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Rough capillary rise
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Capillary rise within rough structures is a wetting phenomenon that is fundamental to survival

in biological organisms, deterioration of our built environment, and performance of numerous

innovations, from 3D microfluidics to carbon capture. Here, to accurately predict rough

capillary rise, we must couple two wetting phenomena: capillary rise and hemiwicking.

Experiments, simulations, and theory demonstrate how this coupling challenges our con-

ventional understanding and intuitions of wetting and roughness. Firstly, the critical contact

angle for hemiwicking becomes separation-dependent so that hemiwicking can vanish for

even highly wetting liquids. Secondly, the rise heights for perfectly wetting liquids can differ

between smooth and rough systems, even with the same 0∘ contact angle. Finally, the raised

liquid volumes are substantially increased in rough compared to smooth systems. To explain

and predict all rise heights and volumes with quantitative accuracy, we present the Dual-Rise

model that is valid for general roughness, liquids, and surface wettabilities.
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Capillary rise has long been considered a fundamental
wetting phenomenon. Yet, the impact of surface rough-
ness is poorly understood, even though all real surfaces

have some degree of roughness. Occurrences of rough capillary
rise are widespread and diverse, including water manipulation
strategies in nature1–6, weathering and deterioration in geology
and our built environment7–13, and fluid storage in fractured
materials14–16.

Rough capillary rise sees the coupling of two wetting phe-
nomena: capillary rise between the walls, and hemiwicking within
the surface roughness. Individually, capillary rise and hemi-
wicking are well understood. The long-established Jurin’s law
describes equilibrium capillary rise between smooth solid sur-
faces. This has been interpreted and refined by numerous
luminaries such as Young and Laplace17,18, Gibbs19, and more
recently de Gennes20,21. Regarding wetting of rough surfaces, the
condition required for hemiwicking is also well established22–25.
However, the maturity of these fields has regularly led to over-
simplifications on the interplay between hemiwicking and capil-
lary rise. This is evidenced throughout the literature on rough
capillary rise dynamics, spanning an extraordinary range of fields
such as porosity26,27, earth science28, biophysics29, textiles30,31

and engineering7 to name but a few. Thus, there is a lack of
fundamental understanding of rough capillary rise, leading to
erroneous predictions of the rise heights.

Here, we provide a detailed analysis and explanation of equi-
librium rough capillary rise. Principally, we take a rigorous energy
minimisation approach to develop the Dual-Rise model, which is
analytic and valid for general roughness. We demonstrate
quantitative accuracy when compared to both experiments and
simulations. In order to achieve the coupling between the two
modes of liquid rise, we show that it is essential to capture the
interaction between two length scales: the scale of the roughness,
and the scale of the capillary wall separation.

In previous works, a key assumption has been that hemi-
wicking and capillary rise are independent phenomena26,29–32.
However, this approximation breaks down at narrow surface
separations. This has several consequences. Firstly, the critical
angle for hemiwicking is often considered a thermodynamic
criterion dependant on the property of the surface roughness and
the liquid wettability23–25. In contrast, here we show that it also
depends on the surface separation, and hemiwicking can be
suppressed even for perfectly wetting liquids. Secondly, across
this transition, the rise heights change abruptly, so that capillary
rise depends strongly on the presence or absence of hemiwicking.
This regime is particularly important to model accurately, as this
is where the largest rise heights occur, and is typical in many of
the rough rise occurrences and applications listed previously1–16.

When predicting the capillary rise height, previous works
typically assume that it is sufficient to treat the roughness in an
effective manner by using the Cassie-Baxter33 and Wenzel34

models, used canonically across wetting physics. These approx-
imations are attractive, as the roughness details are reduced to an
effective contact angle which can then enter Jurin’s Law, and so
are widely used9,28,29,32,35–37. However, a key issue with both
models is that they provide no information on their ranges of
validity. We also find a further issue with the Wenzel model: this
approximation strongly underestimates capillary rise when the
predicted Wenzel angle is 0°, which occurs for even modest
roughness and substrate wettability. Unfortunately, the Wenzel
model is being widely used in this invalid regime, from
fundamental rise predictions to the storage of liquid
contaminants22,28,29,36,37.

We also show that capturing the coupling between hemi-
wicking and capillary rise, and their two characteristic length
scales, is vital for predicting the liquid volumes raised. Any

variant of the Cassie-Baxter and Wenzel models is inaccurate, as
they both ignore the hemiwicking contribution. Meanwhile,
treating the surfaces as essentially smooth, used for example
in9,35, underestimates the total volume, which can be substantial
on real surfaces.

Overall, this detailed understanding of equilibrium rough
capillary rise will aid investigations in rise dynamics29,32,38, and
will be essential for the functionalisation of rough capillary rise
currently being attempted. Innovations include controlling fluid
localisation in 3D cellular fluidics39,40, determining the extent and
volume of liquid required for vascular cementitious repair41, and
designing novel carbon capture technologies based on liquid
infused surfaces42.

Results
Defining equilibrium. Here, we explore equilibrium rough
capillary rise between parallel micropillared surfaces. A typical
liquid rise morphology from simulations is shown in Fig. 1a,
featuring both liquid rise between the plates, and hemiwicking
within the surface texture.

In Fig. 1b, we distinguish two regions of liquid rise: the
capillary region, which is separated into the capillary rise C and
the meniscus M, and the hemiwicking region of height H. The
total rise height T is the sum: T= C+M+H. Capillary rise is
measured from the level of the reservoir (z= 0) at zero
hydrostatic pressure, to the bottom of the meniscus. The
meniscus height M is measured as the difference between the
maximum and minimum heights of the liquid-gas interface
between the two plates. The hemiwicking height H must be
treated carefully. To illustrate the challenge, Fig. 1a shows how, at
low contact angles, the hemiwicking region may exhibit an
extended tail to large heights. The morphology of this tail is
highly dependent on the specific roughness geometry27,43.
However, as the energy minimisation will show in the proceeding
section, a description of hemiwicking that is valid for general
roughness can be obtained by using the centre of mass, HCOM, of
the hemiwicking liquid, such that we define H= 2HCOM. This has
the further advantage of always remaining a finite value. A direct
benefit of this is that it resolves the issue of infinite rise height
predictions in sharp grooves44.

Perpendicular to the plates, there are two length scales we focus
on throughout. The first, δ, is defined as the average cross-
sectional depth of liquid in the hemiwicking region. Here, we
approximate δ as a constant, and equal to the average roughness
depth. The relationship between δ and the rough texture
geometries used throughout is shown in Table 1. The second
length scale is d, associated with the plate separation. d is the
average distance separating two hemiwicked plates. The two
length scales are related by the average perpendicular distance
between the two rough surfaces, D, where D= d+ 2δ.

To describe rough textures generally, three parameters are
defined: the roughness r, the area fraction ϕ, and the wetted
fraction f. As an example, these parameters are expressed in
Table 1 for the square and cylindrical pillars used throughout,
where P is the pitch length, wp is the pillar width for square pillars
or pillar diameter for cylindrical pillars, and hp is pillar height. r is
defined as the ratio between the total surface area of the texture to
the projected area. ϕ is defined in the hemiwicked region as the
ratio between the projected area of dry solid to the projected total
solid area. f is defined in the hemiwicked region as the ratio of the
wetted solid surface area to the total solid surface area. On flat-
topped, smooth-topped, non-overhanging structures, as used
here, f can be simplified to f= 1− ϕ/r.

A complication in finding the equilibrium morphology via
simulations and experiments is the presence of pinning. Pinning
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leads to a large range of metastable states. To illustrate this, in
Fig. 1c we examine all pinned states for a texture we study in
detail throughout: SQ1, a square array of square pillars, with
water as the rising liquid (see Methods, Table 4 for a full
description of all systems and abbreviations). For a single value of
the plate separation δ/d= 5.43 and contact angle θ= 58°, 73
metastable states are observed. Each state is distinguished via its
rise height in the capillary region, C+M (shown on the
horizontal axis), and the hemiwicking height H (shown on the
colour scale), normalised relative to the simulated pitch length P.
The vertical scale shows the reduced energy change, which is the
energy change of forming a given fluid configuration from an
initially gas-filled system, ΔG, compared to the energy change of
hemiwicking over a single pitch length from an initially gas-filled
system ΔG1. For this system, we see three important states.
Firstly, the lowest-height metastable state occurs when the
meniscus pins on the 2nd pillar up from the reservoir with no
hemiwicking. This state would be observed if an initially dry
texture was contacted with the reservoir, and the liquid allowed to
rise quasi-statically without any perturbations. Secondly, at the
opposite extreme in rise heights, the meniscus pins on the 12th
pillar, with hemiwicking observed for another 12 pillars above
this. This state would be observed if the system was initially
submerged in water, and the liquid allowed to reach a static state
by draining. Both of these states are strongly dependent on how
the roughness geometry controls the shape of the pinned three-
phase contact line45. However, our principal interest here is the
third important state, the equilibrium state, which occurs at
intermediate rise heights (denoted * in Fig. 1c and the
magnification panel). In this state, capillary forces and weight

balance, so that pinning forces are minimal. It is not trivial to
access the equilibrium state. In simulations, we must locate this
state by finding the lowest energy configuration of all metastable
states. In experiments, we do not have access to the energy
directly, but instead perturb the system (tap the plates) to
overcome the pinning barriers. This procedure is able to
approximate the equilibrium state, with an estimated uncertainty
of ± 1 pitch length.

Modelling equilibrium
The dual-rise model. We now develop the Dual-Rise model, to
predict the equilibrium rough capillary rise. Taking an energy
minimisation approach, we begin by constructing the energy
change ΔG upon raising liquid from a reservoir to a configuration
like that illustrated in Fig. 1a, and described in Fig. 1b,

ΔG ¼ ΔAsgγsg þ ΔAslγsl þ ΔAlgγlg þ ΔEg: ð1Þ
ΔAsg, ΔAsl, and ΔAlg are the changes in the solid-gas, solid-liquid,
and liquid-gas interfacial areas between the initial and final states
respectively. ΔEg is the change in gravitational potential energy
associated with the difference in liquid centre of mass height
between the two states. γsg, γsl, and γlg are the solid-gas, solid-
liquid, and liquid-gas surface tensions respectively.

Each term in Eq. (1) is defined separately for the capillary and
hemiwicked regions in Table 2. For this work, we consider long
range surface interactions to be negligible compared to the
interfacial energy and gravitational potential energy scales.

In order to produce an analytic and tractable model, we model
the meniscus using the standard circular arc approximation. This
is accurate for plate separations up to the order of the capillary
length46. The curve has arclength lM, and segment area aM, shown
as the green-shaded region in Fig. 1b. The centre of mass of this
segment is located a distance zM below C+M. We will show that
the only meniscus property affecting the equilibrium rise heights
is aM. aM, lM, and zM are illustrated in Supplementary Note 1
(Supplementary Fig. S1), with their standard analytic expressions
given in Supplementary Eqs. (S1–S3) respectively.

After substituting the terms in Table 2 into Eq. (1), we
minimise ΔG with respect to both C and H, under the constraint
that C, H, M, T > 0. An interesting consequence of this procedure
is that two classes of solutions emerge. These two solutions are
distinguished by either H= 0, or H > 0. Thus, from our

Table 1 The roughness parameters for a pillared texture,
where the shape parameter α= 1 for square pillars, and
α= π/4 for cylindrical pillars.

Parameter Symbol Expression

Average depth δ hpð1� αw2
p=P

2Þ
Roughness r 1+ 4αwphp/P2

Area fraction ϕ αw2
p=P

2

Wetted fraction f 1� αw2
p=ðP2 þ 4αwphpÞ

Fig. 1 Defining the equilibrium rise heights in rough capillary rise. a Archetypal simulated rise heights in a rough parallel plate setup, exhibiting capillary
rise between the surfaces, a meniscus, and hemiwicking within the roughness. b Definition of the model geometric parameters. Shown are the rise heights
of the: capillary rise C, meniscus M, hemiwicking H, centre of mass of hemiwicking liquid HCOM, and total liquid height T. Also shown are the length scales
of the: average roughness depth δ, average distance between hemiwicking columns d, and average total plate separation D. The area above the meniscus in
the capillary region is denoted aM. Precise descriptions of all parameters are given in the text. c Plot of all metastable, pinned states observed for the
simulated system SQ1 (detailed in methods, Table 4), featuring square posts with water as the rising liquid, d/δ= 5.43, and contact angle θ= 58∘. The
vertical scale shows the reduced energy variation (ΔG) when raising liquid from the reservoir to each unique pinned state, normalised against the energy of
hemiwicking a single pitch length in the absence of gravity (ΔG1). The normalised rise heights in the capillary region and hemiwicking region are indicated
on the horizontal axis and colour scale respectively. The magnified inset highlights the density of metastable states around the global minimum energy
state (the equilibrium state), indicated by ‘*’.
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minimisation scheme, the conditions for observing hemiwicking
above the meniscus are defined. This important feature of the
Dual-Rise model contrasts with the Cassie-Baxter and Wenzel
effective-angle models, in which the hemiwicking state has to be
known a priori.

Overall, the defining equations of the Dual-Rise model are:

C ¼
2λ2c
D r cos θ �M þ aM

D if H ¼ 0;
2λ2c
d cos θ� �M þ aM

d otherwise;

8<
: ð2Þ

H ¼ λ2c
δ

r cos θ � cos θ� � 2δ
d
cos θ�

� �
� aM

d
; ð3Þ

and

T ¼
2λ2c
D r cos θ þ aM

D if H ¼ 0;
λ2c
δ r cos θ � cos θ�ð Þ otherwise;

8<
: ð4Þ

where, by the circular arc approximation,

M ¼ d 1� sin θM
� �
2 cos θM

: ð5Þ

λc is the capillary length, λc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γlg=ðρgÞ

q
where ρ is the liquid

density and g is the acceleration due to gravity. θ is the contact
angle of liquid on a smooth solid substrate, and θ* is the Cassie-
Baxter effective contact angle for liquid on a liquid-filled rough
substrate33,

cos θ� ¼ rð1� f Þ cos θ þ 1� ϕ; ð6Þ
For the meniscus contact angle, θM, this must be defined for

when hemiwicking is present and absent. A simple approxima-
tion is to use

θM ¼ θ� if θ ≤ θc;

θW if θ ≥ θc;

�
ð7Þ

where θc22,23 is the critical angle for hemiwicking,

cos θc ¼ ð1� ϕÞ=ðfrÞ; ð8Þ
and θW is the Wenzel effective contact angle for wetting on a
rough surface34,

cos θW ¼ r cos θ: ð9Þ
We note that an improved approximation for θM could be
achieved by replacing θc in the two case conditions in Eq. (7) with
the contact angle at which H= 0 in Eq. (3). However, this does
not produce a closed set of equations for the rise heights, and we
will show throughout that M in Eq. (7) is already sufficiently
accurate. Further justification of our treatment of θM is shown in
Supplementary Fig. S2.

It will prove most instructive to discuss the physical
significance of each of these equations with reference to
simulation and experimental data in the following section.

Dual-Rise dependence on separation. We begin by examining in
detail the different modes of liquid rise in system SQ1, with water
as the rising liquid and θ= 58°, as the plate separation d is varied.
In Fig. 2a, three characteristic regimes of liquid rise are identified.
The quantitative variation of the rise heights with plate separation
is shown in Fig. 2b.

At the largest plate separations, labelled regime 1 in Fig. 2a, b,
the two rough surfaces are essentially non-interacting. This
means that capillary rise is negligible, and the hemiwicking and
meniscus heights are equivalent to those observed on a single,
rough plate. Rise data for the single plate is shown at the extreme
right of Fig. 2b. For the meniscus, the small rise height M
measured in experiments (2.1 ± 0.7) mm, and simulations
(2.8 ± 0.7) mm, is consistent with the analytical prediction of

2.6 mm from M ¼ λc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� sin θM
� �q

47. The ±0.7 mm uncer-

tainty in both simulations and experiments is the ± 1 pitch length
uncertainty associated with pinning to the discrete posts in
system SQ1. Adding the hemiwicking height to the meniscus
yields the total rise height T, determined as (11.5 ± 0.7) mm and
(11.6 ± 0.7) mm from experiment and simulations respectively.
These are in agreement with the Dual-Rise prediction in Eq. (4)
for H > 0, T= 12.1 mm. Examining Eq. (4) further, we observe
that the energy minimisation has reproduced the heuristic
balance of forces per unit length of the contact line between
capillarity acting upwards, γlgðrf cos θ � 1þ ϕÞ, and weight
acting downwards, ρgδT, used previously to estimate T on a
single plate22. However, the derivation of the Dual-rise model
reveals that this estimate of T is not an estimate of the maximum
height obtained, but is actually associated with the centre of mass
of the hemiwicked liquid, as we discussed in Section ’Defining
Equilibrium’. Although this distinction is minimal for system SQ1
at modest wettabilities, it becomes substantial for highly wettable
surfaces.

As the plates are brought closer together, the capillary rise
height grows monotonically, while hemiwicking decreases. A
typical configuration is shown in Fig. 2a, labelled regime 2. In
Fig. 2b, we also see that the total rise height remains independent
of the plate separation throughout regime 2. Indeed, there is no
difference in total rise height between a single rough plate, and a
rough capillary when hemiwicking is present. In the heuristic
force balance above, the dominant approximation was that the
hemiwicking height was independent of the capillary rise. In this
regime, both Dual Rise and the data in Fig. 2b show this
assumption to be accurate. Likewise, if we examine the Dual-Rise
prediction for C when H > 0 in Eq. (2), aside from a meniscus
contribution, C could be derived by considering liquid rising over
two pre-hemiwicked surfaces of separation d, in which the
contact angle is given by the Cassie-Baxter effective contact angle
for the composite liquid-filled surfaces, θ*. Thus in regime 2, we
also verify that C can be predicted independently from H. Overall,
this explains the range of previous experimental observations of
the mutual independence of capillary rise and hemiwicking,
across such fields as textiles30,31, bioinspired design29 and porous
media26,32.

However, at close plate separations, when the separation and
roughness length scales become comparable, a threshold is reached
where capillary rise overtakes the top of the hemiwicked column.
For system SQ1, Fig. 2b shows this to occur at log10ðd=δÞ= 0.5,
equivalent to d= 0.75mm. Here, the independence of capillary rise
and hemiwicking breaks down, as suddenly the total rise height
changes from being constant, to now increasing as the plate
separation decreases. The example of regime-3 shown in Fig. 2a
illustrates the absence of hemiwicking. To the best of our
knowledge, observations of this regime have not been made
previously, despite the largest rise heights occurring here. Regime 3

Table 2 The free energy change contributions to ΔG arising
from the capillary and hemiwicked regions.

Capillary region Hemiwicked region

ΔAsg −2L(C+M)r −2LHrf
ΔAsl 2L(C+M)r 2LHrf
ΔAlg L(lM− d) 2LH 1� ϕ

� �
ΔEg ρgL D

2 ðCþMÞ2 2ρgδLH CþMþ H
2

� �
-ρgLaM(C+M− zM)
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therefore has particular relevance to the range of applications
mentioned previously that aim to exploit or control rough capillary
rise1–16.

Often in the rise dynamics literature, the measure for
describing whether hemiwicking will be observed is the critical
angle θc, defined in Eq. (8). If θ < θc, hemiwicking is observed. Eq.
(8) can be derived by considering the energy change when raising
liquid above the surface of a reservoir at zero hydrostatic pressure,
and in the absence of gravity. However, when there is
hemiwicking from the top of a capillary-risen column, the
change in gravitational potential energy must also be taken into
account. Now, the criterion for hemiwicking becomes more
complicated, and in general must be solved numerically by setting
H= 0 in Eq. (3). However, if the meniscus is small compared to
capillary rise, this results in the condition for hemiwicking on
rough plates,

cos θH¼0 ¼
cos θc
1� 2δ

fD

: ð10Þ

We may also interpret this equation by asking what is the
hydrostatic pressure required to be applied to overcome the
capillary pressure favouring hemiwicking48. The capillary pres-
sure favouring hemiwicking is γlgðrf cos θ � 1þ ϕÞ=δ, and the
hydrostatic pressure at the top of the capillary-risen column
is− ρgC. Equating these two pressures and substituting either
case for C from Eq. (2), produces Eq. (10) in the limit that the
meniscus is small. A key feature of Eq. (10) is that the
denominator can always be made arbitrarily small, so that
hemiwicking is always lost by bringing the plates close together.
This represents an important design consideration for systems
with closely-spaced plates, such as solar desalinators49, water
purification devices50, and liquid-infused carbon capture42. The

challenge in these applications is to maximise the liquid-gas
surface area through hemiwicking, while maintaining a high plate
packing density (close wall separations).

We now test the claim that the observations presented so far
and the Dual-Rise model are valid generally. In Fig. 2c, d, we
replicate the analysis for system SQ1, but this time for system
CY1, featuring cylindrically-pillared surfaces, with dodecane as
the rising liquid and a contact angle θ= 0°. Further details of this
system are given in Methods, Table 4. An extended validation of
the Dual-Rise model is further shown in Supplementary Note 2
(see Supplementary Fig. S3), where we vary the system scale, each
pillar dimension, and also include a vertical groove geometry.
These are summarised in Supplementary Table 1.

For system CY1, we observe the same three regimes of liquid
rise, shown in Fig. 2c. For this system, when hemiwicking is
present (regimes 1 and 2), an elongated tail is observed up to large
rise heights. The Dual-Rise model for hemiwicking however
remains accurate, as shown in Fig. 2d. In this region, CY1 also
shows a constant total rise height, T= 22.0 mm. On decreasing
the plate separation, we observe the hemiwicking transition to
regime 3, at a separation log10ðd=δÞ=−0.046, equivalent to
d= 0.30 mm. There is an interesting interplay between the two
length scales. In the roughness, gravity causes the hemiwicking
height to be finite, which is in direct contrast to the complete
spreading of perfectly wetting liquid on a single, horizontal plate.
Between the plates, this finite hemiwicking height is then able to
be exceeded by capillary rise at sufficiently small plate separa-
tions. In regime 3, the Dual-Rise model is also shown to
accurately capture the simulation observations. Note that for
experiments, the small plate separation in this region means that
the separation uncertainty, caused by small deviations in the plate
alignment and measurement precision, becomes relatively large,
so that simulations become the more reliable comparison.

Fig. 2 The variation of the rough capillary rise heights with plate separation, compared between experiments, simulation, and theory. a Examples of
the three regimes of rough capillary rise on system SQ1, a square-pillared system with water as the rising liquid (capillary length λc= 2.7 mm) and contact
angle θ= 58°. Full images are simulation results, with insets showing magnifications of equivalent experimental systems on the region of interest. Scale
bars= 1 mm. b Plot of the variation in the rise heights with plate separation d (normalised relative to the roughness depth δ) for system SQ1, where
δ= 326 μm, separated into the three regimes. The capillary rise C, meniscusM, hemiwicking H, and total liquid height T, are labelled. Experimental data are
shown as filled circles, with horizontal error bars indicating measured separation uncertainty, ±50 μm, and vertical error bars the ±1 post pinning
uncertainty, ±709 μm. Simulation data are shown as empty triangles with vertical error bars indicating the ±1 post pinning uncertainty. Data at the extreme
right indicate the rise heights on a single plate, equivalent to infinite plate separation. The Dual-Rise predictions are shown as lines. c Example images of the
three regimes of rough capillary rise on system CY1, a cylindrically-pillared system with dodecane as the rising liquid (capillary length λc= 1.8 mm), and
contact angle θ= 0°. Scale bars= 1 mm. d Plot of the variation in the rise heights with plate separation for system CY1, where δ= 325 μm. The shaded
region indicates where the separation uncertainty (horizontal error bars) in the experimental data becomes large. The vertical ± 1 post pinning uncertainty
is ±458 μm.
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From partially wetting to perfectly wetting systems. In the
previous section, we explored how changing the plate separation,
roughness parameters, and liquid properties influenced the rise
heights. Now, we examine the effect of changing the surface
wettability, described via the spreading parameter S
(S ¼ γlg cos θ � 1ð Þ). This is summarised in Fig. 3 as we study the
capillary rise C for system SQ1, where water is used as the rising
liquid (λc= 2.7 mm).

In Fig. 3a the plate separation is fixed at a moderate value,
d/δ= 5.97 (equivalently d= 1.99 mm). This system exhibits a
hemiwicking transition at S/γlg=− 0.58 (equivalent to θ= 65°).
At large, negative S (large contact angles) H= 0, with an example
of a system in regime-3 shown in Fig. 3b at S/γlg=− 0.66
(θ= 70°). In this region, the meniscus is small, and capillary rise
C increases linearly with S. The Dual-Rise model in Eq. (2)
matches this observation: in the limit of small menisci,
C / cos θ / S. Increasing S across the hemiwicking transition,
we see a sudden reduction in the gradient of C, but the linear
trend is maintained. An example system in this regime is shown
in Fig. 3b at S/γlg=−0.29 (θ= 45°).
As was shown by Eq. (10), hemiwicking can always be entirely

suppressed by choosing a small enough plate separation. An
example of this type of system is shown in Fig. 3c by choosing
d/δ= 0.87 (d= 0.29 mm). No hemiwicking is observed over the
entire range of wettabilities, with example liquid configurations
shown in Fig. 3d at S/γlg=−0.66 and −0.29.

An important aim of this work is to compare the capillary rise
prediction C from the Dual-Rise model with commonly used
effective contact angle adaptations to Jurin’s law. We begin with
Jurin’s law for smooth surfaces, CJ,

CJ ¼
2λ2c cos θ

d
: ð11Þ

In Fig. 3a (for d/δ= 5.97), we see that CJ is a poor approximation
for C, except in two instances. The first (trivial) case is at
S/γlg=−1.0 (θ= 90°), in which C and CJ are identically 0. The
second however occurs at S/γlg= 0 (θ= 0°). This is because here,
hemiwicking is present, so that the capillary rise is perfectly
shielded from the surface roughness. In contrast, the system in
Fig. 3c (for d/δ= 0.87) never exhibits hemiwicking. At S/γlg= 0,
the rising liquid is not shielded from the surface roughness, so
Jurin’s law is inaccurate at estimating C.

To adapt Jurin’s law for rough surfaces, a common
approximation is to substitute the contact angle θ in Eq. (11)
with an apparent contact angle, derived either from a Cassie-
Baxter or Wenzel treatment of the surface. When hemiwicking is
present, the Cassie-Baxter model would be conventionally
employed. Examples demonstrating this are refs. 29,32, with the
limitation that they further approximate the Cassie-Baxter angle
as 0°, which is not generally the case. The Cassie-Baxter height is
given by

CCB ¼ 2λ2c cos θ
�

d
; ð12Þ

where the θ* is the Cassie-Baxter angle for liquid rising over a
composite liquid-filled solid texture, defined in Eq. (6). The Dual-
Rise model in Eq. (2) reduces to Eq. (12) under the conditions
that hemiwicking is present and the meniscus is vanishingly
small. These conditions are fulfilled in regime 2 in Fig. 3a, so that
CCB accurately approximates C. The common justification of
using the Cassie-Baxter model, that capillary rise occurs between
two pre-hemiwicked plates, is therefore supported in regime 2.
However, when hemiwicking is absent, this approximation breaks
down causing CCB to overestimate C, as shown in regime 3 of
Fig. 3a, c. A key issue with this approximation is that the region of
validity cannot be predicted by the Cassie-Baxter model, so that
the hemiwicking state must be known a priori.

In the absence of hemiwicking, the Wenzel approximation
models the effect of roughness with the Wenzel apparent contact
angle θW, defined in Eq. (9). The Wenzel approximation for
rough capillary rise at a plate separation x is

CWðxÞ ¼ 2λ2c cos θW
x

: ð13Þ

However, the Wenzel approximation does not reveal the suitable
choice of the effective separation x, as the physical details of the
roughness are ignored. The choice of x substantially influences the
predicted rise height. The minimum reasonable x is when the plate
separation is measured between the tops of the surface texture
(x= d), whereas the maximum xwould be the distance between the
texture bottoms (x= d+ 2hp). This range leads to the large, grey,
shaded regions in Fig. 3a, c. However, the Dual-Rise model suggests
that the correct definition of the plate separation in the absence of
hemiwicking should be the average total separationD. We label this
special case CW(D) simply as CW. In regime 3 of Fig. 3a, CW

Fig. 3 Capillary rise against gravity between two rough plates of variable wetting parameter, S. a Comparison of the capillary rise heights between the:
Dual-Rise Model, C, Jurin’s Law, CJ, and the apparent angle approximations, CW (Wenzel approximation) and CCB (Cassie-Baxter approximation), for the
simulated square-pillared system SQ1 at a moderate value of the plate separation to roughness depth ratio (d/δ= 5.97). The rising liquid is water
(λc= 2.7 mm), and we vary the substrate wettability S (normalised with respect to the liquid-gas interfacial tension γlg). The shaded region indicates the
range of possible Wenzel capillary rise predictions when varying the plate separation, x, in Eq. (13). Error bars in the simulated data indicate the ± 1 post
uncertainty. b Example equilibria at d/δ= 5.97 in region 3, S/γlg=− 0.66 (θ= 70°), and region 2, S/γlg=− 0.29 (θ= 45°). c Model comparison with the
simulated system SQ1 at narrow plate separation (d/δ= 0.87). d Example equilibria at d/δ= 0.87 in region 3 at S/γlg=− 0.66 (θ= 70°), and
S/γlg=−0.29 (θ= 45°).
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accurately estimates C, and as hemiwicking is present in regime 2,
the Wenzel model becomes invalid.

In Fig. 3c, since hemiwicking is never present, we would
naively expect the Wenzel model to be accurate across the range
of spreading parameters. However, we find this is not true. CW is
accurate at large, negative S, but incorrectly plateaus for
S/γlg >− 0.62 (θ < 67°). CW now substantially underestimates C.
This discrepancy grows, until at S/γlg= 0, C is a factor of r greater
than CW. This error occurs because the Wenzel angle in Eq. (9) is
limited to 0∘ for all r cos θ ≥ 1. In the Dual-Rise model, C in Eq.
(2) shows that no such limit occurs in the r cos θ term, arising
from the capillary force of the rough surface. Importantly, this
reveals that a wide range of published works, ranging from
fundamental studies of porous rise to earth science, are using the
Wenzel model in conditions where it is invalid (namely
r cos θ>1), see for example refs. 22,28,29,36,37.

We further reflect that there is a contrast between capillary rise
on rough and smooth surfaces. According to de Gennes20, in a
smooth capillary the rise height plateaus for all spreading
parameters where θ= 0° (i.e. S ≥ 0). However, the rough
equivalent is not true: the rough capillary rise height does not
plateau for all spreading parameters where the Wenzel angle
θW= 0°. This contrast arises because on a smooth surface, the
contact angle saturation is caused by a capillary force saturation
due to a thin film shielding the capillary-rise liquid from the
surface wettability. However, on a rough surface in the absence of
hemiwicking, the Wenzel angle saturation does not imply a
saturation of the capillary force, which instead continues to
increase as r cos θ.

The volume of liquid raised. When computing the volume of
liquid raised in a rough capillary, explicitly accounting for liquid
in the roughness is of paramount importance. In Fig. 4, we plot
the total volume raised VT, as the sum of capillary, meniscus, and
hemiwicking contributions, VC, VM, and VH respectively, for the
simulated system SQ2 with water as the rising liquid (capillary
length λc= 2.7 mm) at θ= 58°. Experiments and simulations for
systems of different geometry are shown in Supplementary Note 2
(see Supplementary Fig. S4).

The principal striking feature of Fig. 4 is that VT is constant across
the range of plate separations, even though the distributions within the
capillary and hemiwicking regions change, including across the
hemiwicking transition. This separation independence is validated by
the Dual-Rise model, where VT/L=DC+ (DM− aM)+ 2δH. L is an
arbitrary portion of the infinite parallel plates. Upon rearrangement,
the separation independence is made clear:

VT

L
¼ 2λ2cr cos θ: ð14Þ

A second surprising feature is that the raised volume is
substantially larger than would be predicted via all previous
models. A smooth approximation V J ¼ 2Lλ2c cos θ, underesti-
mates the raised volume by a factor of the roughness parameter r,
which can be large for real surfaces. Technologies relying on a
smooth approximation are therefore considerably underestimat-
ing the total raised volume9,35. However, even the Wenzel model,
VW ¼ 2Lλ2c cos θW, underestimates the raised volume in Fig. 4 by
almost 40%, as r cos θ>1. The Cassie-Baxter model,
VCB ¼ 2Lλ2c cos θ

�, is always unreliable, as the hemiwicked
volume is not accounted for.

Indeed, the interaction between the hemiwicked volume and
capillary volume is key to explaining the separation independence
of VT. The capillary force that raises the liquid depends only on
the surface properties, not the plate separation. At equilibrium,
this must therefore always be balanced by the same weight of
liquid. The weight of the hemiwicked column and meniscus
displace an equal weight of liquid from the capillary region. As we
treat the liquid as incompressible throughout, this means the
raised volume is always independent of plate separation.

We consider again Fig. 2b, d, where the plate separation is
increased across the hemiwicking transition, from regime 3 to
regime 2. We can now use the separation independence of VT to
explain the sudden change in slope of C. On increasing the plate
separation, the slope becomes steeper as hemiwicking suddenly
emerges. In order to preserve the total volume, liquid must be
drained from the capillary region into the hemiwicking region.
Thus, C decreases faster upon the appearance of hemiwicking,
than before hemiwicking emerges.

Conclusions
In this work, all contributions to equilibrium rough capillary rise
are explained and predicted with quantitative accuracy by the
Dual-Rise model, a model derived from a rigorous energy mini-
misation that is valid for surfaces of general roughness. A sum-
mary comparing our model accuracy is shown in Table 3, with
Jurin’s Law for smooth surfaces, and the Cassie-Baxter and
Wenzel approximations for rough surfaces. Table 3 highlights

Fig. 4 The liquid volume raised against gravity upon variation of the plate
separation. Predicted volumes from the Dual-Rise model are compared for
the simulated, square-pillared system SQ2 with water as the rising liquid
(capillary length λc= 2.7 mm) and θ= 58°. The total volume VT is shown,
which is decomposed into the individual contributions from: capillary rise
VC, hemiwicking VH, and the meniscus VM. The ± 1 post error bars are
shown, and the plate separation d is shown relative to the roughness depth
δ. Also shown are the capillary volumes calculated using: Jurin’s Law VJ, the
Wenzel approximation VW, and the Cassie-Baxter approximation VCB. The
three regimes of equilibrium rise are demarked and labelled 1–3.

Table 3 Summary of model accuracies for hemiwicking H,
capillary rise C, total liquid height T, and total volume VT.

H= 0 H > 0

H C T VT H C T VT

Dual-Rise ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Jurin × × < × < <
Wenzel
(θW > 0°)

✓ ✓ ✓ > < ✓

Wenzel
(θW= 0°)

< < < > < ✓

Cassie-Baxter > > × ✓ < ×

For each model, the symbols indicate whether a property is: predicted accurately (✓), always
overestimated ( > ), always underestimated ( < ), inaccurate ( × ), or not predicted by the model
(blank cell). θW is the Wenzel angle.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01160-w ARTICLE

COMMUNICATIONS PHYSICS |            (2023) 6:44 | https://doi.org/10.1038/s42005-023-01160-w |www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


many ways in which these approximations inaccurately predict
liquid heights and volumes, and indicates the limited cases where
those rough surface approximations are accurate.

From this study, a number of interesting questions emerge that
depend on the specific roughness geometry. For instance, how
does the complex interplay between capillarity, hydrostatic
pressure and the roughness geometry determine the curved
morphology of the hemiwicking liquid-gas interface, and in
particular how does this curvature affect the maximum liquid
height? The roughness geometry is also crucial for pinning,
leading to a range of metastable rise configurations. Can the
pinning forces be predicted in both the hemiwicking and capillary
regions?

We anticipate that the Dual-Rise model will play an important
role in a broad range of applications in which liquid rise is to be
predicted or controlled. In particular, we highlight its relevance in
novel sustainability technologies, such as catalytic or carbon
capture systems using Liquid Infused Surfaces42, and in under-
standing and improving the lifespan of concrete structures41.

Methods
System parameters. All experimental and simulated systems are listed in Table 4,
indicating the roughness parameters, capillary length relative to the pitch P, and
the pitch length P. Where both simulated and experimental equivalents of the same
system are used, we match the simulated parameters as closely as possible to the
experimental parameters. A small discrepancy is introduced, as an exact translation
of the experimental system is not possible due to the simulation being composed of
discrete cubic lattice points. This small discrepancy is within the reported error
bars. For system CY1, to simulate very close surface separations (log10ðd=δÞ≤ 0:12)
required increasing the system size by 4 times in each direction, indicated as ’Sim.
4 × ’ in Table 4.

Two different rising liquids are used: water (distilled to a resistance of 18 MΩ,
with surface tension γ= 72 mNm−1, density ρ= 1000 kg m−3, and capillary length
λc= 2.7 mm); or dodecane (Sigma Aldrich, 99% purity, γ= 24 mNm−1,
ρ= 745.2 kg m−3, λc= 1.8 mm).

In experiments, the textured plates were additively manufactured using Accura
ClearVue resin (polycarbonate-like material). Plasma-treating the printed plates for
2 min on a high RF setting (Harrick Plasma, PDC-32G) energises the surface and
alters the wettability. Plasma-treated smooth polycarbonate has a measured contact
angle of 0∘ with dodecane, and 36° with water. With water, the additively
manufactured roughness altered the contact angle on different faces of the posts of
SQ1. The Dual-Rise model fits experimental rise heights at θ= 58°, which was the
contact angle also input into simulations. The quantitative agreement between
theory, simulations, and experiments, justifies this choice of θ.

Liquid rise experiments. The textured plates were additively manufactured in a
high resolution stereolithography process (3D Systems On Demand). Printed parts
had the supports removed, were washed, but had no post-printing thermal cure
and as such were left with a natural finish. The plates were 5 cm × 5 cm with a
3 mm thick backbone on which were either printed square cross-section posts
400 μm in diameter with a spacing of 300 μm (or a post-center-to-post-center pitch
of 700 μm) or cylindrical cross-section posts 300 μm in diameter with a spacing of
150 μm (or a post-center-to-post-center pitch of 450 μm). Topographic measure-
ments were carried out using a Leica DCM8 confocal profilometer using the
5 × objective, which was sufficient to resolve the post geometries. The target print

height was 500 μm and measured values in randomly sampled regions were within
10% of that value. Target pillar pitch values were typically within 2% of the design
size. The greatest variation came from post widths where all posts, regardless of
shape or size, had a tapered as-manufactured shape, being narrower at the top and
wider at the bottom. Mean diameters, taken as an average of the measured top
diameter and bottom diameter, were within 10% of design specification, but varied
up to 20% from the mean towards the narrower or wider end.

The experimental apparatus holds two of the textured plates, each of the same
texture geometry, parallel to one another at a controlled and measured separation.
This is accomplished using two micrometers attached orthogonally under one plate
mount. One can be used to exactly align the columns of pillars (to better match the
simulation) and the other controls the spacing between plates. A reservoir with the
liquid can be raised and brought into contact with the lower portion of the plates.
Liquid height measurements and profiles are measured using a camera (FLIR CCD
camera equipped with an Infinity Photo-Optical Infiniprobe ms lens) viewing
down the space between the plates. A bright light is placed on the far side of the
plates such that the illumination provides a sharp contrast to the image. Areas
occluded by the texture or by liquid appear dark, and all empty space is light. By
moving the camera up and down (on an elevator attached to a digital micrometer),
or side to side, the heights of the capillary and hemiwicked areas can be measured
relative to the height of the liquid reservoir.

The initial plate separation is set to 10 mm. At this distance the separation is
much larger than the capillary length for either liquid (water or dodecane),
meaning that there is negligible communication between the meniscus that forms
on either plate. The camera is centred on the flat liquid region and the elevator
micrometer is zeroed. Then images are captured of the meniscus region as well as
the maximum hemiwicked regions on either plate. The experiment proceeds as the
plates are successively brought closer together, capturing images of the meniscus
and hemiwicked regions and recording the camera height positions at one plate
spacing before bringing them closer together. The main experimental challenge is
the pinning that occurs as the bulk meniscus rises when the plates are brought
closer together. Because of the periodic nature of the texture, there is a strong
tendency for the meniscus contact line to pin on the top of one row of pillars before
snapping up to wet the next row. In order to perturb the system into a lower energy
configuration, we tap both the mount holding one of the plates (to perturb the plate
spacing) as well as the stage holding the liquid reservoir (to perturb the liquid
level). This tapping, especially at close plate separation, can cause the meniscus to
jump up one or more rows, and the recorded images are taken at the locations
where any further tapping will not move the liquid-gas interface. Further details of
how the rise heights were measured from recorded images are shown in
Supplementary Note 3.

Phase field simulations. The simulations we perform minimise the free energy of
a diffuse-interface model with fluid-surface interactions, in a gravitational field. We
choose the diffuse interface model firstly to avoid making assumptions about the
liquid-gas interface morphology or topology, requiring no special treatment for
interfaces splitting or merging51, and secondly to enable facile interactions between
fluids and complex surface topographies52,53.

For the cylinder-pillared systems, we use a ternary phase field model based on
refs. 54,55. Here, we use three order parameters, C1(r), C2(r), and C3(r), which
define the local composition of the solid, liquid, and gas respectively. Note that the
total composition is normalised, so that C1(r)+ C2(r)+ C3(r)= 1. A value
Ci(r)= 0 indicates no quantity of component i is present, whereas Ci(r)= 1
indicates pure component i. We treat the solid in the posts in this diffuse manner,
based on a previous model56, to enable the creation of smooth, curved solids, while
maintaining the cubic discretisation of the simulation domain. The solid surface at
the base of the pillars is treated via a boundary condition, not a diffuse interface
treatment.

The total free energy is expressed

Ψ½fCiðrÞg� ¼
Z

v
ψb þ ψ∇ þ ψΛ þ ψg

� 	
dv þ

Z
s
ψsds: ð15Þ

where the integrals are over the volume v and solid surface s. ψb is the bulk energy,

ψb ¼
6
ϵ
∑
3

i¼1
�SiC

2
i ð1� CiÞ2

� �
; ð16Þ

and ψ∇ is the gradient energy density,

ψ∇ ¼ 3
8
ϵ ∑

3

i¼1
�Sij∇Cij2


 �
: ð17Þ

ϵ is the interface width. Si defines the spreading parameter of phase i over the
interface between phases j and k,

Si ¼ γjk � ðγij þ γjkÞ: ð18Þ
To enable complete spreading while maintaining simulation stability, the
stabilisation term ψΛ is used54,

ψΛ ¼ ΛC2
1C

2
2C

2
3; ð19Þ

where the parameter Λ is set to 50. The gravitational potential energy density, ψg is

Table 4 Surface geometry and liquid parameters used in
experiments and simulations.

System r f ϕ δ/P λc/P P

SQ1 2.61 0.87 0.34 0.46 3.82 Exp.: 708.5 μm
Sim.: 40 L.U.

SQ2 2.61 0.87 0.33 0.47 7.67 Sim.: 40 L.U.
CY1 3.17 0.90 0.33 0.71 3.96 Exp.: 458 μm

Sim.: 32 L.U.
Sim. 4 × : 128 L.U.

The system label ‘SQ’ refer to a square array of square pillars, ‘CY’ refers to a square array of
cylindrical pillars. The listed parameters are: the roughness r, wetted area fraction f, area fraction
ϕ, average roughness depth δ, capillary length of the liquid λc, and pitch length P. All parameters
are defined precisely in the text. In the pitch length P column, experimental pitch lengths are
indicated ‘Exp.’, and simulations ‘Sim.’, where ‘L.U.’ refers to lattice units (1 L.U. is 1 grid spacing).
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defined

ψg ¼ f gC2z: ð20Þ
fg is the gravitational force density, and acts as the conversion factor between the
dimensional units in experiment and the nondimensional units in simulation:
f g ¼ ρgγ0P2= γP02� �

, where ρ is the liquid density, g is the acceleration due to
gravity, P and P0 are the pitch lengths of the periodic surface roughness in real and
lattice units respectively, γ and γ0 are the liquid-gas interfacial tensions in real and
lattice units respectively. The wetting on the solid boundaries at the base of the
pillars is achieved using the surface energy density ψs, where

ψs ¼ ∑
3

i¼1
12γis

1
2
C2
i �

2
3
C3
i þ

1
4
C4
i

� �
; ð21Þ

where γis is the interfacial tension of component i on the solid surface.
To minimise the free energy numerically, Ψ in Eq. (15) is discretised, as shown

previously57, into a cubic array of lattice points, with the grid spacing equal to the
interface width ϵ. To create the smooth, solid array of pillars in the diffuse interface
method, we firstly initialise component 1 in the desired pattern of cylinders. The
rest of the system is filled with pure gas (C3), and the liquid component (C2) is fixed
at 0. ψg and ψs are also set to zero. The energy minimisation is then carried out on
this initial system using the memory- and computationally efficient L-BFGS
algorithm58,59. We truncate the algorithm to 30 iterations, as this allows the 1–3
diffuse interface to form, without allowing the relaxing component 1 to alter the
desired shape of the cylinder.

Next, the solid surfaces at the base of the pillars are introduced, and the
gravitational energy density switched on. Component 2 (the liquid phase) is
initialised in the system in a prescribed configuration. The solid phase (C1) is now
fixed while the liquid (C2) and gas phases (C3) are allowed to vary. Ψ in Eq. (15) is
now minimised under these constraints. The minimisation is deemed to have
converged based on an rms gradient condition: when ∣ ∇Ψ∣ < 10−5.

For the square pillars, the solid boundaries of the posts conform to the
discretisation lattice. This means that we do not need to apply the diffuse solid method,
and instead treat all solid boundaries using Eq. (19). C1 is fixed at 0 throughout the
minimisation, so the ternary model in Eq. (15) reduces to a binary liquid-gas model.

Data availability
All simulation and experimental data presented in this work is available at https://doi.
org/10.15128/r20p096694s60.

Code availability
The phase field model software is available from the corresponding author upon
reasonable request.
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