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Conducting research in polar regions is still a significant 
challenge because of issues with access and working 
at subfreezing temperatures. Yet, polar environments 
are home to significant biological diversity, including di-
verse primary producers. As photosynthesis on land is 
limited by permafrost and glaciers, marine phytoplank-
ton groups and, especially, diatoms underpin most of 
the polar food web (Boyd,  2002; Horner et al.,  1992; 
Smetacek, 1999). Diatoms can cope well with low tem-
peratures and significant seasonality, including the long 
and dark polar winter (McMinn & Martin, 2013). Although 
global warming appears to diminish the dominance of 
diatoms in polar oceans (Ardyna & Arrigo, 2020), dia-
toms are still a significant driving force in terms of un-
derpinning polar food webs and global biogeochemical 
cycles (Hop et al., 2020).

Fragilariopsis cylindrus is an obligately cold- 
adapted (psychrophilic) pennate diatom found in Arctic 
and Antarctic seawater and sea ice (Figure  1). It is 

considered a keystone species for polar waters, thriv-
ing under diverse polar conditions and forming blooms 
in sea ice and at the sea- ice edge (Hop et al., 2020). 
As a polar indicator species, F. cylindrus actively 
thrives under high salinity, low temperatures, and semi- 
enclosed sea- ice systems (Kang & Fryxell,  1992). In 
this perspective paper, we provide a brief overview on 
the work that has been done so far on F. cylindrus and 
discuss its role as a model alga to understand cold- 
adapted life.

The genome of Fragilariopsis cylindrus, published 
in 2017 (Mock et al., 2017), was the first sequence of 
a cold- adapted eukaryote. In recent years, whole ge-
nome sequences of several additional polar algal 
species have followed suit, such as genomes from 
dinoflagellates, chlorophytes, and prasinophytes (Joli 
et al., 2017; Stephens et al., 2020; Ye et al., 2022; Zhang 
et al., 2021). Those sequences laid the foundation for 
studying the molecular adaptation of algae to polar 

P E R S P E C T I V E

The diatom Fragilariopsis cylindrus: A model alga to 
understand cold- adapted life

Antonia Otte1 |   Johanna C. Winder1 |   Longji Deng1 |   Jeremy Schmutz2,3 |   

Jerry Jenkins2 |   Igor V. Grigoriev3 |   Amanda Hopes1 |   Thomas Mock1

Received: 17 February 2023 | Accepted: 24 February 2023

DOI: 10.1111/jpy.13325  

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America.

Abbreviations: CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; HGT, Horizontal gene transfer; IBPs, Ice- binding proteins; MOSAiC, 
Multidisciplinary Drifting Observatory for the Study of Arctic Climate.

1School of Environmental Sciences, 
University of East Anglia, Norwich, UK
2HudsonAlpha Institute for Biotechnology, 
Huntsville, Alabama, USA
3DOE Joint Genome Institute, Lawrence 
Berkeley National Laboratory, Berkeley, 
California, USA

Correspondence
Thomas Mock, School of Environmental 
Sciences, University of East Anglia, 
Norwich Research Park, NR4 7TJ, 
Norwich, UK.
Email: t.mock@uea.ac.uk

Editor: C. Lane

Abstract
Diatoms are significant primary producers especially in cold, turbulent, and 
nutrient- rich surface oceans. Hence, they are abundant in polar oceans, but 
also underpin most of the polar food webs and related biogeochemical cy-
cles. The cold- adapted pennate diatom Fragilariopsis cylindrus is considered 
a keystone species in polar oceans and sea ice because it can thrive under 
different environmental conditions if temperatures are low. In this perspec-
tive paper, we provide insights into the latest molecular work that has been 
done on F. cylindrus and discuss its role as a model alga to understand cold- 
adapted life.

K E Y W O R D S
cold adaptation, diatom, evolution, Fragilariopsis, genome, phytoplankton

www.wileyonlinelibrary.com/journal/jpy
mailto:
https://orcid.org/0000-0001-9604-0362
http://creativecommons.org/licenses/by/4.0/
mailto:t.mock@uea.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjpy.13325&domain=pdf&date_stamp=2023-03-30


302 |   OTTE et al.

oceans (Jabre & Bertrand, 2020; Kennedy et al., 2019; 
Morin et al.,  2020; Petrou et al.,  2012). This work fo-
cused on the response of polar algae to low tempera-
tures including freezing, light– dark cycles, complete 
darkness, and scarcity of essential nutrients such as 
dissolved iron and other trace metals.

Even though molecular research into Fragilariopsis 
cylindrus has only begun recently, it has resulted in 
several resources that support both a growing set of 
additional genome sequences from Arctic/Antarctic 
F. cylindrus isolates and molecular genetic toolkits 
(Figure  2). Instrumental for these efforts is a high- 
quality reference genome that improves on the draft 
sequence published in 2017. By applying a combina-
tion of Oxford Nanopore and Illumina sequencing, 
an additional haplotype- specific assembly was de-
veloped in 2022 using a novel assembly pipeline, the 
SDG- Threader (Hodgkinson et al.,  2022). This work, 
which included a k- mer- based analysis, suggested that 
the F. cylindrus strain CCMP1102 was in fact triploid 
with two cases of aneuploidy and several truncations. 
However, for most of the 11 assembled chromosomes, 

the three copies merged into two distinct haplotypes, 
likely caused by their high sequence similarity, like the 
initial assembly published in 2017 (Mock et al., 2017). 
An attempt was made to split the assembly into three 
haplotypes by first mapping a set of primary transcripts 
to the assembly using BLAT (Kent, 2002; parameters: 
- noHead - extendThroughN - q = rna - t = dna). However, 
because of the high sequence similarity (>98%) be-
tween these two haplotypes compared with the much 
more diverged third haplotype, the vast majority of 
genes in the genome of F. cylindrus CCMP1102 fall in 
the two- copy category with only a small set of 81 genes 
mapping three times. The assembly was then parti-
tioned into two haplotypes selecting a set of genes that 
occur in exactly two locations and used them to pair 
contigs. Contigs were then partitioned into two haplo-
types, such that the gene overlap between the two hap-
lotypes was minimal.

As there is evidence that Fragilariopsis cylindus re-
produces sexually (Hodgkinson et al.,  2022), the ge-
nome of the strain CCMP1102 may be the result of 
meiotic nondisjunction of homologous chromosomes, 

F I G U R E  1  Fragilariopsis cylindrus is a psychrophilic pennate diatom found in polar oceans and sea ice. (a) Arctic sea ice. (b) 
Photosynthetic communities on the underside of sea ice. (c) Bright- field microscope image of F. cylindrus; scale bar represents 20 μm. 
(d) Scanning electron micrograph of a single cell of F. cylindrus; scale bar represents 5 μm. In order (a), (b), (c), (d), these images were 
obtained from: the United States Fish and Wildlife Service (USFWS) under a Free to use CC0 license, Castellani et al. (2022), Faktorová 
et al. (2020), and Mock et al. (2017) under their respective CC BY 4.0 licenses.
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which could have led to diploid gametes. If the latter 
combined with a haploid gamete, the result would be a 
trisomic zygote leading to a triploid cell line as observed 
for F. cylindrus CCMP1102 with three copies in two dis-
tinct haplotypes, each parental line and a recombinant.

Polyploidy is a significant driving force in the evolu-
tion of diatom species (Parks et al., 2018). Due to its sig-
nificant haplotype divergence, Fragilariopsis cylindrus 
CCMP1102 might also be an appropriate candidate for 
testing how the potential variation in the expression lev-
els of alleles contributes to fitness effects and, there-
fore, the adaptive evolution of diatoms. To address this 
question will require confirmation of the new triploid as-
sembly using highly accurate PACBIO HIFI sequencing 
for DNA and the generation of full- length cDNAs based 
on single HIFI reads. Both sequencing approaches are 
being applied as part of the “100 Diatom Genomes 
Project” (https://jgi.doe.gov/csp- 2021- 100- diato m- 
genom es/), which is addressing the above- mentioned 
question on a larger scale.

Although forward and reverse genetics in diatoms 
recently have made significant leaps (e.g., Belshaw 
et al., 2022; Faktorová et al., 2020; Serif et al., 2018), 
generating recombinant cell lines in Fragilariopsis cy-
lindrus is still challenging (Hopes,  2017). Yet, to the 
best of our knowledge, it remains the only cold- adapted 
eukaryote that is genetically tractable. A transformation 
protocol was established in 2013 (Faktorová et al., 2020; 
Hopes, 2017). The protocol utilizes microparticle bom-
bardment with tungsten particles to introduce ge-
netic material into the cell, similar to the established 
protocols for diverse temperate diatoms such as 
Phaeodactylum tricornutum and Thalassiosira pseud-
onana (Apt et al., 1996; Poulsen et al., 2006). However, 
the cells of F. cylindrus must always be kept cold during 
the transformation procedure. In order to obtain homo-
zygous (biallelic) colonies, subsequent restreaking on 
agar plates is necessary to reduce the mosaicism of 
colonies. The establishment of knock- in reporter genes 
(e.g., GFP) and marker genes has therefore been key 
to successful transformation and selection in this spe-
cies (Faktorová et al., 2020; Hopes, 2017).

Genome editing using CRISPR/Cas is under devel-
opment for Fragilariopsis cylindrus; however, prelimi-
nary results are inconclusive. This may be due either to 
the level of ploidy in this species or to the low activity 
of all currently available Cas enzymes under low tem-
peratures (e.g., Abudayyeh & Gootenberg, 2021; Kim 
et al., 2018; Shan et al., 2018). Although LbCas12a is 
still active at temperatures below 10°C, as tested by 
an in vitro temperature assay (OmicronCr Research 
Service), its activity might still be too low for efficient 
genome editing at 4– 8°C. Future work therefore aims to 
isolate a psychrophilic CRISPR/Cas system from either 
psychrophilic prokaryotes or novel genome- resolved 
metagenomes from permanently cold environments. 
Preliminary data based on a first set of sequenced 
samples from the MOSAiC (Multidisciplinary drifting 
Observatory for the Study of Arctic Climate) expedition 
(2019– 2020) in the central Arctic Ocean likely will have 
already increased the number of CRISPR/Cas systems 
from cold- adapted prokaryotes (Mock et al.,  2022). 
Taken together, reverse genetics of F. cylindrus is still 
in its infancy, but the availability of novel genomic re-
sources from permanently cold environments will ad-
vance this field and will help to shed light on the hidden 
life of cold- adapted organisms.

Once CRISPR/Cas- based genome editing becomes 
available for polar organisms and algae in particular, 
many hypotheses generated by descriptive research 
can be tested in vivo. This may reveal novel and likely 
unexpected insights as, currently, our knowledge 
about the fitness advantages imparted by individ-
ual genes under polar conditions is limited. However, 
certain gene families involved in freezing tolerance 
have been more extensively studied. In diatoms, this 
trait has likely been acquired through horizontal gene 
transfer (HGT) and domain shuffling of ice- binding 
proteins (Sorhannus, 2011; Vance et al., 2019; Winder 
et al., 2023), of which Fragilariopsis cylindrus encodes 
>47 (Mock et al.,  2017). Another trait that appears to 
be equally essential for algae in polar oceans is the 
adaptive expansion and neo- functionalization of reg-
ulatory zinc- binding proteins such as from the MYND 

F I G U R E  2  Resources and genetic tools to explore diverse features of the polar diatom Fragilariopsis cylindrus.
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(Myeloid, Nervy, and DEAF- 1) and C3HC4 ring- type 
families (Mock et al., 2017; Ye et al., 2022). However, 
once CRISPR/Cas- based genome editing (e.g., 
Hopes et al., 2016) or at least gene silencing (De Riso 
et al., 2009) becomes available for F. cylindrus, the in 
vivo roles of any of these proteins will likely be revealed.

Insights from the most recent “omics” projects with 
polar algae suggest that functional redundancy might 
be under selection to thrive under the highly variable 
environmental conditions of polar environments (Hüner 
et al., 2022). In order to identify unifying evolutionary 
concepts underpinning algal life in polar environments, 
mechanisms of evolution and maintenance of this re-
dundancy should be explored. Drivers might include 
polyploidization, local differences in copy number varia-
tions caused by aneuploidy, and transposon- driven ge-
netic diversity. If and how a temperature dependence of 
spontaneous mutation rate contributes to these drivers 
as shown in multicellular and heterothermic organisms 
(Waldvogel & Pfenninger,  2021) remains to be seen. 
Equally unknown is the role of DNA repair in contrib-
uting to the genome evolution (e.g., recombination) of 
polar algae and microbes in general (e.g., Bulankova 
et al.,  2021; Krasovec et al.,  2019). However, current 
research addresses the gap in this fundamental knowl-
edge and, therefore, will contribute to understanding 
how warming affects algal life in polar environments.

An important consideration when choosing a model 
organism is the transferability and generalizability of 
conclusions to other organisms. The parallel evolution 
of IBPs and regulatory zinc- binding proteins in diverged 
and therefore distant algal lineages (Ye et al.,  2022) 
provides evidence that convergent evolution and HGT, 
or a combination of both, shape life in the extreme con-
ditions of polar ecosystems. Thus, fundamental adap-
tations are likely transferrable. However, taxon- specific 
differences in functional redundancies (e.g., taxon- 
specific domain shuffling of IBPs) suggest that “ecolog-
ical vacancies” are filled by diverse genotypes (Winder 
et al., 2023). This could reflect adaptations to diverse 
and highly variable local environments such as those 
present in the central Arctic Ocean. Consequently, ex-
tending the set of polar model organisms according 
to their biogeography may reveal how diversity has 
evolved and is maintained within polar ecosystems. 
In this context, Fragilariopsis cylindrus is the first of a 
generation of polar model organisms for understanding 
cold- adapted life and the potential consequences of 
global warming in these regions.
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