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This work reports on the first computational quantum-chemistry implementation of the hyper-Rayleigh scattering op-
tical activity (HRS-OA), a nonlinear chiroptical phenomenon. First, from the basics of the theory, which is based on
quantum electrodynamics, and focusing on the electric dipole, magnetic-dipole, and electric-quadrupole interactions,
the equations for the simulation of the differential scattering ratios of HRS-OA are re-derived. Then, for the first time,
computations of HRS-OA quantities are presented and analyzed. They have been enacted on a prototypical chiral or-
ganic molecule (methyloxirane) at the time-dependent density functional theory (TDDFT) level, using a broad range of
atomic orbital basis sets. In particular, i) we analyze the basis set convergence, demonstrating that converged results re-
quire basis sets with both diffuse and polarization functions, ii) we discuss the relative amplitudes of the 5 contributions
to the differential scattering ratios, and iii) we study the effects of origin-dependence and derived the expression of the
tensor shifts and we prove the origin-independence of the theory for exact wavefunctions. Our computations show the
ability of HRS-OA as a nonlinear chiroptical method, able to distinguish between the enantiomers of the same chiral
molecule.

I. INTRODUCTION

Chirality is an important property of molecules. By defini-
tion, a molecule is chiral if it is not super-imposable onto its
mirror image1. Chiral molecules are also referred to be dis-
symmetric objects. The geometrical prerequisite for chirality
is the absence of an improper rotation axis Ŝn, of any order n,
where Ŝ1 corresponds to a symmetry plane (σ̂ ) and Ŝ2, to an
inversion centre î2,3. Consequently, chiral molecules can exist
in two opposite forms that are mirror images of each other,
the left- and the right-handed forms, called enantiomers. Chi-
rality exists also at other levels: from subatomic (neutrinos)
to universe (spiral galaxies) scales, but above all, chirality
plays a crucial role at the molecular scale and is therefore
an extensively studied phenomenon in the fields of chemistry,
biochemistry, biology, catalysis and pharmacology. In fact,
life is based on chiral biomolecules4,5. For example, natu-
ral amino acids are almost exclusively found in their left-hand
form (L-amino acids, in biochemistry nomenclature)6. Chiral-
ity can also be present at the supramolecular level. For exam-
ple, α-helices, one of the most important secondary structures
of proteins, are right-handed helices (left-handed α-helices
are rare in nature)6. The three major forms of DNA are
the right-handed A-DNA, the right-handed B-DNA, and the
left-handed Z-DNA7. This remarkable selectivity of nature
is known as biological homochirality4. It is thus important
to develop and apply methods capable of chiral discrimina-
tion. Chiral discrimination for crystals can be done by using
X-ray diffraction experiments8. On the other hand, most of
the chemistry actually occurs in liquid or gas phases. It is thus

necessary to consider other techniques for chiral discrimina-
tion in the fluid phases. Although NMR is an achiral method,
this spectroscopy is widely used for a chiral molecule in so-
lution. However, the chiral discrimination is obtained either
through the use of a chiral derivatizing or a chiral solvating
agent9.
When a solution contains an enantiomeric excess of a chi-
ral molecule, the enantiomers of that molecule can be dis-
tinguished using different chiroptical spectroscopies10. These
spectroscopies are based on the optical activity (OA) phenom-
ena. In fact, in all chiroptical spectroscopies, two opposite
enantiomers of the same molecule show the same degree of
optical activity but with opposite signs11. Among the chirop-
tical spectroscopies that probe the electronic degrees of free-
dom of a chiral molecule we can find optical rotation (OR)12,
electronic circular dichroism (ECD)13,14 and circularly polar-
ized luminescence (CPL)15. On the other hand, chirality can
also be detected by probing the vibrational degrees of freedom
of a chiral molecule. Vibrational circular dichroism (VCD)16

and Raman optical activity (ROA)17 are two examples of vi-
brational chiroptical spectroscopies. OR and ECD are rou-
tinely used to determine the absolute configuration of chiral
molecules, their enantiomeric purity, or the secondary struc-
ture of proteins in solution10,18. All these spectroscopies are
linear optics techniques because the incident field interacts
with matter by a one-photon interaction process and the to-
tal intensity of the signal depends linearly on the intensity of
the incident field. Nevertheless, linear chiroptical techniques
suffer from the fact that the chiral response is usually very
small compared to the total achiral response.
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With the invention of lasers, access to high-intensity light
enabled the discovery of nonlinear optics (NLO)19,20. Two-
photon (TPCD) and the three-photon (3PCD) circular dichro-
ism are examples of nonlinear counterpart of ECD21–25. Sum
frequency generation (SFG) and second-harmonic generation
(SHG) of chiral surfaces are other recently developed nonlin-
ear chiroptical techniques26,27. In comparison to linear chi-
roptical techniques, the advantages brought by NLO for the
detection of chirality-related events lies in its high level of
chiral sensitivity, surface-enhanced signals, and large excita-
tion wavelengths.
In 1979 Andrews and Thirunamachandran published the the-
oretical foundations of a novel nonlinear chiroptical method,
namely the hyper-Rayleigh scattering optical activity (HRS-
OA)28. The same article contains also the theory concerning
hyper-Raman optical activity28. HRS-OA can be viewed as
the chiroptical counterpart of the hyper-Rayleigh scattering
(HRS) phenomena29. Both HRS and HRS-OA are incoher-
ent second-order NLO processes by which two photons with
the same frequency ω interact with a non-centrosymmetric
molecule to create a single photon at the second harmonics,
i.e., at the frequency 2ω29,30. In HRS experiments the inci-
dent light is linearly polarized while in HRS-OA it is circu-
larly polarized, which enables the detection of optical activity
by chiral molecules.
The HRS-OA phenomenon has been observed only 40 years
after its theoretical development. The first experimental evi-
dence of HRS-OA was reported in 2019 by Collins and col-
laborators for liquid solutions of silver nanohelices31–33. In
2020, Verrault and collaborators measured the HRS-OA for
aromatic oligoamide foldamers in solution34. This was the
first application of HRS-OA spectroscopy on molecular sys-
tems. Moreover, in this article, the authors showed that the
second-order NLO chiral differences (i.e., between a pair of
enantiomers) attain 10−1 − 10−2 of the total HRS signal, in
deep contrast with the linear chiroptical contributions (which
are of the order of 10−3 −10−4 for ECD)34. These pioneering
works paved the way to the development of an effective non-
linear chiroptical method allowing for the discrimination of
chiral molecular and supramolecular systems in solution with
high-sensitivity and low incident energy. The use of low en-
ergy photons is important for biological samples which can
be destroyed or altered by UV-Vis light. While in this paper
we are interested in HRS-OA only for the second-harmonic,
it should be noticed that higher harmonics are in principle
possible35,36. In fact, the first observation of OA in third-
harmonic Rayleigh scattering (THRS) (three incident photons
of frequency ω generate a single emitted photon of frequency
3ω) was reported in 2021 by Ohnoutek and collaborators37.
The correlation between the absolute configuration of a
molecule and the signs obtained in experimental chiroptical
spectra (like ECD) is not always direct when experimental
references are missing. The identification of the correct enan-
tiomer can however be facilitated by means of theoretical sim-
ulations (based on quantum chemistry calculations) of the chi-
roptical spectroscopy38–44. For this reason, we decided to im-
plement the necessary equations for the simulation of HRS-
OA experiments. In the first part of this paper we perform

a re-derivation of the necessary equations that describe the
molecular origin of HRS-OA phenomenon (using the semi-
nal article by Andrews and Thirunamachandran as a starting
point28). We show how these molecular responses correlate
with the (measured) scattered intensities and with the exper-
imental set-ups. In the second part, the gauge-origin depen-
dence of the theory is discussed. Finally, in the last part, for
the first time, the HRS-OA quantities of a chiral molecule are
calculated using quantum chemistry methods (here, at the TD-
DFT level) and analysed.

II. THEORY OF HRS-OA

In this section we discuss the theory of HRS-OA starting
in the macroscopic frame, i.e., where the experiments are per-
formed, then moving to the molecular frame, i.e., from where
the observed scattered intensities originate.

A. Macroscopic frame

From a phenomenological point of view, the HRS-OA phe-
nomenon is an incoherent elastic scattering process based on
a three-photon mechanism exerted under non resonant condi-
tions (Figure 1). In particular, two identical incident photons,
r and t, are absorbed (annihilated) by the molecule, thus pop-
ulating a virtual excited state. This excitation is simultane-
ously followed by emission (creation) of a scattered photon s

at the second harmonic. To completely define the state of the
incident and the scattered photons, we employ the following
notations:

r ≡ λ r(k̂,ω), (1)

t ≡ r, (2)

s ≡ µ s(k̂′,ωσ = 2ω), (3)

where k̂ (k̂′), ω (ωσ ) and λ (µ) are the unitary wavevector,
angular frequency and polarization state of the incident (scat-
tered) photon, respectively. HRS-OA experiments measures
the differential scattering ratio:

∆µ(θ) =
RIµ(θ)−

LIµ(θ)
RIµ(θ)+ LIµ(θ)

, µ =‖,⊥, (4)

where L/R refers to left/right circularly polarized incident
light, θ is the convergence angle defined by cos(θ) =−k̂ · k̂′,
and µ , the polarization of the scattered photon, is usually re-
solved into its parallel (‖) and perpendicular (⊥) components
with respect to the scattering plane defined by the unitary
wavevectors k̂ and k̂′ (Figure 2)28,29. From a theoretical and
computational point of view, we are interested in the molecu-
lar origins of the scattered intensities present in eq. (4), their
analytical dependence on the scattering angle θ , and on the
polarization µ .
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S0
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ω

ω

ωσ = 2ω

FIG. 1: The HRS-OA mechanism for two identical incident
photons. Notice that the excitation with the two photons is
not in a resonant or near-resonant region of the system (i.e.,

2ω ≪ E(S1)−E(S0)).

k̂′

‖s

θ

Y

X

Z

k̂

⊥s

FIG. 2: The (X,Y,Z) laboratory (macroscopic) frame
adopted in this work. The figure also defines the scattering

plane (in grey) and the scattering angle θ .

B. Molecular origins of HRS-OA

The theory of HRS-OA has been developed by Andrews
and Thirunamachandran within the quantum electrodynam-
ics (QED) framework and by employing the Power-Zienau-
Woolley (PZW) multipolar Hamiltonian45–52. In QED, both
the molecular and the radiation sub-systems are quantized.
The PZW Hamiltonian of the total system reads51:

Ĥ = (Ĥmol + Ĥrad)+ Ĥint ≡ Ĥ0 + Ĥint, (5)

where Ĥmol is the molecular Hamiltonian, Ĥrad is the Hamil-
tonian for the radiation field. Together they define the unper-
turbed Hamiltonian Ĥ0 whose eigenstates are the molecule-
field product states |mol〉 |rad〉= |mol; rad〉 (Hilbert states for
the material and Fock states for the field)51. The interac-
tion Hamiltonian, Ĥint, describes the perturbations that al-
low transitions within the eigenstates of Ĥ0

51. In general,
the theoretical treatment of optical activity requires to go
beyond the electric-dipole approximation in the interaction
Hamiltonian53. In fact, for HRS-OA, the interaction Hamil-
tonian is28,54:

Ĥint =−(ε−1
0 µ̂id̂

⊥
i + m̂ib̂i + ε−1

0 Q̂i j∇ jd̂
⊥
i ), (6)

where µ̂µµ and Q̂ are the electric-dipole and electric-quadrupole
operators, respectively, and m̂ is the magnetic-dipole operator;
d̂⊥ is the transverse electric displacement field operator and b̂

is the magnetic field operator; i and j indices register Carte-
sian axes, (X,Y,Z), of the macroscopic frame, ε0 is the vac-
uum permittivity factor and the Einstein summation conven-
tion over repeated indices is adopted in eq. (6) and throughout
this work. In eq. (6), the first term is the leading interaction
term while the last two terms are usually two to three orders of
magnitude smaller (a factor typically of the order of the fine
structure constant α)55.
The matrix element (quantum amplitude) for the HRS-OA
phenomena, which is a three-photon process, can be obtained
by third-order time-dependent perturbation theory48,54:

M f i = ∑
I,II

〈 f |Ĥint|II〉〈II|Ĥint|I〉〈I|Ĥint|i〉

(Ei −EII)(Ei −EI)
(7)

where |i〉 and | f 〉 are the initial and final states of the
system (eigenstates of Ĥ0) while |I〉, |II〉 are intermediate
states. The matrix elements for a process of any order
can be obtained with the help of time-ordered (Feynman)
diagrams47–49,51,54,55. By looking at eq. (6), it is clear that
matrix elements containing mixed interaction types can ap-
pear in eq. (7). In fact, for HRS-OA phenomena, the matrix
element contains five contributions28:

M f i = M f i(β )+M f i(
α J)+M f i(

β J)+M f i(
α K)+M f i(

β K).
(8)

The first matrix element in the rhs of eq. (8) contains three
electric-dipole interactions and it is the dominant contribu-
tion to M f i. It is also the leading (and unique) term in
hyper-Rayleigh and in hyper-Raman scattering processes29.
The second and the third matrix elements of eq. (8) con-
tain two electric-dipole interactions and one magnetic-dipole
interaction. The fourth and the fifth matrix elements of eq.
(8) contain two electric-dipole interactions and one electric-
quadrupole interaction. The last four terms in eq. (8) can be
seen as corrections to the first28.
The explicit expressions for the matrix elements present in eq.
(8) are28:

M f i(β )=−id µ si
L/Rr j

L/Rrk βi jk, (9)

M f i(
α J)=−id (k̂′× µ s)i

L/Rr j
L/Rrk

α Ji jk, (10)
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M f i(
β J)=−id (∓i) µ si

L/Rr j
L/Rrk

β Ji jk, (11)

M f i(
α K)=−d µ si

L/Rr j
L/Rrk k′l

α Ki jkl , (12)

M f i(
β K)= d µ si

L/Rr j
L/Rrk kl

β Ki jkl , (13)

L/Rr and µ s are the polarization vectors for the (two identical)
incident and scattered photons, respectively, and k̂ and k̂′ are
the unitary wavevector of the incident and scattered photons,
respectively. In the r.h.s. of eqs. (9)-(13), the product between
the elements of the polarization vectors and wavevectors de-
fines the polarization tensor of the matrix elements. The last
factor on the r.h.s of eqs. (9)-(13), is the molecular tensor of
the matrix element. The tensor βi jk is the pure electric-dipole
(dynamic) first hyperpolarizability. The tensors α Ji jk and β Ji jk

are the mixed electric-dipole, electric-dipole, magnetic-dipole
(dynamic) first hyperpolarizabilities. In α Ji jk and β Ji jk the
magnetic-dipole interaction is in emission and in absorption,
respectively. The tensors α Ki jkl and β Ki jkl are the mixed
electric-dipole, electric-dipole, electric-quadrupole (dynamic)
first hyperpolarizabilities. In α Ki jkl and β Ki jkl the electric-
quadrupole interaction is in emission and in absorption, re-
spectively. In eq. (11) the upper and lower signs go with left
(L) and right (R) circular polarization, respectively28. Finally,
in eqs. (9)-(13) the prefactor d reads:

d =

[

8π3h̄3ω2ωσ n(n−1)
V 3

]1/2

, (14)

where V is the quantization volume, n and (n − 1) are
radiation-state numbers deriving from the quantization of the
radiation field49.
By looking at the expressions of the matrix elements, eqs.
(9)-(13), one can notice that the polarization tensors are al-
ways ( j,k)-symmetric, moreover, the polarization tensors are
in (total) tensor contraction with the corresponding molec-
ular tensors. Consequently, it is mathematically allowed
to consider only the ( j,k)-symmetric part of the molecular
tensors βi jk, α Ji jk, β Ji jk, α Ki jkl , and β Ki jkl

55–57. This is
the strategy adopted in the seminal article by Andrews and
Thirunamachandran28 and it is adopted in this work also.
Moreover, because of the symmetry properties of the electric-
quadrupole operator, the α Ki jkl tensor is also symmetric and
traceless in its (i, l)-indices, vide infra. Finally, from here,
in the following, the indices of the molecular tensors will be
indicated by Greek letters (α,β ,γ,δ or λ ,µ,ν ,o,π,ρ,σ ) to
emphasize the fact that they belong to the molecular frame.
The molecular tensors in eqs. (9)-(13) can be obtained from
response theory58,59. It is important to emphasize that their
detailed forms are fully consistent with those delivered by re-
sponse theory, which is based on a semiclassical approach of
light-matter interactions59. Ongoing from the QED frame-
work to response theory is not straightforward and consider-
able intricacies need to be taken into account51,55.
Using the language of response theory, one can associate
the different dynamic first hyperpolarizabilities present in
eqs. (9)-(13) to specific cases of a generic quadratic re-
sponse function. In response theory, and by using the B-
convention60,61, the expression for a generic quadratic re-

sponse function is58,62–64:

〈〈Âα ; B̂β ,Ĉγ〉〉ω1,ω2 =
1
2 ∑P−σ ,1,2 ∑

m,n

′
A0m

α B
mn
β Cn0

γ

(Em0 −Eσ )(En0 −E2)
,

(15)
where Â, B̂ and Ĉ are quantum-mechanical operators, ω1 and
ω2 are the frequencies of the two incident photons and they
are associated with the operators B̂ and Ĉ, respectively, and
ωσ = ω1 +ω2. In HRS-OA, ω1 = ω2 = ω . Moreover, Em0 =
Em −E0 and Eσ = h̄ωσ . The notation A0m

α B
mn
β Cn0

γ is a short-

hand notation for 〈0|Âα |m〉〈m|B̂β |n〉〈n|Ĉγ |0〉 where B̂β is the
fluctuation of the operator B̂ and it is equal to B̂β −〈0|B̂β |0〉.
The subscripts α , β , and γ register a generic Cartesian axis
of the microscopic frame (x,y,z), |0〉 is the ground electronic
state, while |m〉 and |n〉 are excited electronic states and the
prime next to the summation symbol excludes the ground state
from the summation (i.e., |m〉 and |n〉 6= |0〉). Finally, the
operator P−σ ,1,2 generates the permutation of the operator-
frequency pairs (Âα , −ωσ ), (B̂β , ω1), and (Ĉγ , ω2), thus gen-
erating a total of 6 permutations.
Following the article by Andrews and Thirunamachandran, by
performing suitable substitutions on the operators Â, B̂, and Ĉ

in eq. (15) one can obtain the expression for the hyperpolariz-
abilities in eqs. (9)-(13):

βαβγ = 〈〈µ̂α ; µ̂β , µ̂γ〉〉ω,ω , (16)
α Jαβγ = 〈〈m̂α ; µ̂β , µ̂γ〉〉ω,ω , (17)
β Jαβγ = 〈〈µ̂α ; m̂β , µ̂γ〉〉ω,ω + 〈〈µ̂α ; µ̂β , m̂γ〉〉ω,ω (18)

α Kαβγδ = 〈〈Q̂αδ ; µ̂β , µ̂γ〉〉ω,ω , (19)
β Kαβγδ = 〈〈µ̂α ; Q̂βδ , µ̂γ〉〉ω,ω + 〈〈µ̂α ; µ̂β , Q̂γδ 〉〉ω,ω (20)

In eqs. (16)-(18), µ̂α , m̂α and Q̂αβ are the electric-dipole
moment, the magnetic-dipole moment, and the electric-
quadrupole moment operators, respectively. These are given
by55,62,65–69:

µ̂α = ∑
i

qi r̂α,i, (21)

m̂α =
1
2c

∑
i

qi

mi

l̂α,i =
1
2c

∑
i

qi

mi

εαβγ(r̂β p̂γ)i, (22)

Q̂αβ =
1
2 ∑

i

qi(r̂α,i r̂β ,i −
1
3

r̂γ,ir̂γ,iδαβ ), (23)

where qi and mi are the charge and the mass of i-th parti-
cle, respectively, r̂α,i, p̂α,i (= −ih̄(∂/∂ rα,i)) and l̂α,i are the
position, the linear momentum, and the angular momentum
operators in a generic Cartesian direction α of the molec-
ular frame (α ∈ (x,y,z)) for the i-th particle, respectively;
εαβγ is the Levi-Civita tensor and c is the speed of light
(c = (1/α)a0Eh/h̄ ≈ 137 in atomic units). For electrons and
atomic units we have me = h̄ = e = Eh = 1 and qe = −e

where e is the unit charge. In eq. (21) we used the length
representation for the electric-dipole operator µ̂α . For real
electronic wavefunctions and for non-resonant conditions, the
integrals 〈m|µ̂α |n〉 are real while the integrals 〈m|m̂α |n〉 are
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imaginary28. Consequently, as we are in non-resonant condi-
tions, the βαβγ , α Kαβγδ , and β Kαβγδ tensors are real, while
the mixed electric-dipole magnetic-dipole first hyperpolariz-
abilities, i.e., the α Jαβγ and β Jαβγ tensors, are imaginary28.
All the molecular tensors in eqs. (16)-(20) are (β ,γ)-
symmetric. In particular, for two identical incident photon fre-
quencies, the response functions for βαβγ , α Jαβγ , and α Kαβγδ

molecular tensor are intrinsically (β ,γ)-symmetric. On the
other hand, the response functions for the β Jαβγ , and β Kαβγδ

tensors have been symmetrized. Indeed, it is important to no-
tice that if the operators B̂ and Ĉ are not identical, eq. (15)
does not generate a (β ,γ)-symmetric tensor even for two iden-
tical incoming photons frequencies, i.e., 〈〈Âα ; B̂β ,Ĉγ〉〉ω,ω 6=

〈〈Âα ; B̂γ ,Ĉβ 〉〉ω,ω . However, as said before, β Jαβγ must be
symmetric in its (β ,γ) indices28. For this reason, we used eq.
(18) to symmetrize the β Jαβγ quantities. Moreover, thanks to
the permutation properties of quadratic response functions, for
two identical incoming photons frequencies we can re-write
eq. (18) as:

β Jαβγ = 〈〈µ̂α ; µ̂β , m̂γ〉〉ω,ω + 〈〈µ̂α ; µ̂γ , m̂β 〉〉ω,ω . (24)

This means that β Jαβγ symmetric in its (β ,γ)-indices can
be obtained from a single quadratic response function sym-
metrized in its (β ,γ)-indices.
The symmetrization of the β Kαβγδ tensor suffers from the

same problem as the β Jαβγ tensor does. In fact, also in this
case, the two light-matter interactions in the absorption pro-
cess for β Kαβγδ are not identical, i.e., B̂ 6= Ĉ. Using similar
arguments adopted in the previous paragraph, the β Kαβγδ ten-
sor symmetric in its (β ,γ)-indices is obtained as the sum of
two tensors, see eq. (20). The first tensor in the r.h.s. of eq.
(20) is obtained from eq. (16) with µ̂β → Q̂βδ , while the sec-
ond tensor in the r.h.s. of eq. (20) is obtained from eq. (16)
with µ̂γ → Q̂γδ . This procedure is used in ref.28.
Finally, as done before, thanks to the permutation properties
of the quadratic response functions, for two identical incom-
ing photons we can re-write eq. (20) as:

β Kαβγδ = 〈〈µ̂α ; µ̂γ , Q̂βδ 〉〉ω,ω + 〈〈µ̂α ; µ̂β , Q̂γδ 〉〉ω,ω (25)

This means that β Kαβγδ symmetric in its (β ,γ)-indices can
be obtained from a single quadratic response function sym-
metrized in its (β ,γ)-indices.

C. The scattered intensities

By applying the Fermi golden rule, it emerges that
each intensity term in eq. (4) is given by five different
contributions28:

I =
|k′|3V N

4π h̄
· 〈|M f i(β )+M f i(

α J)+M f i(
β J)+M f i(

α K)+M f i(
β K)|2〉 (26)

and

I ≈ I(〈β 2〉)+ I(〈β α J〉)+ I(〈β β J〉)+ I(〈β α K〉)+ I(〈β β K〉). (27)

where N is the number of scatters of the sample and the sym-
bol 〈〉 denotes rotational averaged quantities (HRS-OA exper-
iments are performed in the fluid phase). The first term in the
rhs of eq (27) is the dominant contribution to the total scat-
tered intensity and it is always positive. The next four terms

are corrections (interferences) and can be either positive or
negative. Ongoing from eq. (26) to eq. (27), the small terms
containing interferences between the matrix elements of the
mixed interactions have been neglected. The explicit expres-
sions for the scattered intensities appearing in eq. (27) are:

I(〈β 2〉) = D si
L/Re j

L/Rek sl
R/Lem

R/Len βλ µν βoπρ I
(6)
i jklmn;λ µνoπρ

, (28)

I(〈β α J〉) =−2 D si
L/Re j

L/Rek (k̂
′× s)l

R/Lem
R/Len βλ µν

α Joπρ I
(6)
i jklmn;λ µνoπρ

, (29)

I(〈β β J〉) =−2 D si
L/Re j

L/Rek · (±i) sl
R/Lem

R/Len βλ µν
β Joπρ I

(6)
i jklmn;λ µνoπρ

, (30)

I(〈β α K〉) = 2i D si
L/Re j

L/Rek sl
R/Lem

R/Len k′p βλ µν
α Koπρσ I

(7)
i jklmnp;λ µνoπρσ

, (31)

I(〈β β K〉) =−2i D si
L/Re j

L/Rek sl
R/Lem

R/Len kp βλ µν
β Koπρσ I

(7)
i jklmnp;λ µνoπρσ

, (32)

where the prefactor D is:

D =
2π

c
N|k′|4g(2)Ī2

0 . (33)

where g(2) and Ī2
0 are the degree of second order coherence

and mean irradiance of the incident beam, respectively. The
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prefactor D is not further taken into account in the following
work because it can be factorized in both numerator and de-
nominator of eq. (4). In eqs. (28)-(30), I

(6)
i jklmn;λ µνoπρ

and

I
(7)
i jklmnp;λ µνoπρσ

are the isotropic tensors of rank 6 and rank

7, respectively70. In eq. (30), the upper and lower signs
go with L-CPL and R-CPL, respectively. The presence of
an isotropic tensor is necessary in order to obtain rotational-
averaged scalar quantities (i.e., the scattered intensities). The
mathematical details concerning the rotational averaging pro-
cedure for HRS-OA are provided in the Supporting Informa-
tion (SI) file. The final expressions for the HRS-OA circular
differential scattering ratios, eq. (4) are:

∆‖(θ) =
a+bcos(θ)+ ccos2(θ)+d cos3(θ)

f +gcos2(θ)
, (34)

and

∆⊥(θ) =
a+(b+d)cos(θ)+ c

f +g
, (35)

where a, b, c, d, f and g terms contain the scalar molecu-
lar invariants of I(〈β 2〉), I(〈β α J〉), I(〈β β J〉), I(〈β α K〉) and
I(〈β β K〉), and are given by:

a =−4Im(4βλλ µ
β Jµνν −6βλλ µ

β Jνµν −5βλ µµ
β Jλνν +4βλ µµ

β Jνλν +11βλ µν
β Jλ µν −6βλ µν

β Jµλν)

+2|k|(4βλ µµ
β Koπoσ ελπσ −5βλ µµ

β Koππσ ελoσ +6βλ µµ
β Koπρρ ελoπ −10βλ µν

β Koνoσ ελ µσ

+5βλ µν
β Koνµσ ελoσ +2βλ µν

β Koπoν ελ µπ +18βλ µν
β Koπνoελ µπ −10βλ µν

β Koπνµ ελoπ

−4βλ µν
β Koππν ελ µo +6βλ µν

β Kνππσ ελ µσ −8βλ µν
β Kνπρρ ελ µπ)

(36)

b =−28Im(βλλ µ
α Jνµν −βλ µν

α Jµλν)

+4|k′|(2βλ µµ
α Koπρρ ελoπ −3βλ µν

α Koνρρ ελ µo −3βλ µν
α Koπνµ ελoπ

+2βλ µν
α Koππν ελ µo −6βλ µν

α Kνπρρ ελ µπ)
(37)

c =+4Im(6βλλ µ
β Jµνν −9βλλ µ

β Jνµν −4βλ µµ
β Jλνν +6βλ µµ

β Jνλν +6βλ µν
β Jλ µν −9βλ µν

β Jµλν)

+ |k|(16βλ µµ
β Koπoσ ελπσ −13βλ µµ

β Koππσ ελoσ +10βλ µµ
β Koπρρ ελoπ −26βλ µν

β Koνoσ ελ µσ

+13βλ µν
β Koνµσ ελoσ +28βλ µν

β Koνρρ ελ µo +22βλ µν
β Koπoν ελ µπ −26βλ µν

β Koπνoελ µπ

+2βλ µν
β Koπνµ ελoπ −16βλ µν

β Koππν ελ µo +10βλ µν
β Kνππσ ελ µσ −4βλ µν

β Kνπρρ ελ µπ)

(38)

d =−2|k′|(5βλ µµ
α Koπρρ ελoπ +3βλ µν

α Koνρρ ελ µo +3βλ µν
α Koπνµ ελoπ

+5βλ µν
α Koππν ελ µo −15βλ µν

α Kνπρρ ελ µπ) (39)

f =+2(8βλλ µ βµνν −6βλλ µ βνµν −5βλ µµ βλνν +11βλ µν βλ µν −6βλ µν βµλν)
(40)

g =−2(12βλλ µ βµνν −9βλλ µ βνµν −4βλ µµ βλνν +6βλ µν βλ µν −9βλ µν βµλν)
(41)

The a, b, c, d, f and g quantities are intensity terms and they
contain the molecular invariants, which involve the molecular
properties at the origin of the HRS-OA phenomena. In par-
ticular, the a and c terms contain scalar molecular invariants
of I(〈β β J〉) (a total of 6 invariants) and I(〈β β K〉) (a total of
12 invariants, 11 in a and 12 in c), which are associated with
different numerical coefficients. The b term contains molecu-

lar invariants of I(〈β α J〉) (a total of 2) and I(〈β α K〉) (a total
of 5), the term d contains molecular invariants of I(〈β α K〉) (a
total of 5) and finally, f and g terms contain molecular invari-
ants from I(〈β 2〉) (both contain a total of 5 invariants). Also
in this case, the scalar molecular invariants in f and g are as-
sociated with different numerical coefficients.
Since they vanish for achiral molecules, we can identify the a,
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b, c, and d terms as chiral contributions while f and g terms
are achiral ones to eq. (34) and (35). It is interesting to no-
tice that only two invariants of I(〈β α J〉) are contributing to
the b term and, the analytic dependence on b is the same for
∆‖(θ) and ∆⊥(θ). Finally, the numerators of both eqs. (34)
and (35) contain only the chiral terms a, b, c, and d which
have contributions from the mixed electric-magnetic dipole or
mixed electric-dipole electric-quadrupole interactions. This
means that the pure electric-dipole contribution (β 2 terms) is
independent on the handedness of incident photons and has
no contribution in the numerator of eq. (4). In fact, the de-
nominators in eqs. (34) and (35) contain only f and g terms,
associated only with the pure electric first hyperpolarizability
β . This means that for R- and L-CPL the β α J, β β J, β α K,
and β β K contributions for each polarization cancel out in the
denominator.
Another important fact is that the invariants of I(〈β α K〉) and
I(〈β β K〉) are scaled by |k′| and |k|, respectively, i.e., the mag-
nitude of the wavevectors for the emitted and the absorbed
photons (|k′| = 2|k|). This means that close to the static limit
(i.e., at low frequencies) their impact could be considered neg-
ligible.
It is important to notice that when the wavevectors k̂ and k̂′

point in the same or in opposite directions (i.e., when θ = 180°
or 0°, respectively) then ∆‖ and ∆⊥ are identical.

D. The origin dependence

The calculated molecular properties should be independent
of the choice of the gauge origin (O). This requirement is
automatically fulfilled when the one-electron basis is com-
plete. For truncated basis sets origin independence is not
guaranteed71. If one changes the Cartesian origin O → O′ =
O+R one obtains the following shift on the position operator
for the i-th particle:

r̂i → r̂′i = r̂i −R. (42)

This change in the gauge-origin is reflected into the quantum
mechanical operators. For example, the electric-dipole opera-
tor changes as69:

µ̂α → µ̂ ′
α = µ̂α −Rα ∑

i

qi. (43)

For neutral systems, a change in the gauge origin does not af-
fect µ̂α (in fact, ∑i qi = 0). Consequently, the pure-electric
properties like, the linear and nonlinear (hyper)polarizabilites
(ααβ , βαβγ , γαβγδ , etc...) are origin-independent even for
computations with finite basis sets. For charged species, the
origin independence is guaranteed by the fluctuation dipole
operator, B̂β , in eq. (15). Upon change in the gauge-origin O,
the shift on the magnetic-dipole operator reads69:

m̂α → m̂′
α = m̂α −∑

i

qi

2mic
εαβγ Rβ p̂γ,i

= m̂α −
1
2c

εαβγ Rβ µ̂
p
γ ,

(44)

where

µ̂
p
γ = ∑

i

qi

mi

p̂γ,i, (45)

is the electric-dipole operator in the so-called velocity form72.
This shift propagates into the mixed electric-magnetic dipole
first hyperpolarizabilities α Jλ µν and β Jλ µν . In particular, the
shift in α Jλ µν reads:

α Jλ µν → α J′λ µν = α Jλ µν +∆(α Jλ µν) (46)

where

∆(α Jλ µν) =−
1
2c

ελβγ Rβ 〈〈µ̂
p
γ ; µ̂µ , µ̂ν〉〉, (47)

At the same time, the shift in β Jλ µν reads:

β Jλ µν → β J′λ µν = β Jλ µν +∆(β Jλ µν) (48)

where

∆(β Jλ µν) =−
1
2c

ενβγ Rβ 〈〈µ̂λ ; µ̂µ , µ̂
p
γ 〉〉

−
1
2c

εµβγ Rβ 〈〈µ̂λ ; µ̂ν , µ̂
p
γ 〉〉.

(49)

Eqs. (46) and (48) show the linear dependence of the α Jλ µν

and β Jλ µν shifts on vector R. Consequently, the larger the
diplacement vector R, the larger will be the shifts on the mixed
electric-magnetic dipole first hyperpolarizabilites α Jλ µν and
β Jλ µν . These shifts, eqs. (46) and (48), were then verified
numerically; see Sec. III B 3 for further details. By using ap-
proximate wavefunctions and by using finite basis sets, the
origin-dependence of the mixed electric-magnetic dipole first
hyperpolarizabilities α Jλ µν and β Jλ µν is present. This issue
can be solved, for example, by using London atomic-orbitals
(also named gauge independent atomic orbital, GIAO). In par-
ticular, the use of London orbitals ensures that the shifts in eq.
(47) and eq. (49) will involve the electric-dipole operators
in the length gauge only, even with finite basis sets, and these
will exactly cancel with the origin dependences of the electric-
quadrupole first hyperpolarizabilities, α Kλ µνo, and β Kλ µνo,
that are discussed in the next paragraph71,73,74.
At the same time, the shift upon change in the gauge-origin
on the traceless electric-quadrupole operator reads67:

Q̂αβ → Q̂′
αβ =Q̂αβ +∑

i

(−
1
2

Rα r̂β ,iqi −
1
2

Rβ r̂α,iqi

+
1
3

Rγ r̂γ,iqiδαβ +
1
2

Rα Rβ qi −
1
6

Rγ Rγ qiδαβ )

(50)

For a neutral system, the last two terms in the right hand side
of eq. (50) are zero because the vector R is not a quantum-
mechanical operator (it is just a multiplicative factor of the
system eigenfunctions) and, again, ∑i qi = 0. Consequently,
for a neutral system, the shift on Q̂αβ propagates into α Kλ µνo

as:

α Kλ µνo →
α K′

λ µνo =
α Kλ µνo +∆(α Kλ µνo) (51)
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where

∆(α Kλ µνo) =−
1
2

Rλ 〈〈µ̂o; µ̂µ , µ̂ν〉〉−
1
2

Ro〈〈µ̂λ ; µ̂µ , µ̂ν〉〉

+
1
3

Rγ〈〈µ̂γ ; µ̂µ , µ̂ν〉〉δλo.

(52)

At the same time, the shift in β Kλ µνo reads:

β Kλ µνo →
β K′

λ µνo =
β Kλ µνo +∆(β Kλ µνo) (53)

where

∆(β Kλ µνo) =−
1
2

Rµ〈〈µ̂λ ; µ̂ν , µ̂o〉〉−
1
2

Ro〈〈µ̂λ ; µ̂ν , µ̂µ〉〉

+
1
3

Rγ〈〈µ̂λ ; µ̂ν , µ̂γ〉〉δµo

−
1
2

Rν〈〈µ̂λ ; µ̂µ , µ̂o〉〉−
1
2

Ro〈〈µ̂λ ; µ̂µ , µ̂ν〉〉

+
1
3

Rγ〈〈µ̂λ ; µ̂µ , µ̂γ〉〉δνo

(54)

as for the previous case, the shift on the α Kλ µνo and β Kλ µνo

tensors are linearly dependent on the components of the dis-
placement vector R. These shifts, eqs. (51) and (53), were
then verified numerically; see Sec. III B 3 for further details.

1. The origin-independence of the theory for exact
wavefunctions

The theory of HRS-OA can be proved to be origin-
independent for exact wavefuntion if one consider the follow-
ing commutator72:

[µ̂α , Ĥmol] = iµ̂
p
α , (55)

and the following relations for the quadratic response
functions58,72,75:

ωσ 〈〈µ̂λ ; µ̂µ , µ̂ν〉〉ω1,ω2 = i〈〈µ̂ p

λ
; µ̂µ , µ̂ν〉〉ω1,ω2 (56)

and

ω2〈〈µ̂λ ; µ̂µ , µ̂ν〉〉ω1,ω2 =−i〈〈µ̂λ ; µ̂µ , µ̂
p
ν 〉〉ω1,ω2 , (57)

which are valid for exact wavefunctions and variational wave-
functions in the limit of a complete basis set. For HRS-OA,
ω1 = ω2 = ω , and ωσ = 2ω . Consequently, eq. (56), and eq.
(57) enable one to re-write the ∆(α/β Jλ µν) shifts appearing
in eq. (47) and in eq. (49) with the full-length form of the
electric-dipole first hyperpolarizability (i.e., βλ µν ):

∆(α Jλ µν) =
1
2c

ελβγ Rβ 2ωi〈〈µ̂γ ; µ̂µ , µ̂ν〉〉

=
1
2
|k′|ελβγ Rβ i〈〈µ̂γ ; µ̂µ , µ̂ν〉〉,

(58)

and

∆(β Jλ µν) =−
1
2c

ενβγ Rβ ωi〈〈µ̂λ ; µ̂µ , µ̂γ〉〉

−
1
2c

εµβγ Rβ ωi〈〈µ̂λ ; µ̂ν , µ̂γ〉〉

=−
1
2
|k|ενβγ Rβ i〈〈µ̂λ ; µ̂µ , µ̂γ〉〉

−
1
2
|k|εµβγ Rβ i〈〈µ̂λ ; µ̂ν , µ̂γ〉〉,

(59)

where |k′| = 2ω/c, and |k| = ω/c. By using eqs. (58) and
(59), one can prove, after expanding all the scalar molecular
invariants present in eqs. (36)-(39), that:

aO′ −aO = 〈β∆(β J)〉a + |k|〈β∆(β K)〉a = 0, (60)

bO′ −bO = 〈β∆(α J)〉b + |k′|〈β∆(α K)〉b = 0, (61)

cO′ − cO = 〈β∆(β J)〉c + |k|〈β∆(β K)〉c = 0, (62)

dO′ −dO = |k′|〈β∆(α K)〉d = 0, (63)

where the symbol 〈β∆(β J)〉a signifies that the sum of all
the scalar molecular invariants deriving from the gauge-origin
shifts on the β Jλ µν tensor appearing in the a term, and simi-
larly for the other symbols.
Consequently, the expressions for the a, b, c, and d terms of
HRS-OA obtained at two different gauge origins O and O′

are identical for exact wavefunctions, thus proving the origin-
independence of the theory (i.e., there is not dependence on
vector R when the gauge origin is O′ = O+R).

III. APPLICATIONS

A. Computational details

The ground state geometries of R-methyloxirane has been
optimized using Gaussian16 (version RevA.03)76 using Den-
sity Functional Theory (DFT) and in particular by employing
the CAM-B3LYP range-separated hybrid functional77 and the
6-311G(d,p) basis set (the Cartesian coordinates of the opti-
mized geometry are provided in the Supporting Information
file). To ensure the nature of the stationary state, a vibrational
frequency calculation at the optimized geometry has been per-
formed (all frequencies are positive). The S enantiomer of
methyloxirane has been obtained from the optimized geome-
try of R-methyloxirane by the inversion operation (î).
The molecular tensors in eqs. (9)-(13) have been obtained
from the quadratic-response functions calculated at the TD-
DFT level78 with the functional CAM-B3LYP and using the
quantum chemistry software DALTON (version 2020.0)79. In
particular, the electric-dipole moment, the magnetic-dipole
moment, and the traceless electric-quadrupole integrals have
been computed using the DIPLEN, ANGMOM, and THETA key-
words, respectively. The relationships between the actual op-
erators in eqs. (21)-(23) and these keywords are25:

µ̂α=−1 ·αDIPLEN (64)
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FIG. 3: The basis set dependence on the a, b, c, d, f and g terms of HRS-OA calculations for R- (left side) and
S-methyloxirane (right side).
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FIG. 4: The basis set dependence of the differential scattering ratios, ∆‖(θ) and ∆⊥(θ), for R- (left side) and S-methyloxirane
(right side).

m̂α=
i

2c
·αANGMOM (65)

Q̂αβ=−
1
3
·αβTHETA (66)

where α,β are generic indices belonging to the molecular
frame (x,y,z). In eqs. (64) and (66) the −1 is due to the charge
of the electron while in eq. (65) the factor i/(2c) is due to the
definition of the magnetic-dipole moment, see eq. (22). Con-
sequently, the quadratic response function for the tensor βαβγ

is obtained as the opposite of the quadratic response func-
tion obtained from DALTON. At this point, the tensor βαβγ

is computed by using eq. (16) and by using the 1/2 multipli-
cation factor in eq. (15). The quadratic response functions for
the tensors α Jαβγ , and β Jαβγ are obtained as (i/2c) times the
corresponding value obtained from DALTON. At this point,
the tensors α Jαβγ and β Jαβγ are computed by using eq. (17)

and (18), respectively, and by applying the 1/2 factor present
in eq. (15). The quadratic response functions for the tensors
α Kαβγδ , and β Kαβγδ are obtained as −1/3 times the corre-
sponding value obtained from DALTON. This 1/3 factor is
due to the fact that the traceless electric-quadrupole opera-
tor is the one defined by Buckingham80 which is three-times
larger than the one defined in eq. (23) which is the one usu-
ally adopted in QED66. At this point, the tensors α Kαβγδ and
β Kαβγδ are computed by using eq. (19) and (20), respec-
tively, and by applying the 1/2 factor present in eq. (15).
All transformations from the molecular tensor components
to the macroscopic rotational-averaged quantities were per-
formed with a homemade code.
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TABLE I: The effect of different basis sets on terms a, b, c, d, f , and g for R-methyloxirane. Values are in atomic units (DFT,
CAM-B3LYP).

Basis set a b c d f g

O

6-31G(d) 3.61 -6.40 -3.54 -0.06 8331.89 15147.14
6-31G(d,p) 3.53 -6.29 -3.60 -0.03 8223.98 15020.68
6-311G(d) 4.36 -7.13 -3.68 -0.83 9742.41 23439.79
6-311G(d,p) 4.18 -6.77 -3.61 -0.80 9496.48 23246.10
6-31+G(d) 4.33 -7.59 -1.76 -0.38 6221.70 14588.00
6-31++G(d,p) 4.41 -6.39 -3.53 -0.63 8514.55 21608.51
6-311+G(d) 4.22 -6.65 -2.29 -0.70 6628.59 14365.32
6-311++G(d,p) 3.66 -5.34 -4.40 -0.66 9426.20 21505.08
cc-pVDZ 5.07 -8.88 -3.88 -0.83 10091.73 20670.94
cc-pVTZ 4.08 -6.89 -3.84 -0.89 7900.53 22149.49
cc-pVQZ 3.36 -5.69 -3.41 -0.42 6400.20 20676.59
aug-cc-pVDZ 3.83 -6.49 -0.94 -0.40 4950.79 13431.49
aug-cc-pVTZ 3.02 -5.24 -1.11 -0.05 4401.12 12746.97
aug-cc-pVQZ 2.93 -5.10 -1.15 -0.07 4276.95 12459.75

O → O′ = O+R

6-31G(d) 3.55 -3.81 -8.68 -0.20 8331.89 15147.14
6-31G(d,p) 3.80 -3.34 -8.30 -0.17 8223.98 15020.68
6-311G(d) 8.92 2.56 -33.59 -1.03 9742.41 23439.79
6-311G(d,p) 9.10 2.80 -27.83 -1.01 9496.48 23246.10
6-31+G(d) 3.39 -19.45 -22.50 -0.64 6221.70 14588.00
6-31++G(d,p) 6.12 -16.65 -23.49 -1.00 8514.55 21608.51
6-311+G(d) 0.92 -8.92 -17.47 -0.97 6628.59 14365.32
6-311++G(d,p) 5.35 -14.55 -12.04 -1.05 9426.20 21505.08
cc-pVDZ 4.71 2.35 -17.47 -1.02 10091.73 20670.94
cc-pVTZ 6.12 3.98 -17.89 -1.09 7900.53 22149.49
cc-pVQZ 3.72 3.05 -12.94 -0.66 6400.20 20676.59
aug-cc-pVDZ 0.93 -5.73 2.80 -0.67 4950.79 13431.49
aug-cc-pVTZ 1.93 -4.35 -0.39 -0.31 4401.12 12746.97
aug-cc-pVQZ 2.41 -4.94 -0.51 -0.32 4276.95 12459.75

O → O′ = O+R + correction

6-31G(d) 3.62 -6.35 -3.53 -0.20 8331.89 15147.14
6-31G(d,p) 3.55 -6.23 -3.58 -0.17 8223.98 15020.68
6-311G(d) 4.39 -7.00 -3.63 -1.03 9742.41 23439.79
6-311G(d,p) 4.20 -6.68 -3.56 -1.01 9496.48 23246.10
6-31+G(d) 4.34 -7.47 -1.78 -0.64 6221.70 14588.00
6-31++G(d,p) 4.42 -6.18 -3.55 -1.00 8514.55 21608.51
6-311+G(d) 4.22 -6.45 -2.31 -0.97 6628.59 14365.32
6-311++G(d,p) 3.66 -5.09 -4.43 -1.05 9426.20 21505.08
cc-pVDZ 5.09 -8.77 -3.85 -1.02 10091.73 20670.94
cc-pVTZ 4.10 -6.89 -3.81 -1.09 7900.53 22149.49
cc-pVQZ 3.37 -5.58 -3.40 -0.66 6400.20 20676.59
aug-cc-pVDZ 3.83 -6.28 -0.97 -0.67 4950.79 13431.49
aug-cc-pVTZ 3.03 -5.16 -1.14 -0.31 4401.12 12746.97
aug-cc-pVQZ 2.93 -5.04 -1.17 -0.32 4276.95 12459.75

B. (R,S)-methyloxirane

1. The basis set convergence

The basis set convergence of the HRS-OA quantities was
assessed by considering methyloxirane. We analyzed the per-
formances of two basis set families: the Poples’s and the Dun-

ning’s basis sets81,82. In particular, for both families, we con-
sidered basis functions with different degrees of polarization
and with or without diffuse functions on heavy and eventually
on hydrogen atoms. The basis set effects on the a, b, c, d, f

and g terms of eqs. (34)-(41) are presented in Figure 3 and
Figure 4 and, only for R-methyloxirane, in Table I. Note that
these terms are quadratic quantities so that the variations as
a function of the basis set size are naturally exalted with re-
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FIG. 5: The effect of changing the gauge-origin on the a, b, c, d, f , and g terms of HRS-OA differential scattering ration and
their effect on ∆‖(θ) and ∆⊥(θ), for R-methyloxirane.

spect to what should be observed, for instance, for the βHRS
values83. In Figure 3 one can notice that the Pople’s basis
sets provide poorly converged results on all terms and espe-
cially on f and g terms. In particular, the use of basis sets
with triple-ζ quality dramatically changes the value of the g

term. Moreover, the presence of diffuse functions on hydro-
gen atoms seems to have important effects on f and g terms.
On the other hand, Dunning’s basis sets show an improved
convergence. For aug-cc-pVXZ, with X = T, Q, the conver-
gence is reached on a, b, c, d, f and g terms (variations of 5%
or less).
A rather surprising fact from Figure 3 is that the basis set de-
pendence of f (Eq. (40)) and g (Eq. (41)) terms do not follow
the same trend, even if they contain only the scalar molecular
invariants of I(〈β 2〉): g is more sensitive than f on the basis
set quality. Moreover, f is always smaller than g. Also a and
c terms do not follow the same basis set trends even if they
contain the same kind of molecular invariants (except for the
prefactors in front of them). Moreover, |c| seems to be always
smaller than |a|. Another interesting feature is the fact that c

and a can have opposite signs (for a given basis set). For this
reason we decided to plot also the basis set dependences for
(a+ c) as well as ( f + g) which appear in the expression of
∆⊥(θ), see eq. (35).
From Table I one can notice that the “chiral” terms a, b, c,
and d are 3 orders of magnitude smaller then the achiral and
dominant terms f and g. Finally, for all basis sets, one can
notice that f and g terms do not change ongoing from R-
methyloxirane to S-methyloxirane, they are always positive.
In fact, these terms contain the scalar molecular invariants of
I(〈β 2〉) which are independent of the handness of the inci-
dent photons and represents the leading contribution to the
total scattered intensity. On the other hand, a, b, c, and d

terms change their signs ongoing from R-methyloxirane to
S-methyloxirane. This mirror-image behaviour is more evi-
dent by looking at the differential scattering ratios, ∆‖ and ∆⊥,
computed using eqs. (34) and (35), respectively, see Figure 4.

In Figure 4 one can see the final effect on the computed differ-
ential scattering ratios, ∆‖ and ∆⊥, as a function of the scat-
tering angle θ . In particular, one can notice that the two enan-
tiomers of methyloxirane give circular differential scattering
ratios, which are mirror-images of each other. In particular, by
looking at θ = 90°, one can notice that the R-methyloxirane
and S-methyloxirane give positive and negative differential
scattering ratios, respectively. This shows how HRS-OA can
be used to distinguish between enantiomers based on the sign
obtained for ∆‖ or ∆⊥ at a particular scattering angle θ .

2. The scattering angle and the experimental set-up

An important feature that can be observed from Figure 4 is
that the ∆‖ as a functions of the scattering angle θ behave al-
most like a “step” function around θ ≈±90° (as an inflection
point of the function ∆‖(θ)). It seems that this scattering an-
gle is an unstable region for ∆‖. From an experimental point
of view, this means that, for perpendicular scattering angle
configurations (θ =±90°), the HRS-OA measurements could
potentially suffer from imprecision due to the geometrical in-
certitude of the experimental set-up.

3. The origin dependence

As said in Section II D, computations of mixed electric-
magnetic properties suffer from the gauge-origin dependence
issue when finite basis sets are employed. This limit can be
resolved by using London atomic-orbitals (GIAO). Unfortu-
nately, at present, the use of London atomic orbitals is not
available in the Dalton software for the targeted quadratic re-
sponse functions. Moreover, the electric quadrupole moment
is origin-independent if the net charge and the electric-dipole
moment of the system are both zero69. Consequently, for
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methyloxirane, which is a neutral and polar molecule, also
the α Kαβγδ and β Kαβγδ mixed first hyperpolarizabilities are
origin-dependent.
We analyzed the origin-dependence of our computations by
moving the COM of the system to an arbitrary position by
using the vector Rmol = (9.5415, −18.9691, 28.3372) a.u.,
which is large compared to the molecule size. The gauge
origin changes by a vector R = −Rmol. The impact of the
change of gauge origin is visualized in Figure 5 and in Table
I. First, as expected, the pure-electric first hyperpolarizabil-
ity is origin-independent. On the other hand, the effect on the
mixed electric-magnetic dipole hyperpolarizabilities is impor-
tant and persist for all basis sets. This origin-dependence is
however attenuated for the aug-cc-VTXZ with X = T, Q, basis
set, see Figure S2 and Table S3 in the SI file.
A possible artificial strategy to remove the effect of displacing
the COM of the molecule in space (origin-dependence) is rep-
resented by subtracting the ∆(α Jλ µν), ∆(β Jλ µν), ∆(α Kλ µνo),
and ∆(β Kλ µνo) shifts from eqs. (46), (48), (51), and (53) re-
spectively. This comparison between the two sets of data also
substantiates the validity of the derivations of eqs. (46)-(54).
For example, to restore the HRS-OA values obtained for the
molecule whose COM is placed at the origin (Table I on top),
these shifts in α Jλ µν , β Jλ µν , α Kλ µνo, and β Kλ µνo tensors,
eqs. (47), (49), (52) and (54) were subtracted from eqs. (46),
(48), (51), and (53) respectively. The results for the a, b, c,
d, f and g terms are presented in Table I. It is clear that the
effects of the displacement of the COM can be removed from
the a, b and c terms.

IV. CONCLUSIONS

The phenomenon of HRS-OA, whose theory was first for-
mulated by Andrews and Thirunamchandran28, and recently
exhibited in a series of experimental studies by different
groups31–34, has been reviewed in view of a first quantum
chemical investigation. We re-derived the necessary equations
for the simulation of HRS-OA experiments and proved the
origin-independence of the theory for exact wavefunctions.
For the first time, this enabled the simulation of HRS-OA
experiments at the TD-DFT level. Our computations show
that HRS-OA can be used to distinguish between the enan-
tiomers of the same molecule because the signals from two
enantiomers are mirror-images.
The basis set analysis on the HRS-OA of the prototypical
methyloxirane compound shows important basis set depen-
dence, especially for Pople’s basis sets. The convergence
is reached only by using Dunning’s basis sets with diffused
and polarization functions, i.e., for aug-cc-pVXZ, with X = T,
Q. This requirement of large basis sets for converged results
is quite common for nonlinear electric-magnetic properties.
By using finite basis sets, our results are origin-dependent.
This could be an issue for reliable computations of HRS-
OA and comparison with experiments and a solution to it
should be considered in future works. One possible strategy
that can be followed is the above mentioned use of London
atomic-orbitals (GIAO). In future works, we plan to extend

our computational implementation of HRS-OA to other chiral
molecules, as well other types of chiral light. In particular,
it has recently been highlighted54 how future HRS-OA exper-
iments may benefit from exploiting an additional degree of
optical chirality present in optical vortex beams which carry
orbital angular momentum.

SUPPLEMENTARY MATERIAL

The rotational averaging procedure, required for finding the
final expressions for the circular differential scattering ratios,
eqs. (34)-(41), and the effect of the origin-dependence with
the basis-set size are provided as the supplementary material.
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