacity to
count indefinitely with finite precision activation values, while other RNN models, such as LSTMs and
ReLU RNNs, do. In terms of theoretical studies, Chen et al. [2018] provide extensive theoretical work
on ReLU RNNs, but do not address counting, while Merrill [2019] does address counting, but not for
ReLU RNNs.

Empirically, Karpathy et al. [2015], Bernardy [2018], and Skachkova et al. [2018] evaluate the
prediction of brackets in natural and artificial strings with LSTMs. RNNs that incorporate some form
of stack have been designed and evaluated by Mali et al. [2021], Joulin and Mikolov [2015], Grefenstette
et al. [2015], Suzgun et al. [2019b], Hao et al. [2018], Mali et al. [2019], and Das et al. [1992]. However,
for ReLU RNNs there are few results available. Beyond predicting brackets, the generalisation to
longer strings has been studied to a limited extent by Suzgun et al. [2019a], and Weiss et al. [2018]

2

already found that no models exhibit perfect long-term generalisation. El-Naggar et al. [2022] explore
the extent to which RNNs generalise Dyck-1 acceptance to very long strings and observe that ReLU
models show high variability of learning effect. Lan et al. [2022] replace backpropagation with a genetic
algorithm and a minimum description length target, which improves long-term generalisation. They
provide proofs that two resulting ReLUs accept specific languages (𝑎𝑛𝑏𝑛, 𝑎𝑛𝑏2𝑛) for arbitrary length
strings.

The general question under which conditions ReLUs can count exactly and whether they can learn
to count using backpropagation has not yet been addressed to our knowledge. The published reports
of poor learning outcomes of ReLU RNNs with backpropagation on counting tasks suggest there is a
specific problem that deserves studying.

3 Formalising Counting Behaviour in ReLU RNNs

In this section, we ask under which conditions a single-cell ReLU Recurrent Neural Network (ReLU
RNN) can count, or more formally under which conditions a single-cell ReLU RNN accepts the semi-
Dyck-1 language. The semi-Dyck-1 language is a variant of the Dyck-1 language (which is the language
of well-formed bracket strings), adapted to the limitations of a single-cell ReLU RNN. In Theorem 8,
we give a set of conditions that are necessary and sufficient for this to happen. The definitions used
in the following are inspired by the notions of the General Counter Machine and Real-Time Language
Acceptance presented in Merrill [2020].

3.1 Counter Machines and semi-Dyck-1 Language

We first define a particular variant of a counter machine and demonstrate its links with the semi-Dyck-
1 language. This specific counter machine aligns with the computational constraints of a ReLU cell,
which is incapable of producing negative activation values.

Definition 1 (Stateless Incremental Non-Negative 1-Counter Machine (SINC)). A Stateless Incre-
mental Non-Negative 1-Counter Machine (SINC) is a tuple (Σ, 𝑢) where Σ is a finite alphabet and 𝑢

is a counter update function:
𝑢 : Σ → {−1, +1}

where +1 (resp. −1) denote the function 𝑓 (𝑥) := 𝑥 +1 (resp. 𝑓 (𝑥) := 𝑥−1 if 𝑥 > 0 and 𝑓 (0) = 0) defined
on 𝑥 ∈ N.

Definition 2 (Computations of SINC). A configuration of a SINC is a non-negative integer value
(the value in the counter). A computation on input 𝑥 = 𝑥1 · · · 𝑥𝑛 where 𝑥𝑖 ∈ Σ for all 1 ≤ 𝑖 ≤ 𝑛 is a
sequence of configurations:

𝑐0 → 𝑐1 → · · · → 𝑐𝑛

such that 𝑐0 = 0 is the initial configuration, and for all 1 ≤ 𝑖 ≤ 𝑛, 𝑐𝑖 = 𝑢(𝑥𝑖) (𝑐𝑖−1). The value 𝑐𝑛 is
called the output on 𝑥 of the SINC.

An alphabet Σ is a finite set of symbols, called tokens and a string on Σ is a sequence of tokens. In this
paper we only consider finite strings, so finite sequences of tokens. The language accepted by a SINC
is defined as the set of input strings that have output 0. In the following, we use the bracket characters
⟨ and ⟩ to denote the characters in our alphabet, while other brackets have their usual meaning.

Note that a SINC is a particular instance of one-state pushdown automata with a one-token stack-
alphabet, or can be seen as a one-state one-counter Minsky machine with an input alphabet.

Definition 3 (semi-Dyck-1 counter). A SINC (Σ, 𝑢) is said to be a semi-Dyck-1 counter if Σ = {⟨, ⟩},
𝑢(⟨) = +1 and 𝑢(⟩) = −1.

The Dyck-1 language is the language of well-formed strings of brackets, e.g ⟨⟨⟨⟩⟩⟨⟩⟩. It is defined
on the alphabet Σ = {⟨, ⟩} and generated by the context-free grammar 𝑠 → 𝜀 |⟨𝑠⟩𝑠, where 𝜀 denotes the
empty string.

Definition 4 (semi-Dyck-1 language). We define the semi-Dyck-1 language as generated by the
context-free grammar 𝑠 → 𝜀 |⟨𝑠⟩𝑠 |𝑠⟩𝑠.

3

This is the language of strings constructed from strings of the Dyck-1 language in which closing
brackets can be inserted at any point.

Proposition 5. A semi-Dyck-1 counter accepts the semi-Dyck-1 language.

Proof. Consider a semi-Dyck-1 counter (Σ, 𝑢) with Σ = {⟨, ⟩}. Let us first prove that any string in
the semi-Dyck-1 language is accepted. Let 𝑥 be a string in the semi-Dyck-1 language. By definition,
𝑢(⟨) = +1 and 𝑢(⟩) = −1, which means that the counter is incremented by 1 everytime an opening
bracket is read and decreased by 1 when a closing bracket is read, unless the counter value is 0, in
which case, it remains 0. It is easy to see that the output on 𝑥 is 0. This can be formally proved by
induction on the grammar generating the semi-Dyck-1 language. Indeed,

� The output on 𝜀 is 0;

� Suppose now that 𝑠 and 𝑠′ are strings in the semi-Dyck-1 language with output 0 and 𝑥 = ⟨𝑠⟩𝑠′.
Then, on input 𝑥, first the counter is incremented by 1 after the first opening bracket. Then after
reading 𝑠 its value is either 1 (if 𝑠 is in Dyck-1) or 0 (if 𝑠 has at least one more closing bracket
than opening ones) by induction hypothesis on 𝑠. In any case, after reading the closing bracket
the counter has value 0, and after reading 𝑠′, has again value 0, by induction hypothesis on 𝑠′,
so the output on 𝑥 is 0;

� Suppose now that 𝑠 and 𝑠′ are strings in the semi-Dyck-1 language with output 0 and 𝑥 = 𝑠⟩𝑠′.
Then the counter is at 0 after reading 𝑠 by induction hypothesis, remains at 0 after reading the
closing bracket and is hence also at 0 after reading 𝑠′ by induction hypothesis. So the output on
𝑥 is 0.

On the other hand, we shall demonstrate that any accepted string belongs to the semi-Dyck-1
language. Consider an input string, 𝑥, which is accepted by the semi-Dyck-1 counter. We prove by
induction that the output of 𝑥 represents the quantity of opening brackets that remain unmatched by
a closing bracket later on in the string.

� This is clearly true for 𝜀.

� Suppose 𝑥 = 𝑥′⟨ with the output on 𝑥′ being the number of opening brackets that are not matched
later on in 𝑥′ by a closing bracket. Then, by definition of the semi-Dyck-1 counter, the output
on 𝑥 is the output on 𝑥′ incremented by 1, and hence the induction hypothesis is satisfied for 𝑥.

� Suppose 𝑥 = 𝑥′⟩ with the output on 𝑥′ being the number of opening brackets that are not matched
later on in 𝑥′ by a closing bracket. If this value is 0, then the same goes for 𝑥 and the induction is
satisfied. If this value is positive, then it is decremented by 1 for 𝑥, which also closes an opening
bracket in 𝑥′ so the induction is also satisfied.

This is adequate to conclude the proof, as the output of 𝑥 equals zero, signifying that every opening
bracket in 𝑥 is subsequently matched by a closing bracket. Consequently, 𝑥 is a member of the semi-
Dyck-1 language. □

3.2 ReLU Recurrent Neural Networks (ReLU RNNs) as Counters

We define here formally a ReLU Recurrent Neural Network (ReLU RNN) and state the conditions
that we will prove to be necessary and sufficient for it to behave as a semi-Dyck-1 counter.

Definition 6 (ReLU Recurrent Neural Network (ReLU RNN)). A single-cell ReLU RNN is a tuple
(Σ, 𝑛, 𝑢,𝑊,𝑈,𝑊𝑏) where Σ is a finite alphabet, 𝑛 is a positive integer, 𝑢 is a mapping from Σ to R𝑛, 𝑊
is a vector in R𝑛 and 𝑈 and 𝑊𝑏 are real numbers. 𝑊, 𝑈, and 𝑊𝑏 are called the weights of the ReLU
RNN. A ReLU RNN takes as input a string 𝑥 = 𝑥1 · · · 𝑥𝑛 on Σ, considering a token per timestep. An
output activation function is computed at each timestep and defined as follows: ℎ0 = 0 and for all
𝑡 = 1, . . . , 𝑛,

ℎ𝑡 = 𝑚𝑎𝑥(0,𝑊𝑢(𝑥𝑡) +𝑈ℎ𝑡−1 +𝑊𝑏)

The product 𝑊𝑢(𝑥𝑡) is to be understood as the scalar product of two vectors in R𝑛. The output of the
ReLU RNN on input 𝑥 is ℎ𝑛.

4

The language accepted by a ReLU RNN is defined as the set of input strings having output 0. We
now fix Σ = {⟨, ⟩}, and given a ReLU RNN R = (Σ, 𝑛, 𝑢,𝑊,𝑈,𝑊𝑏), we define the following reals:

𝑎R = 𝑊𝑢(⟨) +𝑊𝑏 and 𝑏R = 𝑊𝑢(⟩) +𝑊𝑏

Note that with this definition, the update function becomes ℎ𝑡 = 𝑚𝑎𝑥(0, 𝑎R + 𝑈ℎ𝑡−1) if 𝑥𝑡 = ⟨ and
ℎ𝑡 = 𝑚𝑎𝑥(0, 𝑏R +𝑈ℎ𝑡−1) if 𝑥𝑡 =⟩.

Definition 7 (Counting ReLU Recurrent Neural Network). A single-cell ReLU RNN R = (Σ, 𝑛, 𝑢,𝑊,𝑈,𝑊𝑏)
is said to be Counting if it satisfies the three following conditions:

1. 𝑎R = −𝑏R

2. 𝑎R > 0

3. 𝑈 = 1

We call these conditions Counter Indicator Conditions (CICs). We now state our main result
below.

Theorem 8. For all single-cell ReLU RNNs R, the three following assertions are equivalent:

� R is Counting,

� R accepts the semi-Dyck-1 language,

� R accepts the same language as a semi-Dyck-1 counter.

First, we give two lemmas that will be used in the proof of Theorem 8.

Lemma 9. For all ReLU RNNs R on Σ = {⟨, ⟩} accepting the semi-Dyck-1 language, for all positive
integers 𝑛 and non-negative integers 𝑚, the output of R on input ⟨𝑛⟩𝑚 is:

𝑎R (1 +𝑈 + · · · +𝑈𝑛−1) if 𝑚 = 0

𝑎R𝑈
𝑚 (1 +𝑈 + · · · +𝑈𝑛−1) + 𝑏R (1 +𝑈 + · · · +𝑈𝑚−1) if 𝑛 > 𝑚 ≥ 1

max(0, (𝑎R𝑈
𝑛 + 𝑏R) (1 +𝑈 + · · · +𝑈𝑛−1)) if 𝑛 = 𝑚

Proof. The first item is proved by induction on 𝑛. For 𝑛 = 1, the output on ⟨ is max(0, 𝑎R) which is 𝑎R
since ⟨ is not in the semi-Dyck-1 language. Suppose now that this is true for some positive integer 𝑛.
By definition of R and induction hypothesis, the output on ⟨𝑛+1 is max(0, 𝑎R+𝑈 (𝑎R (1+𝑈+· · ·+𝑈𝑛−1))),
which is max(0, 𝑎R (1 + 𝑈 + · · · + 𝑈𝑛)). Since ⟨𝑛+1 is not in the semi-Dyck-1 language, this has to be
positive so the output is 𝑎R (1 +𝑈 + · · · +𝑈𝑛).

The second item is proved by induction on 𝑚, considering the induction hypothesis is true for
all 𝑛 > 𝑚. For 𝑚 = 1, for any 𝑛 > 1, the output on ⟨𝑛⟩ is deduced from the previous item and is
max(0, 𝑏R +𝑈𝑎R (1+𝑈+· · ·+𝑈𝑛−1)). This has to be positive so the output is 𝑎R𝑈 (1+𝑈+· · ·+𝑈𝑛−1)+𝑏R .
Suppose now that this is true for some positive integer 𝑚, and let 𝑛 > 𝑚 + 1. Then, by induction
hypothesis, on input ⟨𝑛⟩𝑚+1, the output is max(0, 𝑏R+𝑈 (𝑎R𝑈𝑚 (1+𝑈+· · ·+𝑈𝑛−1)+𝑏R (1+𝑈+· · ·+𝑈𝑚−1))),
which is 𝑎R𝑈𝑚+1 (1 +𝑈 + · · · +𝑈𝑛−1) + 𝑏R (1 +𝑈 + · · · +𝑈𝑚) since this has to be positive.

The third item is directly derived from the second and first ones used on input ⟨𝑛⟩𝑛−1’. If 𝑛 = 1,
the output on ⟨⟩ is max(0, 𝑎R𝑈 + 𝑏R). Otherwise, for all positive integers 𝑛 > 1, the output on ⟨𝑛⟩𝑛’ is
max(0, 𝑏R +𝑈 (𝑎R𝑈𝑛−1 (1 +𝑈 + · · · +𝑈𝑛−1) + 𝑏R (1 +𝑈 + · · · +𝑈𝑛−2)), which is max(0, (𝑎R𝑈𝑛 + 𝑏R) (1 +
𝑈 + · · · +𝑈𝑛−1)). □

Lemma 10. For all strings 𝑥 on alphabet Σ = {⟨, ⟩}, the output value of a semi-Dyck-1 counter on 𝑥

is 𝑛 for some integer 𝑛 if and only if the output in a Counting ReLU RNN R on 𝑥 is 𝑎R𝑛.

Proof. This follows from the definition of a Counting ReLU RNN. The activation function is now
ℎ𝑡 = 𝑚𝑎𝑥(0, 𝑎R + ℎ𝑡−1) if 𝑥𝑡 = ⟨ and ℎ𝑡 = 𝑚𝑎𝑥(0,−𝑎R + ℎ𝑡−1) if 𝑥𝑡 =⟩ for some 𝑎R > 0. In other words,
the activation function is incremented by 𝑎R everytime an opening bracket is read and decreased by 𝑎R
when a closing bracket is read, unless the value is 0, in which case, it remains 0. This describes exactly
the computation of the counter in a semi-Dyck-1 counter, except that the increment and decrement
are by 1 instead of 𝑎R . □

5

Proof of Theorem 8. The two last items are equivalent by Proposition 5.
We prove first that if R accepts the semi-Dyck-1 language, then it is Counting, i.e. it satisfies the

three conditions from Definition 7. On input 𝑥 = ⟨, the output is max(0, 𝑎R). Since 𝑥 is not in the
semi-Dyck-1 language, this output has to be positive, hence 𝑎R > 0. On input 𝑥 =⟩, the output is
max(0, 𝑏R). Since 𝑥 is in the semi-Dyck-1 language, this output has to be 0, hence 𝑏R ≤ 0. We prove
now that 𝑈 = 1, using Lemma 9.

� On input ⟨⟨, the output is 𝑎R (1 +𝑈). This has to be positive, hence 𝑈 > −1, since 𝑎R > 0.

� For all positive integers 𝑛, on input ⟨𝑛⟩𝑛, the output is max(0, (𝑎R𝑈𝑛 + 𝑏R) (1 +𝑈 + · · · +𝑈𝑛−1))
and has to be non-positive. Since 𝑈 > −1, then (1 +𝑈 + · · · +𝑈𝑛−1) ≥ 0, hence (𝑎R𝑈𝑛 + 𝑏R) ≤ 0
for all 𝑛. Since 𝑎R > 0, 𝑏R ≤ 0 and lim𝑛→∞𝑈𝑛 = ∞ if 𝑈 > 1, then necessarily 𝑈 ≤ 1.

� For all integers 𝑛 ≥ 2, on input ⟨𝑛⟩𝑛−1’, the output is 𝛼𝑛 = 𝑎R𝑈𝑛−1 (1 +𝑈 + · · · +𝑈𝑛−1) + 𝑏R (1 +
𝑈 + · · · + 𝑈𝑛−2) and has to be positive. If −1 < 𝑈 < 1, then lim𝑛→∞ (1 + 𝑈 + · · · + 𝑈𝑛−1) =

lim𝑛→∞ (1+𝑈 + · · · +𝑈𝑛−2) = (1−𝑈)−1 and lim𝑛→∞𝑈𝑛−1 = 0, hence lim𝑛→∞ 𝛼𝑛 = 𝑏R (1−𝑈)−1 ≤ 0.
This contradicts the fact that 𝛼𝑛 is strictly positive for all 𝑛. Then we obtain that 𝑈 = 1.

Finally, with 𝑈 = 1, using input 𝑥 = ⟨⟩, the output is max(0, 𝑎R + 𝑏R) and is 0, so 𝑎R + 𝑏R ≤ 0. For all
positive integers 𝑛, on input ⟨𝑛⟩𝑛−1, the output is 𝑛𝑎R + (𝑛−1)𝑏R > 0, and hence 𝑎R + ((𝑛−1)/𝑛)𝑏R > 0.
Since lim𝑛→∞ 𝑎R + ((𝑛 − 1)/𝑛)𝑏R = 𝑎R + 𝑏R , then 𝑎R + 𝑏R ≥ 0. We finally get 𝑎R = −𝑏R .

We finally prove that if R is Counting, it accepts the same language as a semi-Dyck-1 counter.
This is immediate by Lemma 10. A string is accepted by R if and only if its output is 0 and if and
only if the output of a semi-Dyck-1 counter is 0. □

4 Experiments

Having identified the CICs that determine whether a ReLU RNN is Counting, we study the relationship
between the exact and approximate fulfilment of the CICs and empirical behaviour of a ReLU RNN. We
also investigate if training ReLU RNNs leads to them reaching or approximating the CICs and evaluate
their counting behaviour empirically. Our general setup is similar to that of Gers and Schmidhuber
[2001], Weiss et al. [2018], and Suzgun et al. [2019a].

4.1 Datasets and Metrics

To test the counting behaviour of our models, we use ten disjoint datasets, with their characteristics
shown in Table 1. All Dyck-1 strings, except those in the Zigzag dataset, are generated in the same
manner as Suzgun et al. [2019a], using a probabilistic Dyck-1 grammar. The Dyck-1 Zigzag dataset is
created in the same way as in El-Naggar et al. [2022]. The Zigzag Dyck-1 strings consist of repetitions of
𝑗 opening brackets followed by 𝑗 closing brackets, where 𝑗 = {10, 20, 25, 50, 100, 125, 200, 250, 500, 1000}.
All datasets consist of strings that are each a valid string in their respective languages as a whole.

In our datasets, there are two labels at every timestep, as introduced by Gers and Schmidhuber
[2001], Weiss et al. [2018], Suzgun et al. [2019a]. For Dyck-1 the labels indicate which next tokens, ⟨
or ⟩, would be possible in the language, i.e. the string at the current timestep concatenated with the
indicated token would be a prefix for a valid Dyck-1 string. An opening bracket can occur at any point
in a Dyck-1 string, therefore the corresponding label 1 is always 1, but a closing bracket cannot occur
at a point when there are no excess opening brackets, therefore label 2, for a closing bracket, is 0 iff
there are no excess opening brackets, i.e. the current string is a valid Dyck-1 string. Therefore, this
task can also be viewed as a classification task for Dyck-1 validity. Label 1 is obviously redundant in
this setting, but we include it to ensure comparability with the literature.

The semi-Dyck-1 datasets are created from the Dyck-1 datasets by replacing every opening bracket
with a closing one with probability 0.5. In order to generate strings of odd length, for half the strings
we either add a closing bracket at a random position or remove a randomly chosen opening bracket,
each with probability 0.5. In this way, the average string length is maintained.

The labels are set to ensure compatibility with the previous experiments and the literature. At
every timestep we set the label 1 to 1 and label 2 to 0 if the string up to this point is a valid semi-Dyck-1
string, analogous to the Dyck-1 datasets. For semi-Dyck-1, the interpretation of output neurons as

6

Table 1: The datasets in our experiments, with different string structures and lengths, each in two
versions: Dyck-1 (D) and semi-Dyck-1 (S). We report for all datasets the size (number of strings),
lengths of the strings, percentage of valid strings (i.e. count value of 0), the mean and maximal
counter value per string averaged over each dataset.

D valid counter S valid counter
Type size lengths % mean max % mean max

Training 10,000 2–50 5.5 4.1 8.5 65.3 0.6 2.8
Validation 5,000 2–50 5.2 4.3 8.9 65.3 0.6 2.9
Long 5,000 52–100 2.4 6.9 14.3 64.3 0.6 3.8
Zigzag 10 2,000 1.2 114.0 228.0 53.9 3.0 24.2
Very Long 100 1,000 0.2 27.2 56.1 63.2 0.7 7.4

Figure 1: ReLU Model with a configuration satisfying the Counter Indicator Conditions.

indicating what next token is allowed in the language is not valid in our encoding (we can always add
an opening or closing bracket and the string is still a prefix to a valid semi-Dyck-1 string).

This way of changing the datasets to contain strings that are in semi-Dyck-1 but not Dyck-1 has
several side effects. It changes the overall proportion of closing brackets from 0.5 to just over 0.75. The
class ratio between valid and invalid strings is much more balanced, as can be seen in Table 1. The
counter values that are needed for processing the strings also changed to much lower values, especially
for the Zigzag and the Very Long datasets. Higher values require the model to count more precisely as
any deviations from 𝑈 = 1 are multiplied by the counter values and deviations from 𝑎 = −𝑏 accumulate.
The semi-Dyck-1 dataset is therefore easier to process and better model performance in tests can be
expected.

4.2 Experimental Setup and Evaluation

For our experiments, we use a ReLU RNN with a single hidden neuron as shown in Figure 1. Output
neuron 1 has always target value 1 and neuron 2 indicates whether the string up to the current time
is valid in the respective language. Although output neuron 1 has no role in the classification, it
is still included in the loss calculation and optimisation, for compatibility as mentioned above. The
output neurons have a sigmoid activation function (see Appendix A for the definition). We experiment
with Binary Cross Entropy (BCE) loss and Mean Squared Error (MSE) loss (see Appendix A for the
definitions). The combination of a sigmoid activation with MSE loss is an unusual combination which
does not have a probabilistic interpretation like the commonly used cross-entropy, but it is what was
used by Gers and Schmidhuber [2001], Weiss et al. [2018], and Suzgun et al. [2019a] and is retained
here for comparability.

We report average Accuracy (number of strings classified correctly at every timestep) as a classi-
fication metric, as well as First Point of Failure (FPF), which reflects the exact counting capability

7

(a) FPF (b) MSE (c) BCE

Figure 2: Heatmaps showing the FPF values on the Dyck-1 Very Long dataset and MSE and BCE
loss on the Dyck-1 Validation dataset for models with a correct configuration and with deviations.
The thin green lines represent the CIC values for the 𝑎/𝑏 ratio and 𝑈 value, and the intersection
between the green lines is the point of a correct model. For FPF, the value in the centre of graph (a) is
undefined, as no failures occurred for the correct model. It can be seen that the lowest MSE and BCE
loss values are not located at the position of the correct model configurations. For a larger version of
these heatmaps see Appendix C.

better. The FPF is the first point at which a model fails when a string is processed. For each model
the average FPF value over the Very Long dataset is reported. FPF tests the generalisation abilities
of models for very long strings, where fully correct processing becomes increasingly rare for imperfect
models, so that accuracy ceases to differentiate models well.

4.3 Validating the Counting Model

For the correct model configuration, we use input weight vector [1,−1], which, together with a hidden
neuron bias of 0, leads to 𝑎 = 1 and 𝑏 = −1, which satisfies the CICs 1 and 2. We also use a recurrent
weight 𝑈 = 1, satisfying the CIC 3. The output bias is 1 for output neuron 1 and -0.5 for output
neuron 2. We use a threshold of 0.5 for the final classification when calculating accuracy and FPF. As
shown in Table 3, the correct model achieves perfect results on all datasets.

4.4 Effect of Deviation from the Correct Model

We systematically vary the 𝑎 and 𝑈 values from correct weights to study the effect of the deviation
from CIC values on the MSE validation loss, BCE validation loss and FPF. For the 𝑈 deviations, we
use increments of 0.0001 between 0.9995 and 1.0005 for the 𝑈 weight. Similarly, we use increments
of 0.004 between 0.98 and 1.02 for the 𝑎 weight. For these model variations, the MSE loss and BCE
loss calculated on the Dyck-1 Validation dataset, and the FPF on the Dyck-1 Very Long dataset are
shown in Figure 2. We observe that the highest FPF value occurs where the correct model is located.
However, within our test grid, the lowest MSE or BCE losses do not occur at the correct 𝑎/𝑏 ratio or
𝑈 value. There are different values of 𝑎 and 𝑏 possible for any given 𝑎/𝑏 ratio value. If we vary the
biases proportional to the value of 𝑏 (or 𝑏) for a given 𝑎/𝑏 ratio the only change to the ReLU activation
value is a multiplication by a constant factor, as is easy to show by induction. Thus the only change
of the relative magnitudes of network outputs is caused by the sigmoid output activation (for MSE),
which is a monotonic function. We have plotted additional heatmaps in Appendix C, illustrating the
very minor changes of the loss for different values of 𝑏. Thus, minimising the MSE or BCE loss will
likely not converge to a model that fulfils the CICs and counts correctly.

4.5 Training ReLUs to Count

We train models in different configurations: using MSE (M/) and BCE (B/) loss with Randomly
Initialised (RI), and Correctly Initialised weights with and without Bias in the ReLU (CB and CI,
respectively). We train models for 30 epochs, with the Adam optimiser [Kingma and Ba, 2014], using

8

Table 2: Numbers of trained and converged models for Dyck-1 and semi-Dyck-1 experiments. The
model names are as in Table 3.

Dyck-1 Semi-Dyck-1

M/RI M/CI M/CB B/RI B/CI B/CB M/RI M/CI M/CB B/RI B/CI B/CB

Trained 35 10 10 10 10 10 25 16 16 16 16 16
Conv 12 10 8 6 10 7 5 16 14 1 16 14

Table 3: Classification performance of various models trained and tested on Dyck-1 and semi-Dyck-1,
and models with correct weights. Models are trained with MSE (M/) and BCE (B/) loss. Accuracy
in percent and FPF values are given as mean (minimum/maximum) over runs after training models
with Random Initialisation (RI), Correct Initialisation - without or with trainable ReLU bias (CI and
CB). For B/RI trained on semi-Dyck-1, only one model converged, therefore there are no (min/max)
values. An FPF value ‘-’ indicates that the model did not fail on the Very Long dataset.

Mod Train Validation Long Zigzag V. Long FPF

Models with correct weights, Testing: Dyck-1 (*), semi-Dyck-1 (**)
(*) 100 100 100 100 100 -
(**) 100 100 100 100 100 -

(a) Training: Dyck-1, Testing: Dyck-1
M/RI 91.6 (48.7/100) 90.5 (43.1/100) 62.4 (3.74/100) 20.0 (0.0/40.0) 0.4 (0.0/4.0) 846.4 (528.2/979.3)
M/CI 95.2 (71.4/100) 94.4 (67.3/100) 76.1 (10.9/100) 25.0 (0.0/50.0) 1.2 (0.0/8.0) 905.3 (862.1/987.7)
M/CB 85.4 (39.4/100) 83.6 (33.2/100) 42.9 (0.9/98.1) 13.8 (0.0/30.0) 0.0 (0.0/0.0) 757.1 (432.0/911.9)
B/RI 97.7 (86.4/100) 97.3 (83.8/100) 83.9 (12.9/100) 23.3 (10.0/40.0) 8.3 (0.0/50.0) 848.4 (305.1/995.8)
B/CI 100 (100/100) 100 (100/100) 95.5 (60.3/100) 29.0 (10.0/60.0) 2.9 (0.0/29.0) 843.8 (553.0/992.4)
B/CB 91.9 (65.2/100) 90.4 (59.5/100) 72.2(3.9/100) 21.4 (10.0/40.0) 0.0 (0.0/0.0) 703.3 (257.4/959.9)

(b) Training: Dyck-1, Testing: semi-Dyck-1
M/RI 100 (100/100) 100 (99.9/100) 100 (99.6/100) 44.2 (20.0/90.0) 99.0 (88.0/100) 992.3 (907.6/-)
M/CI 100 (100/100) 100 (99.9/100) 100 (99.7/100) 53.0 (20.0/100) 98.0 (88.0/100) 984.9 (907.6/-)
M/CB 99.9 (99.4/100) 99.9 (99.2/100) 99.5 (97.0/100) 99.9 (99.2/100) 90.8 (56.0/100) 938.3 (723.2/-)
B/RI 100 (100/100) 100 (100/100) 100 (99.9/100) 66.7 (20.0/90.0) 99.3 (96.0/100) 995.1 (970.8/-)
B/CI 90.0 (0.0/100) 90.0 (0.0/100) 90.0 (0.0/100) 49.0 (0.0/100) 90.0 (0.0/100) 900.3 (2.6/-)
B/CB 100 (100/100) 100 (100/100) 99.8 (99.3/100) 48.6 (20.0/90.0) 96.0 (84.0/100) 974.4 (892.3/-)

(c) Training: semi-Dyck-1, Testing: Dyck-1
M/RI 99.4 (97.8/100) 99.2 (97.1/100) 73.3 (33.1/100) 22.0 (10.0/40.0) 3.2 (0.0/16.0) 724.7 (461.3/948.9)
M/CI 98.3 (87.5/100) 97.9 (85.6/100) 71.8 (25.8/100) 18.8 (10.0/70.0) 5.9 (0.0/94.0) 815.6 (436.2/999.5)
M/CB 100 (99.9/100) 99.9 (99.8/100) 90.3 (79.0/100) 25.0 (10.0/30.0) 6.8 (0.0/25.0) 893.3 (730.2/989.0)
B/RI 100 100 99.1 0.0 0.0 957.7
B/CI 90.8 (4.4/100) 90.2 (2.7/100) 68.9 (0.0/100) 16.4 (0.0/70.0) 7.1 (0.0/100) 788.2 (55.1/-)
B/CB 81.5 (0.0/100) 80.3 (0.0/100) 50.2 (0.0/100) 5.6 (0.0/30.0) 0.0 (0.0/0.0) 698.7 (0/985.0)

(d) Training: semi-Dyck-1, Testing: semi-Dyck-1
M/RI 100 (100/100) 100 (100/100) 100 (100/100) 46.0 (30.0/90.0) 100 (100/100) - (-/-)
M/CI 100 (100/100) 100 (100/100) 100 (100/100) 42.5 (20.0/100) 100 (100/100) - (-/-)
M/CB 100 (100/100) 100 (100/100) 100 (100/100) 50.0 (20.0/100) 99.7 (98.0/100) 995.8 (970.8/-)
B/RI 100 100 100 50.0 100 -
B/CI 100 (100/100) 100 (100/100) 100 (100/100) 68.1 (20.0/100) 99.7 (95.0/100) 996.0 (936.5/-)
B/CB 100 (100/100) 100 (100/100) 100 (100/100) 60.7 (30.0/100) 100 (100/100) - (-/-)

a learning rate of 0.01. We train models on the Dyck-1 dataset and on the semi-Dyck-1 dataset, and
test each variant on both Dyck-1 and semi-Dyck-1 versions of the datasets.

We trained different models for different numbers of runs and in many runs the models did not
converge to a loss value substantially below their initial state throughout the training. Therefore, we
only include models that have converged in our results. The number of trained and converged models
for each configuration is shown in Table 2. We select the models with the lowest validation loss for
each run.

9

We report the accuracy for the converged models on all datasets and FPF values on the Very Long
dataset in Table 3. All models show a large variation in the results. The largest differences can be
observed between testing on the Dyck-1 and the semi-Dyck-1 datasets ((a) and (c) vs (b) and (d)),
which was expected, given the difference in counter values discussed in section 4.1. The results differ
also between the models trained on different datasets ((a) and (b) vs (c) and (d)), but unexpectedly
the models trained on the less demanding semi-Dyck-1 dataset perform mostly better than the models
trained on Dyck-1. However, fewer models converge when training on semi-Dyck-1 from random
initialisation. Models trained with BCE loss perform broadly similar to the models trained with MSE
loss.

Models trained from correct initialisation (*/C*) do not retain the correct weight configuration
and their performance after training is often worse than that of the correct models, especially with a
trainable bias (*/CB). This is consistent with our observation that the correct weights are not at the
minimum of the loss (Section 4.4) and with the the findings of El-Naggar et al. [2022] that training
from correct weights with a sigmoid output activation function results in unlearning of correct weights.
However, the models that are correctly initialised tend to converge better (see Table 2).

Overall, no trained models show perfect results in the tests, i.e. they do not learn the correct
weights that satisfy the CICs. For the models trained on Dyck-1 strings, we show plots of the 𝑎/𝑏
and 𝑈 values of the 5 M/RI models with the lowest validation loss and the 5 M/RI models with the
highest FPF in Figure 3. More distribution plots can be found in Appendix D. The plots show that
the all models deviate from the correct values, and the deviations of the 𝑎/𝑏 ratio and the 𝑈 value
tends to be positive.

(a) Average Validation Loss (b) Average FPF

Figure 3: The best 5 M/RI models trained and tested on Dyck-1 selected (a) by average validation
loss and (b) by FPF on the Very Long dataset. The red box represents the area corresponding to
the heatmaps in Figure 2. The correct model position is at the intersection of the green lines. Two
models present in both sets are marked with pink diamonds. For all models, the validation loss and
FPF values are shown next to the markers.

5 Discussion and Conclusions

We have formalised the counting mechanism of a ReLU RNN cell with the semi-Dyck-1 language and
corresponding abstract counter machines that account for the absence of negative activation values
in ReLUs. On this basis, we established three Counter Indicator Conditions (CICs) on the ReLU
weights, which are necessary and sufficient for exhibiting correct counting behaviour. ReLU RNN cells
that satisfy the CICs can count exactly, allowing for generalisation to strings of arbitrary length and
arbitrarily great counter values (numeric representation permitting). We have empirically validated
that a single-cell ReLU RNN that satisfies the CICs does indeed count correctly and accept the semi-
Dyck-1 language, even on very long strings. However, our results also indicate that the mean squared

10

error and the binary cross entropy as loss functions for training ReLU RNNs do not train the ReLU
RNN to satisfy the CICs so that the trained models fail on very long strings.

Another observation was that ReLU RNN training often fails to converge. In earlier work [El-
Naggar et al., 2022], we observed that LSTMs are trainable with reliable convergence on this type
of data, suggesting that they possess a more suitable inductive bias for counting. However, we also
observed that LSTMs tend to systematically underestimate counts, unlike ReLU RNNs which do not
exhibit this issue. Therefore, it would be useful to better understand the interaction between stable
convergence and long-term counting success and the loss function.

We believe that our empirical results in this paper offer relevant insights into some of the difficulties
encountered during the training of ReLU RNNs, as highlighted by Weiss et al. [2018]. On the other
hand, the theoretical framework of semi-Dyck-1 language and CICs and our finding of misalignment of
the loss functions can be used to design new training methods and network architectures that take into
account these conditions to enable effective learning of exact counting in ReLU RNN networks. These
can include heterogeneous models that include discrete counter modules or specific regularisations that
stabilise convergence and create an inductive bias towards exact counting.

Acknowledgment

We thank the anonymous reviewers for their comments and constructive feedback. Laure Daviaud
has been supported for this work by the EPSRC grant EP/T018313/1. Andrew Ryzhikov is partially
supported by the EPSRC grant EP/T018313/1 and by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 852769,
ARiAT).

References

Jean-Philippe Bernardy. Can recurrent neural networks learn nested recursion? Linguistic Issues in
Language Technology, 16, 2018. URL https://aclanthology.org/2018.lilt-16.1.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May, and Kevin Knight. Recurrent neural net-
works as weighted language recognizers. In Marilyn A. Walker, Heng Ji, and Amanda Stent, editors,
Proceedings of the 2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 1 (Long Papers), pages 2261–2271. Association for Computational
Linguistics, 2018. doi: 10.18653/v1/n18-1205. URL https://doi.org/10.18653/v1/n18-1205.

Noam Chomsky. Three models for the description of language. IRE Trans. Inf. Theory, 2(3):113–124,
1956. doi: 10.1109/TIT.1956.1056813. URL https://doi.org/10.1109/TIT.1956.1056813.

Noam Chomsky. Syntactic Structures. Mouton, 1957.

Sreerupa Das, C. Lee Giles, and Guo-Zheng Sun. Using prior knowledge in a NNPDA to learn context-
free languages. In Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in
Neural Information Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November
30 - December 3, 1992], pages 65–72. Morgan Kaufmann, 1992. URL http://papers.nips.cc/

paper/587-using-prior-knowledge-in-a-nnpda-to-learn-context-free-languages.

Colin de la Higuera. Grammatical inference: learning automata and grammars. Cambridge University
Press, 2010.

Philippe Duchon. On the enumeration and generation of generalized Dyck words. Discret. Math.,
225(1-3):121–135, 2000. doi: 10.1016/S0012-365X(00)00150-3. URL https://doi.org/10.1016/

S0012-365X(00)00150-3.

Nadine El-Naggar, Pranava Madhyastha, and Tillman Weyde. Experiments in learning Dyck-1 lan-
guages with recurrent neural networks. In Alan Bundy and Denis Mareschal, editors, Proceedings of
the 3rd Human-Like Computing Workshop (HLC 2022) co-located with the 2nd International Joint

11

https://aclanthology.org/2018.lilt-16.1
https://doi.org/10.18653/v1/n18-1205
https://doi.org/10.1109/TIT.1956.1056813
http://papers.nips.cc/paper/587-using-prior-knowledge-in-a-nnpda-to-learn-context-free-languages
http://papers.nips.cc/paper/587-using-prior-knowledge-in-a-nnpda-to-learn-context-free-languages
https://doi.org/10.1016/S0012-365X(00)00150-3
https://doi.org/10.1016/S0012-365X(00)00150-3

Conference on Learning and Reasoning (IJCLR 2022), Windsor, United Kingdom, September 28-
30th, 2022, volume 3227 of CEUR Workshop Proceedings, pages 24–28. CEUR-WS.org, 2022. URL
http://ceur-ws.org/Vol-3227/El-Naggar.PP5.pdf.

Nadine El-Naggar, Pranava Madhyastha, and Tillman Weyde. Exploring the long-term generalization
of counting behavior in RNNs. In I Can’t Believe It’s Not Better Workshop: Understanding Deep
Learning Through Empirical Falsification, 2022.

Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter machines and counter
languages. Math. Syst. Theory, 2(3):265–283, 1968. doi: 10.1007/BF01694011. URL https:

//doi.org/10.1007/BF01694011.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71, 1988.

Rochel Gelman and Charles Randy Gallistel. Language and the origin of numerical concepts. Science,
306(5695):441–443, 2004.

Felix A. Gers and Jürgen Schmidhuber. LSTM recurrent networks learn simple context-free and
context-sensitive languages. IEEE Trans. Neural Networks, 12(6):1333–1340, 2001. doi: 10.1109/
72.963769. URL https://doi.org/10.1109/72.963769.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to
transduce with unbounded memory. In Advances in neural information processing systems, pages
1828–1836, 2015.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?

id=uYLFoz1vlAC.

Yiding Hao, William Merrill, Dana Angluin, Robert Frank, Noah Amsel, Andrew Benz, and Si-
mon Mendelsohn. Context-free transductions with neural stacks. In Tal Linzen, Grzegorz Chru-
pala, and Afra Alishahi, editors, Proceedings of the Workshop: Analyzing and Interpreting Neu-
ral Networks for NLP, BlackboxNLP@EMNLP 2018, Brussels, Belgium, November 1, 2018, pages
306–315. Association for Computational Linguistics, 2018. doi: 10.18653/v1/w18-5433. URL
https://doi.org/10.18653/v1/w18-5433.

John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their relation to automata. Addison-
Wesley series in computer science and information processing. Addison-Wesley, 1969. ISBN
0201029839. URL https://www.worldcat.org/oclc/00005012.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. Advances in neural information processing systems, 28, 2015.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Jennifer G. Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
2879–2888. PMLR, 2018. URL http://proceedings.mlr.press/v80/lake18a.html.

Nur Geffen Lan, Michal Geyer, Emmanuel Chemla, and Roni Katzir. Minimum description length
recurrent neural networks. Trans. Assoc. Comput. Linguistics, 10:785–799, 2022. URL https:

//transacl.org/ojs/index.php/tacl/article/view/3649.

12

http://ceur-ws.org/Vol-3227/El-Naggar.PP5.pdf
https://doi.org/10.1007/BF01694011
https://doi.org/10.1007/BF01694011
https://doi.org/10.1109/72.963769
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://doi.org/10.18653/v1/w18-5433
https://www.worldcat.org/oclc/00005012
http://proceedings.mlr.press/v80/lake18a.html
https://transacl.org/ojs/index.php/tacl/article/view/3649
https://transacl.org/ojs/index.php/tacl/article/view/3649

Mathieu Le Corre, Gretchen Van de Walle, Elizabeth M Brannon, and Susan Carey. Re-visiting the
competence/performance debate in the acquisition of the counting principles. Cognitive psychology,
52(2):130–169, 2006.

Ankur Arjun Mali, Alexander Ororbia, and C. Lee Giles. The neural state pushdown automata. CoRR,
abs/1909.05233, 2019. URL http://arxiv.org/abs/1909.05233.

Ankur Arjun Mali, Alexander Ororbia, Daniel Kifer, and C. Lee Giles. Recognizing long grammati-
cal sequences using recurrent networks augmented with an external differentiable stack. In Jane
Chandlee, Rémi Eyraud, Jeff Heinz, Adam Jardine, and Menno van Zaanen, editors, Proceed-
ings of the 15th International Conference on Grammatical Inference, 23-27 August 2021, Virtual
Event, volume 153 of Proceedings of Machine Learning Research, pages 130–153. PMLR, 2021. URL
https://proceedings.mlr.press/v153/mali21a.html.

Gary F Marcus, Sugumaran Vijayan, S Bandi Rao, and Peter M Vishton. Rule learning by seven-
month-old infants. Science, 283(5398):77–80, 1999.

William Merrill. Sequential neural networks as automata. CoRR, abs/1906.01615, 2019. URL http:

//arxiv.org/abs/1906.01615.

William Merrill. On the linguistic capacity of real-time counter automata. CoRR, abs/2004.06866,
2020. URL https://arxiv.org/abs/2004.06866.

Marvin Lee Minsky. Computation. Prentice-Hall Englewood Cliffs, 1967.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Çaglar Gülçehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. CoRR, abs/2303.06349,
2023. doi: 10.48550/arXiv.2303.06349. URL https://doi.org/10.48550/arXiv.2303.06349.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin Cheng,
Michael Chung, Matteo Grella, Kranthi Kiran G. V., Xuzheng He, Haowen Hou, Przemyslaw
Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Krishna Sri Ipsit Mantri,
Ferdinand Mom, Atsushi Saito, Xiangru Tang, Bolun Wang, Johan S. Wind, Stanislaw Wozniak, Rui-
chong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: rein-
venting rnns for the transformer era. CoRR, abs/2305.13048, 2023. doi: 10.48550/arXiv.2305.13048.
URL https://doi.org/10.48550/arXiv.2305.13048.

Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages, Volume 1: Word,
Language, Grammar. Springer, 1997. ISBN 978-3-642-63863-3. doi: 10.1007/978-3-642-59136-5.
URL https://doi.org/10.1007/978-3-642-59136-5.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets. In Proceedings
of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92, page 440–449, New
York, NY, USA, 1992. Association for Computing Machinery. ISBN 089791497X. doi: 10.1145/
130385.130432. URL https://doi.org/10.1145/130385.130432.

Michael Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1):27–29, 1996.

Natalia Skachkova, Thomas Alexander Trost, and Dietrich Klakow. Closing brackets with recurrent
neural networks. In Tal Linzen, Grzegorz Chrupala, and Afra Alishahi, editors, Proceedings of
the Workshop: Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2018,
Brussels, Belgium, November 1, 2018, pages 232–239. Association for Computational Linguistics,
2018. doi: 10.18653/v1/w18-5425. URL https://doi.org/10.18653/v1/w18-5425.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

13

http://arxiv.org/abs/1909.05233
https://proceedings.mlr.press/v153/mali21a.html
http://arxiv.org/abs/1906.01615
http://arxiv.org/abs/1906.01615
https://arxiv.org/abs/2004.06866
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.06349
https://doi.org/10.48550/arXiv.2305.13048
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1145/130385.130432
https://doi.org/10.18653/v1/w18-5425

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, and Stuart M Shieber. LSTM networks can
perform dynamic counting. arXiv preprint arXiv:1906.03648, 2019a.

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, and Stuart M Shieber. Memory-augmented
recurrent neural networks can learn generalized Dyck languages. arXiv preprint arXiv:1911.03329,
2019b.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven
Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James
Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Yanqi Zhou,
Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Kathleen S. Meier-Hellstern, Mered-
ith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben Zevenber-
gen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin
Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya
Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Agüera y Arcas, Claire
Cui, Marian Croak, Ed H. Chi, and Quoc Le. Lamda: Language models for dialog applications.
CoRR, abs/2201.08239, 2022. URL https://arxiv.org/abs/2201.08239.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite precision
RNNs for language recognition. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 2: Short Papers, pages 740–745. Association for Computational
Linguistics, 2018. doi: 10.18653/v1/P18-2117. URL https://aclanthology.org/P18-2117/.

A Model Output and Loss Functions

Definition 11 (Model Output Calculation). The model’s output layer performs the following calcu-
lation:

𝑌 = 𝜎(𝑊𝑌 ℎ𝑡 + 𝑏𝑌),
where 𝑌 is the output 𝑊𝑌 is the output weight, ℎ𝑡 is the output of the ReLU hidden layer, and 𝑏𝑌 is
the output bias. 𝜎 is the logistic sigmoid function

𝜎(𝑥) = 1

1 + 𝑒−𝑥

where 𝑒 is Euler’s number.

Definition 12 (Mean Squared Error MSE Loss (MSE)). Mean Squared Error loss is calculated as
follows:

𝑀𝑆𝐸𝐿𝑜𝑠𝑠 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2

where 𝑛 is the length of the string, 𝑌𝑖 is the predicted output value and 𝑌𝑖 is the target output value at
timestep 𝑖.

Definition 13 (Binary Cross Entropy Loss (BCE)). Binary Cross Entropy Loss is calculated using
the following equation:

𝐵𝐶𝐸𝐿𝑜𝑠𝑠 = −
𝑐∑︁
𝑛=𝑖

𝑌𝑖 log(𝑌𝑖) + (1 − 𝑌𝑖) log(1 − 𝑌)

where 𝑌 is the predicted output, 𝑌 is the target output and 𝑐 is the number of classes.

B Deviation from CICs - FPF and Loss Plots

See Figure 4 and Figure 5.

14

https://arxiv.org/abs/2201.08239
https://aclanthology.org/P18-2117/

(a) 𝑎/𝑏 Deviations and FPF (b) 𝑈 Deviations and FPF

Figure 4: Effect of Deviations from the CICs on the First point of Failure (maximum is 1000).

(a) 𝑎/𝑏 Deviations and Validation Loss (b) 𝑈 Deviations and Validation Loss

Figure 5: Effect of Deviations in CICs on the Validation Loss

C Deviation from CICs - FPF and Loss Heatmaps.

See Figure 6 and Figure 7.

15

(a) FPF (b) MSE

(c) BCE

Figure 6: Heatmaps showing the FPF values on the Dyck-1 Very Long dataset and MSE and BCE loss
on the Dyck-1 Validation dataset for models with a correct configuration and with deviations. The thin
green lines represent the CIC values for the 𝑎/𝑏 ratio and 𝑈 value, and the intersection between the
green lines is the point of a correct model. For FPF, the value in the centre of graph (a) is undefined,
as no failures occurred for the correct model. It can be seen that the lowest MSE and BCE loss values
are not located at the position of the correct model configurations.

D Distribution of CICs in Models Trained from Random Ini-
tialisation

We inspect the 12 models successfully trained on Dyck-1 from random initialisation with MSE loss
and extract the 𝑈 value and 𝑎/𝑏 ratio. We verify that 𝑎 > 0 and plot the distribution of the 𝑎/𝑏 ratio
and 𝑈 and Euclidean distance between the observed [𝑎/𝑏,𝑈] and the correct [−1, 1] in Figure 8. The
models do not reach the correct combination of values. The 𝑈 value distribution has a clear peak at
1. The 𝑎/𝑏 ratio has a broader distribution with the mean not at -1, but slightly above.

16

b=0.98

(a) FPF (b) MSE (c) BCE

b=1.02

(d) FPF (e) MSE (f) BCE

b=0.7

(g) FPF (h) MSE (i) BCE

b=0.5

(j) FPF (k) MSE (l) BCE

E Testing on Dyck-1 Strings for semi-Dyck-1 Acceptance

The Dyck-1 datasets contain only valid Dyck-1 strings with balanced opening and closing brackets. The
prefix sequences (𝑥0, . . . , 𝑥𝑘 ,where 𝑘 < 𝑛) are also evaluated, where we have excess opening brackets
or balanced brackets. The case of excess closing brackets does not occur in these datasets. Dyck-1
acceptance (where the excess closing brackets are invalid) or semi-Dyck-1 acceptance (where the results
of excess closing brackets are valid) are therefore not fully covered by these datasets. However, in the
case of a single-cell ReLU RNN R, if 𝑏R ≤ 0 and ℎ𝑡 = 0 for a balanced bracket string 𝑠 with 𝑡 tokens,
then for 𝑠𝑡+1 =⟩, we have ℎ𝑡+1 = 0 by Definition 6. If R is a semi-Dyck-1 counter for excess open and

17

b=1.4

(m) FPF (n) MSE (o) BCE

b=2

(p) FPF (q) MSE (r) BCE

Figure 7: Heatmaps showing the FPF values on the Dyck-1 Very Long dataset and MSE and BCE loss
on the Dyck-1 Validation dataset for models with a correct configuration and with deviations. The
thin green lines represent the CIC values for the 𝑎/𝑏 ratio and 𝑈 value, and the intersection between
the green lines is the point of a correct model. It can be seen that the lowest MSE and BCE loss values
are not located at the position of the correct model configurations.

for balanced bracket strings, it has to have 𝑏 ≤ 0, following the same argument as in the proof of
Theorem 8. Therefore, it is sufficient to test excess opening and balanced bracket strings to test if a
ReLU RNN accepts the semi-Dyck-1 language.

18

(a) 𝑎/𝑏 Ratio (b) Recurrent Weight 𝑈 (c) Euclidean Distance

Figure 8: Distributions of the CICs over the 12 converged M/RI Dyck-1 models.

19

	Introduction
	Related Work
	Formalising Counting Behaviour in ReLU RNNs
	Counter Machines and semi-Dyck-1 Language
	ReLU Recurrent Neural Networks (ReLU RNNs) as Counters

	Experiments
	Datasets and Metrics
	Experimental Setup and Evaluation
	Validating the Counting Model
	Effect of Deviation from the Correct Model
	Training ReLUs to Count

	Discussion and Conclusions
	Model Output and Loss Functions
	Deviation from CICs - FPF and Loss Plots
	Deviation from CICs - FPF and Loss Heatmaps.
	Distribution of CICs in Models Trained from Random Initialisation
	Testing on Dyck-1 Strings for semi-Dyck-1 Acceptance

