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Abstract:	

Background:	Poor	air	quality	has	been	 linked	 to	 cognitive	deficits	 in	 children,	but	 this	
relationship	has	not	been	examined	in	the	first	year	of	life	when	brain	growth	is	at	its	peak.		

Methods:	We	measured	in-home	air	quality	focusing	on	particulate	matter	with	diameter	
of	<2.5	μm	(PM2.5)	and	infants’	cognition	longitudinally	in	a	sample	of	families	from	rural	
India.		

Results:	Air	quality	was	poorer	in	homes	that	used	solid	cooking	materials.	Infants	from	
homes	with	poorer	air	quality	showed	 lower	visual	working	memory	scores	at	6	and	9	
months	of	age	and	slower	visual	processing	speed	from	6-21	months	when	controlling	for	
family	socio-economic	status.		

Conclusions:	Thus,	poor	air	quality	is	associated	with	impaired	visual	cognition	in	the	first	
two	 years	 of	 life,	 consistent	 with	 animal	 studies	 of	 early	 brain	 development.	 We	
demonstrate	for	the	first	time	an	association	between	air	quality	and	cognition	in	the	first	
year	of	 life	using	direct	measures	of	 in-home	air	quality	and	looking-based	measures	of	
cognition.	Because	 indoor	 air	 quality	was	 linked	 to	 cooking	materials	 in	 the	home,	 our	
findings	 suggest	 that	 efforts	 to	 reduce	 cooking	 emissions	 should	 be	 a	 key	 target	 for	
intervention.	
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The	impact	of	poor	air	quality	on	neurocognitive	health	is	a	global	concern.	This	impact	was	
recently	quantified	by	the	Global	Burden	of	Disease	Study	in	India,	attributing	1.67	million	deaths	in	
2019	to	air	pollution-related	causes	with	an	overall	national	economic	loss	of	$36.8	billion	(1).	Such	
economic	losses	are	compounded	by	evidence	that	poor	air	quality	impacts	neurocognitive	health	
in	childhood	as	economic	losses	accumulate	over	years	of	reduced	productivity	(2).	Studies	have	
reported	that	poor	air	quality	and	proximity	to	roadways	is	associated	with	reduced	general	
cognitive	functioning	in	childhood	(3–6)	and	slower	growth	in	working	memory	(7).	Exposure	to	
poor	air	quality	is	also	a	risk	factor	for	child	emotional	and	behavioural	problems	which	can	have	
severe	impacts	on	families	(8).		
But	how	early	do	these	effects	emerge?	This	is	an	important	question	as	animal	studies	show	
profound	impacts	on	the	brain	in	early	development,	with	inhalation	of	diesel	exhaust	and	ultrafine	
particles	resulting	in	elevated	cytokine	expression	and	oxidative	stress	in	the	brain	(9, 10),	as	well	
as	altered	neurogenesis	(11).	Very	small	particulate	fragments	(particulate	matter	with	diameter	of	
<2.5	μm;	PM2.5)	are	of	major	concern	as	they	can	move	from	the	respiratory	tract	into	the	
circulatory	system	reaching	the	brain.	The	brain	may	also	be	particularly	sensitive	during	infancy	
due	an	immature	detoxification	response	(12).	Several	large-scale	studies	have	looked	at	the	effects	
of	prenatal	exposure	to	nitrous	oxide	and	PM2.5	on	human	cognition	early	in	development	(13, 14).	
Results	show	reduced	psychomotor	functioning	at	1-6	years	of	age,	but	no	associations	with	early	
cognition,	although	three	studies	have	reported	slower	cognitive	growth	and	emotional	/	conduct	
problems	in	children	exposed	to	poorer	indoor	air	quality	as	assessed	via	questionnaires	(15–17).		
Critically,	no	studies	have	looked	at	the	relationship	between	poor	air	quality	and	cognition	in	the	
first	year	of	life	when	brain	size	doubles	and	may	be	particularly	sensitive	to	toxins.	This	may	
reflect	the	challenge	of	assessing	cognition	in	infancy.	While	standardized	measures	exist	(e.g.,	
Mullen	Scales	of	Early	Learning),	these	tools	may	not	generalize	to	non-Western	cultures	where	air	
quality	is	poorest.	An	alternative	is	to	measure	infant	cognition	using	specially-designed	looking-
based	tasks.	Multiple	aspects	of	visual	cognition	that	are	predictive	of	later	cognitive	abilities	(18)	
can	be	measured	reliably	in	the	first	year	across	cultures	(19, 20).		For	instance,	visual	processing	
speed	measured	using	looking-based	tasks	in	both	infancy	and	toddlerhood	is	significantly	
predictive	of	working	memory	and	executive	function	scores	at	11	years	(21).	A	second	challenge	is	
that	infants	spend	much	of	the	first	year	indoors.	Consequently,	data	from	outdoor	monitoring	
stations	may	not	accurately	reflect	air	quality	exposure	critical	for	early	brain	development,	
particularly	in	contexts	where	use	of,	for	instance,	solid	fuels	in	cooking	may	lead	to	differences	
between	indoor	and	outdoor	air	quality.	Recent	advances	in	air	quality	monitoring	allow	for	the	
measurement	of	PM2.5	directly	in	homes;	this	may	be	critical	as	PM2.5	is	possibly	the	most	neurotoxic	
component	of	residential	air	quality	(22).		
Here	we	examined	the	relationship	between	poor	air	quality	and	cognition	in	infancy	using	looking-
based	measures	of	cognition	and	in-home	measures	of	PM2.5.	To	assess	visual	cognition,	we	used	a	
specially-designed,	transculturally-relevant	visual	cognition	task	which	assessed	infants’	visual	
working	memory	and	processing	speed	(Figure	1A,B;	see	(23)),	capitalizing	on	infants’	tendency	to	
look	away	from	visual	familiarity	and	toward	visual	novelty.	This	task	has	been	examined	in	several	
prior	studies	(24, 25),	but	this	is	the	first	study	to	use	this	task	longitudinally	with	a	sample	of	non-
western	infants.	Infants	visually	explored	two	displays	that	blinked	‘on’	and	‘off’.	On	one	side	–	the	
‘no	change’	side,	the	same	colored	squares	were	always	presented;	on	the	other	side,	one	randomly-
selected	square	changed	color	after	each	blink.	If	infants	begin	looking	at	the	‘no	change’	side	and	
they	can	remember	the	colors	in	working	memory,	they	should	lose	interest	in	this	display,	
releasing	fixation	to	visually	explore	the	‘changing’	display.	Here,	they	should	detect	the	novel	color	
and	sustain	looking	to	this	display,	leading	to	a	strong	change	preference	–	a	high	proportion	of	
looking	to	the	changing	side.	This	change	preference	is	modulated	by	visual	working	memory	
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capacity.		When	the	number	of	items	on	the	screen	is	small	(i.e.,	the	memory	load	is	low),	infants	
can	detect	the	difference	between	the	‘no	change’	and	‘change’	displays,	and	they	show	a	higher	
change	preference.	With	increasing	memory	load	(and	increasing	difficulty),	infants	may	falsely	
detect	changes	on	the	‘no	change	side’	and	have	difficulty	releasing	fixation,	leading	to	a	lower	
change	preference	(26).	Thus,	the	change	preference	score	yields	a	quantifiable	measure	of	infants’	
visual	working	memory	abilities.	Note	that	if	infants	begin	looking	at	the	‘change’	side,	they	should	
remain	looking	at	this	display	with	a	consistently	high	change	preference	score	(see	Methods	for	
further	discussion).		

Our	study	was	conducted	in	Shivgarh,	India,	a	rural	community	in	Uttar	Pradesh,	one	of	the	states	in	
India	that	has	been	most	strongly	impacted	by	poor	air	quality	(1).	We	report	data	from	215	
families	from	a	range	of	socio-economic	backgrounds	(see	Table	1).	Infants	were	enrolled	at	6	
months	(N=108)	or	9	months	of	age	(N=107)	at	which	time	they	completed	an	in-lab	assessment	of	
visual	cognition	(see	Figure	1A)	as	well	as	standardized	psychomotor	and	cognitive	assessments.	A	
similar	assessment	was	repeated	a	year	later	when	the	same	infants	were	18	or	21	months	of	age	
(see	Methods).	We	examined	these	two	cohorts	based	on	evidence	that	there	is	an	improvement	in	
visual	working	memory	capacity	between	6	and	8	months.	In	particular,	Ross-Sheehy	and	
colleagues	(23)	showed	that	6.5-month-old	infants	demonstrate	greater-than-chance	change	
preference	scores	with	a	memory	load	of	one	item,	while	10-	and	13-month-old	infants	showed	
greater-than-chance	change	preference	scores	for	memory	loads	of	two	and	three	items.	Similarly,	
6.5-month-old	infants	could	remember	one	spatial	location,	while	8-	and	12.5-month-old	infants	
showed	evidence	of	remembering	multiple	locations	(27).	By	assessing	infants	in	rural	India	on	
either	side	of	this	transition,	we	hoped	to	either	replicate	a	similar	transition	or,	alternatively,	to	
reveal	a	delay	in	this	transition	across	cultures.		

Methods	
Participants	

Infants	born	to	mothers	from	Shivgarh,	Uttar	Pradesh,	India	and	who	were	aged	6	months	±	15	
days	or	9	months	±	15	days	were	eligible	for	participation.	Infants	were	initially	screened	as	
belonging	to	either	‘high	socioeconomic	status	(SES)’	(both	parents	having	>	10	years	of	education)	
or	‘low	SES’	families	(both	parents	have	<=	5	years	of	education;	see	(28)	for	a	similar	screening	
approach).	Infants	born	to	parents	screened	with	colour	vision	deficits	(due	to	the	nature	of	the	
VWM	task),	or	with	any	congenital	problems,	or	gestational	age	<	26	weeks	at	birth,	were	excluded	
from	the	study.		

We	brought	257	families	to	the	lab	for	the	VWM	and	cognitive	assessment;	however,	17	
families	(10	6-month-old	infants;	7	9-month-old	infants)	did	not	complete	the	assessment	and	were	
dropped	from	the	study.	The	remaining	240	families	were	followed	up	for	the	duration	of	the	study	
which	spanned	two	years	and	included	the	following:	(1)	a	laboratory	assessment	in	year	1	at	6	or	9	
months	of	age;	(2)	a	home	visit	every	three	months	thereafter	for	the	remainder	of	year	1	(e.g.,	at	9,	
12,	and	15	months	of	age	for	the	6-month	cohort);	(3)	a	laboratory	assessment	in	year	2	at	18	or	21	
months	of	age;	(4)	a	home	visit	every	three	months	thereafter	for	the	remainder	of	year	2	(e.g.,	at	
21,	24,	and	27	months	of	age	for	the	6-month	cohort).	Enrollment	was	distributed	over	4	waves	
separated	by	three	months,	such	that	we	enrolled	approximately	60	infants	per	wave	of	data	
collection	(for	a	full	list	of	data	collected	in	the	study,	see	Supplementary	Materials).	The	study	was	
approved	by	the	Community	Empowerment	Lab	Institutional	Ethics	Committee	(Ref.	No:	
CEL/2018005).	Participants’	caregivers	provided	written	informed	consent;	where	caregivers	were	
illiterate,	a	witness	gave	signed	consent	accompanied	by	a	thumb	impression	of	the	caregiver	in	
place	of	a	signature.	At	the	end	of	each	laboratory	session,	families	received	a	small	token	of	
appreciation.	

Air	quality	data	were	collected	for	a	total	of	219	children;	of	those,	215	had	data	that	survived	
initial	data	quality	checks	(described	below).	213	children	also	had	data	from	the	visual	working	
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memory	task	and	cognitive	assessment	during	either	the	first	laboratory	assessment	(when	infants	
were	6	or	9	months	of	age)	or	the	second	laboratory	assessment	(when	infants	were	18	or	21	
months	of	age).	In	particular,	204	participants	contributed	visual	working	memory	data	in	year	1	
when	they	were	6	months	of	age	(N	=	109;	N	girls	=	50;	M	age	=	182.4	days,	SD	age	=	14.9	days)	or	9	
months	of	age	(N	=	95;	N	girls	=	51;	M	age	=	267.2	days,	SD	age	=	14.2	days).	In	year	2,	181	
participants	contributed	visual	working	memory	data	when	the	infants	were	18	months	of	age	(N	=	
90;	N	girls	=	45;	M	age	=	546.2	days,	SD	age	=	19.2	days)	or	21	months	of	age	(N	=	91;	N	girls	=	45;	M	
age	=	627.4	days,	SD	age	=	27.7	days).	

As	part	of	the	first	laboratory	visit,	caregivers	were	interviewed	to	obtain	demographic	indices	
and	family	SES	data	using	the	modified	Kuppuswamy	Scale	(29).	This	scale	classifies	SES	using	
occupation,	education,	and	family	income.	Table	1	shows	how	high	and	low	SES	families	(using	a	
median	split	on	the	Kuppuswamy	SES	Score)	were	distributed	along	multiple	demographic	indices.		
	
Materials	

Visual	cognition	task.	We	used	a	preferential	looking	change	detection	task(23)	with	a	10s	trial	
duration	(see	(30, 31)).	A	42-inch	LCD	monitor	that	was	connected	to	a	PC	running	Experiment	
Builder	was	used	to	display	the	stimuli.	Looking	data	were	collected	at	500	Hz	using	an	Eyelink	
1000	Plus	eye-tracker	(SR	Research).	Where	eye-tracking	data	were	not	available,	looking	data	
were	collected	with	a	webcam	and	hand-coded	at	30	frames-per-second	using	Datavyu	(32).	

Infants	sat	on	their	mother’s	lap	100cm	from	the	screen.	A	target	sticker	was	placed	on	the	
infant’s	forehead	so	the	eye-tracking	system	could	track	head	movement.	The	stimuli	consisted	of	
two	side-by-side	flickering	displays	composed	of	colored	squares	(Figure	1A).	One	side	contained	
the	‘change’	display	and	the	other	contained	the	‘no-change’	display.	Each	stimulus	display	area	was	
29.5cm	in	width	and	21cm	in	height,	with	a	21cm	gap	between	the	display	on	the	left	and	right	
(each	coloured	square	was	approximately	5cm	x	5cm).	The	displays	had	a	solid	grey	background.	
The	colours	of	the	squares	presented	on	each	display	were	selected	from	a	set	of	nine	colours:	
green	(RGB:	0,	153,	0),	brown	(128,	64,	32),	black	(0,	0,	0),	violet	(128,	0,	128),	cyan	(128,	255,	255),	
yellow	(255,	255,	0),	blue	(0,	0,	255),	white	(255,	255,	255),	and	red	(255,	0,	0).	The	set	size	
(number	of	items)	was	the	same	between	the	two	displays	and	remained	constant	during	the	10s	
trials.	The	colors	on	a	display	were	always	different	from	each	other	but	colors	could	be	repeated	
between	the	displays.		

Standardized	assessments.	We	collected	standardized	psychomotor	and	cognitive	assessments	
in	year	1	using	the	Mullen	Scales	of	Early	Learning	(MSEL).	In	year	2,	we	used	the	Ages	and	Stages	
Questionnaire	(3rd	edition;	ASQ).	We	switched	to	the	ASQ	in	year	2	because	preliminary	testing	with	
the	MSEL	revealed	many	questions	that	were	not	relevant	to	the	rural	setting	in	Shivgarh.		

Air	quality	monitoring.	Air	quality	data	were	acquired	using	the	Air	Visual	Node	monitor	
(model	B01MF6X1YK,	Atlanta	Healthcare,	Inc).	We	selected	this	device	based	on	validation	data	
comparing	the	device	to	a	reference	Beta	Attenuation	Monitor	(BAM)	in	Beijing,	China	during	June	
of	2015	(33).	Daily	concentration	estimates	from	the	two	devices	correlated	highly	(R2	=	0.96).	We	
purchased	20	devices.		
	
Procedure	

Visual	cognition	task.	Children	were	tested	individually.	The	task	began	with	a	5-point	
calibration	sequence.	Next,	the	visual	cognition	task	began	(see	Figure	1A).	The	squares	
simultaneously	appeared	for	500ms	and	disappeared	for	250ms	during	the	10s	trials.	For	the	‘no-
change’	display,	the	colors	of	the	squares	remained	constant	throughout	the	trial.	For	the	‘change’	
display,	one	of	the	squares	changed	color	after	each	disappearance.	The	changing	square	was	
randomly	selected,	and	its	color	was	derived	from	the	set	of	colors	not	currently	present	in	that	
display.	Consistent	with	prior	studies,	memory	load	was	varied	between	1,	2,	and	3	items	on	each	
side	for	6-	and	9-month-old	infants	and	2,	4,	and	6	items	on	each	side	for	18-	and	21-month-old	
infants.	Infants	were	presented	with	36	total	trials	in	six	blocks	of	6	trials.	Each	block	contained	3	
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trials	(one	for	each	load)	for	each	change	side.	Participants	could	take	breaks	between	blocks.	
Participants	completed	on	average	20.99	trials	in	year	1	(SD	=	9.72)	and	26.25	trials	in	year	2	(SD	=	
9.66).	

Standardized	assessments.	Standardized	assessments	were	conducted	in	a	quiet	room	with	
trained	staff.	The	MSEL	was	administered	in	Year	1,	while	the	ASQ	was	administered	in	Year	2.	The	
ASQ	questionnaire	for	each	infant	was	selected	using	the	online	ASQ	calculator	
(https://agesandstages.com/free-resources/asq-calculator/).	We	adapted	the	ASQ	administration	
to	improve	the	reliability	of	the	data.	Specifically,	a	trained	assessor	administered	the	ASQ	in	
collaboration	with	the	parent.	In	cases	where	ASQ	questions	asked	about	behaviors	that	could	be	
elicited	(e.g.,	‘When	you	ask	your	child	to,	does	he	go	into	another	room	to	find	a	familiar	toy	or	
object?’),	these	tasks	were	completed	‘live’,	ensuring	that	the	child	was	given	ample	time.	If	a	
question	was	not	amenable	to	live	assessment,	the	mother’s	verbal	report	was	taken	as	the	
response.	

Use	of	the	Air	Visual	Node	device.	During	each	in-home	assessment	period,	air	quality	data	were	
collected	across	3	days	with	the	monitor	placed	at	roughly	head	height	in	the	room	where	the	child	
typically	slept	or	spent	most	of	their	time	(see	Figure	2A).	The	monitor	was	inaccessible	to	children.	
Air	quality	was	monitored	in	three-monthly	intervals	in-between	the	Year	1	and	Year	2	laboratory	
visits	for	a	maximum	of	6	collection	periods	for	each	household.	Data	were	collected	from	the	AVN	
device	every	10	seconds.	Households	had	to	have	at	least	5	hours	of	recorded	data	in	any	given	
round	for	that	round	to	be	included	in	analysis.		

Data	from	the	air	quality	monitors	were	downloaded	after	each	3-day	period	and	quality	
checked.	After	8-10	months	of	use,	a	few	of	the	devices	were	returning	very	high	or	very	low	values.	
Henceforth,	devices	were	regularly	cleaned.	After	cleaning,	multiple	devices	were	tested	in	the	
same	room	to	ensure	they	were	returning	the	same	air	quality	readings.	Any	devices	returning	
erroneous	values	were	retired.	By	the	end	of	the	2-year	study,	11	devices	had	been	retired.		
	
Methods	of	Analysis	

Visual	cognition	measures.	The	eye-tracking	data	were	exported	on	a	frame-by-frame	basis	
using	SR	research	Data	Viewer.	The	area	of	interest	around	the	two	objects	was	increased	to	match	
video	coded	data	which	coded	looking	to	the	left,	right,	or	away.	Where	there	was	no	recorded	eye-
tracking	data,	the	hand-coded	video	data	was	used	instead.	Of	the	9956	total	trials	used	to	calculate	
the	scores,	3047	trials	(30.6%)	were	manually	coded.	We	re-coded	17%	of	the	data	to	check	
reliabilities.	Reliabilities	were	very	good	with	a	mean	Kappa	for	the	6-month	cohort	of	0.73	and	a	
mean	Kappa	for	the	9-month	cohort	of	0.83.		

The	looking	data	were	read	into	R	and	pre-processed	using	the	R	package	eyetrackingR	(34).	
For	the	change	preference	measure,	trials	where	more	than	75%	of	the	data	was	recorded	as	not	
looking	at	the	screen	were	excluded.	Initial	analyses	of	these	change	preference	scores	revealed	
that	the	change	preference	measure	was	not	robust	longitudinally,	that	is,	year	1	change	preference	
scores	did	not	predict	year	2	change	preference	scores	(note:	a	full	correlation	table	for	key	
measures	used	in	the	present	study	can	be	found	in	the	supplementary	materials;	see	Table	S1).	
This	was	the	case	for	the	present	sample	as	well	as	a	longitudinal	sample	from	urban	UK	infants	
collected	as	part	of	a	complementary	study	(see	44	for	details).	Additional	analyses	from	a	
forthcoming	paper	(35)	revealed	that	sorting	trials	based	on	where	infants	are	looking	at	the	start	
of	the	first	‘change’	display	(i.e.,	1000ms)	yields	two	measure	that	are	stable	longitudinally	–	a	‘first-
look	change’	score	and	a	‘first-look	no-change’	score.	This	makes	sense	as	prior	to	the	first	change	
on	the	screen	participants	have	no	way	of	knowing	which	is	the	‘no-change’	side	and	which	is	the	
‘change’	side.	Furthermore,	the	demands	placed	on	visual	cognition	differ	depending	on	the	starting	
location.	If	infants	start	on	the	‘no-change’	side,	they	should	notice	the	‘sameness’	if	the	number	of	
items	is	within	their	visual	working	memory	capacity	and	release	fixation	due	to	a	lack	of	visual	
novelty.	Thus,	‘first-look	no-change’	trials	might	be	particularly	sensitive	to	individual	differences	in	
visual	working	memory	capacity	(for	discussion,	see	(35)).	By	contrast,	if	infants	start	on	the	
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‘change’	side,	they	should	readily	notice	the	novelty	and	remain	fixated	on	that	display.	Note	that	
sorting	trials	based	on	where	infants	are	looking	at	a	key	moment	in	time	is	a	standard	approach	in	
the	infant	eye-tracking	literature	(e.g.,	see	(36)).	

Infants’	looking	data	were	sorted	into	two	types	of	trials	(first-look	no-change,	first-look	
change)	based	on	where	they	were	looking	at	the	onset	of	the	first	change	(1000ms	after	trial	start).	
Unfortunately,	1030	trials	(13.1%	of	the	total	trials)	had	missing	data	within	the	time	window	from	
1000-1100ms	(e.g.,	due	to	a	failure	to	track	the	eye	in	this	window).	Thus,	we	allowed	the	‘first-
look’	classification	to	be	determined	based	on	the	first	frame	of	non-missing	eye-tracking	data	up	to	
2500ms	(which	spanned	from	the	onset	of	the	first	change	display	[1000ms]	through	two	display	+	
delay	periods).	This	allowed	us	to	classify	an	additional	613	trials,	yielding	a	total	trial	loss	of	417	
trials	(5.3%)	due	to	a	failure	to	classify	the	‘first-look’	status.	The	change	preference	analysis	
focused	on	the	analysis	period	from	1750ms	to	6750ms.	We	trimmed	the	last	few	seconds	of	data	
from	each	trial	as	the	number	of	eye-tracking	samples	diminished	as	attention	waned	(see	44 for	a	
detailed	analysis	justifying	this	time	window).		

The	shift	rate	measure	was	taken	from	the	full	length	of	any	trial.	This	measure	counted	the	
number	of	switches	participants	made	from	one	side	of	the	screen	to	the	other	divided	by	the	
number	of	seconds	that	participants	were	looking	at	the	display,	resulting	in	shifts	per	second.		

The	baseline	model	for	each	change	preference	measure	was	a	linear	mixed-effect	model	with	
year	(1	or	2),	working	memory	load	(low,	medium	or	high),	SES	(Kuppuswamy	SES	score),	and	age	
cohort	(6	or	9	months)	as	independent	variables.	We	also	included	the	mean	proportion	looking	to	
the	first	fixated	item	in	the	first	time	window	(1-750ms)	before	any	visual	changes	had	been	
introduced	to	get	an	initial	measure	of	visual	dynamics	for	each	infant	(LookingWindow1).	Year	and	
age	cohort	were	difference-coded,	SES	was	centered,	and	load	was	input	as	a	factor.	To	allow	for	
individual	differences	across	year	and	load,	a	random	intercept	for	each	participant	was	included.	
To	arrive	at	a	minimal	baseline	model,	we	began	with	a	model	that	only	included	main	effects.	We	
then	introduced	two-way,	three-way,	and	four-way	interactions,	only	including	interactive	effects	
that	showed	evidence	of	improving	the	model	fit.	For	the	‘first-look	no-change’	measure,	the	final	
baseline	model	included	all	main	effects	and	the	following	interactions:	Year	x	SES,	Year	x	
LookingWindow1,	SES	x	LookingWindow1,	and	Year	x	SES	x	LookingWindow1	(see	Table	2).	For	
the	‘first-look	change’	measure,	the	final	baseline	model	included	all	main	effects	(see	Table	10).	

All	models	were	assessed	for	fit	based	on	a	Q-Q	plot	of	the	residuals	and	the	R	package	
DHARMa	(37).	Analyses	reported	in	the	tables	use	the	p	values	calculated	using	Satterthwaite’s	
method	from	the	package	lmerTest	(38)	to	enable	the	reader	to	glean	the	direction	of	all	effects.	In	
addition,	the	contribution	of	each	significant	effect	to	a	model	was	assessed	using	type	3	Wald	Chi-
squared	tests,	with	effect	sizes	reported	in	text	using	the	effectsize	package	in	R	(39).	In	all	models	
we	aimed	to	theoretically	motivate	the	inclusion	of	all	effects	and	limit	spurious	correlations	by	
only	adding	effects	where	they	were	thought	to	contribute	a	priori.	In	the	case	of	interactions,	
models	were	tested	to	see	whether	interactions	improved	model	fit	through	formal	model	
comparison,	and	interactions	were	not	included	if	they	did	not	contribute	to	model	fit.		

The	baseline	model	for	shift	rate	was	arrived	at	using	a	similar	procedure.	The	final	baseline	
model	included	all	main	effects	and	a	Year	x	SES	interaction	(see	Table	3).		

Standardized	assessments.	We	used	non-standardized	measures	from	the	MSEL	and	ASQ	as	
there	are	no	standardized	scores	for	rural	India.	From	the	MSEL,	we	use	the	composite	standard	T-
score	as	a	general	measure	of	cognition.	The	baseline	model	for	this	measure	was	a	linear	model	
with	age	cohort	and	SES	included	as	main	effects	(see	Table	4).	For	the	ASQ,	we	used	the	problem-
solving	measure.	The	baseline	model	was	a	linear	model	with	the	ASQ	measure	as	the	dependent	
variable	and	age	cohort	and	SES	as	independent	variables	(see	Table	4).		

Data	filtering	and	analysis	of	air	quality	data.	The	air	quality	data	were	collated	and	read	into	
R.	Data	were	inspected	to	understand	the	cyclical	patterns	across	days	and	months.	The	air	quality	
data	was	filtered	to	remove	data	from	any	defective	devices	(see	above),	and	then	down-sampled	so	
that	we	had	one	observation	per	hour.	This	smoothed	the	data	and	removed	temporal	
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autocorrelation.	The	down-sampled	data	were	then	fit	with	a	generalized	additive	mixed	model	
(GAMM)	in	R	using	the	“bam”	function	from	the	package	mgcv	(40).	The	model	included	air	quality	
as	the	dependent	variable	and	a	tensor	smooth	of	time	of	day	(in	hours)	and	date,	with	a	cubic	
regression	spline	of	11	dimensions	for	each	as	independent	variables.	The	model	also	allowed	a	
smoothed	random	effect	of	participant.	To	reduce	autocorrelation,	the	model	was	fit	with	a	Rho	of	
0.6.	Temporal	autocorrelation	was	assessed	using	the	itsadug	package	in	R	(41).	The	model	
provided	an	excellent	fit,	capturing	annual	fluctuations	by	date	(see	Figure	2B)	and	daily	
fluctuations	by	hour	(see	Figure	2C).		

The	participant-level	random	intercept	was	extracted	from	the	model,	to	act	as	a	single	data	
measurement	to	represent	air	quality	in	each	home.	This	measurement	was	highly	correlated	with	
the	mean	air	quality	score	for	each	participant,	t(213)	=	21.348,	p	<	0.001.	This	individual	level	
score	was	centered	around	0,	where	a	positive	score	indicated	a	higher	air	quality	score	(i.e.,	poorer	
air	quality)	on	average	than	the	grand	mean	(i.e.,	185.824).	For	visualization	purposes,	Figures	2	
and	3	were	adjusted	by	adding	the	grand	mean	to	the	individual	score.	Note	that	the	participant-
level	random	intercept	provides	a	measurement	that	is	more	robust	to	time	if	day	or	seasonal	
effects	if	a	participant	contributed	only	a	small	amount	of	samples	than	the	mean	air	quality	value,	
as	these	effects	are	included	in	the	model.	

We	modelled	individual	estimates	of	air	quality	using	a	linear	model	with	the	AQI	random	
intercept	value	as	the	dependent	variable	and	age	cohort	and	cooking	fuel	type	as	independent	
variables	(see	Table	5).	A	second	model	for	air	quality	was	run	but	using	the	SES	score	(centered)	
as	a	replacement	for	cooking	fuel	(also	in	Table	5).	These	models	were	comparable,	showing	the	
strong	relationship	between	cooking	fuel	and	SES	(see	also,	Table	1).		

Analysis	of	air	quality	associations	with	cognition.	To	assess	the	association	of	air	quality	with	
visual	cognition,	we	added	air	quality	to	the	baseline	model	for	each	dependent	variable,	that	is,	for	
the	‘first-look	no-change’	change	preference	score	(Table	6),	shift	rate	(Table	7),	and	the	‘first-look	
change’	change	preference	score	(Table	11).	An	Air	Quality	x	Year	interaction	was	also	included	in	
the	‘first-look	no-change’	change	preference	model	as	this	improved	the	model	fit,	assessed	using	
the	anova	function	in	R,	C2(1)	=	4.824,	p	=	0.028,	h2	(partial)	=	0.005.		

To	assess	the	association	of	air	quality	with	standardized	cognitive	scores,	we	added	air	
quality	to	the	baseline	model	for	the	MSEL	scores	(Table	8)	and	the	ASQ	problem-solving	scores	
(Table	9).	In	addition,	following	findings	from	Guxens	et	al.	(14),	we	conducted	analyses	on	the	ASQ	
fine	and	gross	motor	scores	to	examine	whether	these	measures	were	associated	with	air	quality	
(see	Table	9).	

	

Results	

We	focused	on	three	primary	measures	from	the	preferential	looking	task:	(1)	the	shift	rate,	that	is,	
the	number	of	looks	back	and	forth	(per	second),	(2)	the	change	preference	score	for	trials	where	
infants’	‘first	look’	was	to	the	‘no	change’	side,	and	(3)	the	change	preference	score	for	trials	where	
infants’	‘first	look’	was	to	the	‘change’	side.	Use	of	the	shift	rate	measure	was	motivated	by	prior	
work	showing	that	visual	processing	speed	in	infancy	is	predictive	of	longer-term	cognitive	
outcomes	(21).		The	latter	two	measures	are	an	adaptation	of	the	standard	‘change	preference’	
looking	measure	from	this	task.	Note	that	because	the	‘first-look	no-change’	measure	starts	at	0	(i.e.,	
looking	to	no	change)	and	the	‘first-look	change’	measure	starts	at	1	(i.e.,	looking	to	change),	chance	
performance	is	no	longer	anchored	at	0.5.	Although	this	differs	from	prior	work,	the	change	was	
motivated	by	evidence	that	the	standard	measure	is	not	predictive	longitudinally,	while	the	adapted	
measures	are	(see	Methods	for	discussion).	Note	further	that	we	focus	on	the	‘first	look	no-change’	
measure	below	(referred	to	as	the	‘change	preference’	score	for	simplicity),	as	the	only	significant	
finding	for	the	‘first	look	change’	measure	was	a	decrease	in	the	change	preference	score	from	year	
1	to	year	2	(see	Tables	10	and	11).		
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Six-month-old	infants	showed	lower	change	preference	scores	than	9-month-old	infants	(Figure	
1C),	C2(1)	=	3.66,	p	=	0.056	ηp2	=	0.02	(for	full	results,	see	Table	2).	In	addition,	change	preference	
scores	decreased	as	the	memory	load	increased,	C2(2)	=	12.53,	p	=	0.002	ηp2	=	0.01	(see	Figure	1D).	
Similar	effects	were	observed	in	an	analysis	of	infants’	rate	of	looking	back	and	forth	between	the	
displays	(i.e.,	shift	rate;	see	Table	3).	Infants’	shift	rate	decreased	as	the	memory	load	increased,	
C2(2)	=	16.52,	p	<	0.001	ηp2	=		0.02	(see	Figure	1E).	In	addition,	infants’	standardized	cognitive	
scores	in	year	1,	F(1)	=	10.94,	p	=	0.001	ηp2	=	0.050,	and	year	2,	F(1)	=	15.99,	p	<	0.001	ηp2	=	0.080,	
were	consistently	lower	for	low	SES	infants	(see	Figures	1F,	1G	and	Table	4).		

Fig.	1.	Variations	in	infants’	cognitive	performance.	(A)	A	schematic	of	the	visual	cognition	task.	
(B)	An	infant	performing	the	task.	(C)	The	6-month-old	cohort	had	lower	‘first-look	no-change’	
change	preference	scores	relative	to	the	9-month-old	cohort.	(D)	Infants	showed	higher	change	
preference	scores	in	the	low	memory	load	condition	relative	to	the	medium	and	high	loads.	(E)	
Infants	had	faster	visual	processing	speed	(higher	shift	rates)	in	the	low	load	condition	relative	to	
the	medium	and	high	loads.	(F)	Standardized	composite	scores	from	the	Mullen	Scales	of	Early	
Learning	(MSEL)	in	year	1	were	higher	for	high	SES	infants	than	for	low	SES	infants.	(G)	Problem-
solving	scores	from	the	Ages	and	Stages	Questionnaire	(ASQ)	in	year	2	were	higher	for	high	SES	
infants	than	for	low	SES	infants.	Note	that	for	F	and	G,	a	continuous	SES	score	based	on	the	
Kuppuswamy	Scale	(see	(28))	was	used	in	analysis,	but	this	was	median-split	for	ease	of	
visualization.	

	

We	recorded	in-home	air	quality	using	a	laser	particle	sensor	(Air	Visual	Node,	Atlanta	Healthcare,	
Inc.)	placed	in	the	home	(see	Figure	2A)	for	3	continuous	days	during	each	assessment	period.	Field	
workers	were	instructed	to	place	the	sensor	in	the	room	where	infants	slept	or	spent	most	of	their	
time.	We	re-assessed	air	quality	up	to	6	times	for	each	family	(every	three	months	in-between	lab	
visits;	M	visits	=	4,	SD	=	1.16).	These	data	were	modelled	and	a	participant-level	score	which	
adjusted	for	season	and	time	of	day	was	extracted	for	use	in	the	analyses	(see	Methods).	We	
focused	on	PM2.5	concentrations	expressed	as	US	Air	Quality	Index	(AQI)	values.	This	index	maps	
PM2.5	concentrations	measured	in	µg/m3	to	a	more	intuitive	categorical	scale	where	AQI	values	
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under	50	are	good,	values	from	51-100	indicate	moderate	air	quality,	values	101-150	indicate	air	
that	is	unhealthy	for	sensitive	groups,	and	values	higher	than	151	are	considered	unhealthy	
extending	up	to	hazardous	(>301).	Note	that	AQI	values	can	be	readily	converted	to	µg/m3	using	
on-line	calculators	(e.g.,	https://www.airnow.gov/aqi/aqi-calculator/).		

	

Fig.	2.	Variations	in	in-home	air	quality	(PM2.5)	by	year,	by	day,	and	by	type	of	cooking	fuel.	
(A)	Three	examples	of	in-home	sensor	placement	for	households	of	varying	SES	levels.	(B)	
Variations	in	in-home	air	quality	over	years	in	the	study.	Black	dots	show	mean	air	quality	index	
over	each	3-day	assessment	period	with	standard	errors	indicating	variability	over	households	
collected	on	the	same	day.	Black	line	shows	our	model	fit	through	these	data.	Red	line	shows	best-
fitting	curve	from	outdoor	air	quality	observations	recorded	in	Lucknow,	India.	(C)	Daily	variations	
in	in-home	air	quality	with	peaks	at	meal	preparation	times.	Points	indicate	raw	data,	the	line	
indicates	our	model	fit.	(D)	Plots	showing	poorer	in-home	air	quality	for	households	that	used	cow	
dung	for	cooking	fuel	relative	to	wood	and	liquified	petroleum	gas	(LPG).	

	

As	can	be	seen	in	Figure	2B,	air	quality	in	Shivgarh	was	quite	poor,	with	AQI	values	often	higher	
than	151,	with	an	overall	mean	of	207.	This	is	comparable	to	recent	AQI	data	for	the	northern	states	
in	India	that	ranged	from	186	–	267	(1).	We	also	compared	in-home	air	quality	to	daily	outdoor	air	
quality	from	the	nearest	monitoring	station	in	Lucknow	(red	line	in	Figure	2B;	see	Central	Pollution	
Control	Board	in	India:	https://cpcb.nic.in).	Annual	fluctuations	in	in-home	air	quality	generally	
mirrored	fluctuations	in	outdoor	air	quality	in	Lucknow,	although	with	a	lower	peak	in	the	winter	
of	2018-2019	(for	similar	seasonal	variations	in	indoor	and	outdoor	air	quality,	see	(42)).	We	note	
that	this	lower	peak	occurred	during	a	pause	in	our	indoor	air	quality	data	collection;	thus,	we	
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cannot	evaluate	if	this	is	a	mismatch	or	simply	a	result	of	limited	data	during	this	period	in	the	
indoor	air	quality	model.	

In-home	air	quality	(PM2.5)	was	strongly	influenced	by	daily	meal	preparation,	with	peaks	in	poor	
air	quality	occurring	during	meal	preparation	times	(see	Figure	2C;	see	(43)	for	similar	meal	
preparation	findings).	Air	quality	was	poorest	in	households	using	cow	dung	for	fuel	and	best	in	
households	using	LPG,	F(2)	=	3.23,	p	=	0.042	ηp2	=	0.030	(see	Figure	2D;	Table	5).	Note	that	we	were	
not	able	to	look	at	the	impact	of	cooking	fuel	independently	from	SES	as	most	families	that	used	
LPG	fuel	fell	into	the	high	SES	tertile	(see	Table	1).	

Fig.	3.	Poor	air	quality	is	associated	with	impaired	visual	cognition	in	infancy.	(A)	Infants	from	
households	with	better	air	quality	(lower	AQI	scores)	had	higher	visual	working	memory	scores	in	
year	1	(see	dark	purple	line)	relative	to	effects	in	year	2	(pink	line).	(B)	Infants	from	households	
with	better	air	quality	(lower	AQI	scores)	also	had	faster	visual	processing	speeds	(higher	shift	
rates).		

	

Next,	we	explored	the	association	between	air	quality	(PM2.5)	and	cognitive	outcomes	while	
controlling	for	both	age	cohort	and	SES	(see	Methods).	Critically,	infants	living	in	homes	with	poor	
air	quality	had	poorer	visual	cognitive	performance.	Infants	from	households	with	poorer	air	
quality	had	lower	change	preference	scores	in	year	1,	an	effect	that	was	attenuated	in	year	2,	C2(1)	
=	5.91,	p	=	0.015	ηp2	=	0.006	(see	Figure	3A	and	Year	x	Air	Quality	interaction	in	Table	6).	We	also	
found	a	strong	negative	association	of	air	quality	with	visual	processing	speed	(shift	rate),	C2(1)	=	
4.69,	p	=	0.03	ηp2	=	0.02	(see	Air	Quality	main	effect	in	Table	7).	As	can	be	seen	in	Figure	3B,	infants	
from	households	with	poor	air	quality	showed	slower	rates	of	visual	processing.	Note	that	both	
effects	shown	in	Figure	3	were	robust	in	models	that	controlled	for	SES	using	the	modified	
Kuppuswamy	Scale	which	aggregates	effects	of	family	occupation,	education,	and	income	(see	(44)).	
Moreover,	in	both	cases,	models	that	included	air	quality	captured	a	significant	proportion	of	
variance	above	and	beyond	the	baseline	cognitive	models:	models	comparing	the	baseline	change	
preference	model	(Table	2)	to	a	model	that	included	air	quality	(Table	6)	showed	that	the	air	
quality	model	captured	a	greater	proportion	of	variance	in	the	change	preference	scores,	C2(2)	=	
6.35,	p	=	0.04;	similarly,	comparing	the	baseline	visual	processing	speed	model	(Table	3)	to	a	model	
that	included	air	quality	(Table	7)	showed	that	the	air	quality	model	captured	a	greater	proportion	
of	variance	in	processing	speed,	C2(1)	=	4.74,	p	=	0.03.		

One	concern	with	these	findings	is	that	change	preference	and	shift	rate	are	measured	in	the	same	
task	and	are	correlated.	Thus,	it	is	possible	the	findings	above	reflect	some	shared	variance	rather	
than	separate	effects.	To	examine	this,	we	re-ran	the	change	preference	/	air	quality	analysis,	
adding	shift	rate	as	a	predictor	of	the	change	preference	score.	This	analysis	revealed	a	main	effect	
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of	shift	rate,	C2(1)	=	17.36,	p	<	0.001	ηp2	=	0.02,	confirming	the	relationship	with	the	change	
preference	score;	however,	the	Load	and	Year	x	Air	Quality	interaction	remained	significant	(see	
Table	S2).	Thus,	the	effects	shown	in	Figure	3A	are	statistically	robust,	even	when	shift	rate	is	
included	in	the	change	preference	model.	We	also	re-ran	the	shift	rate	/	air	quality	model,	including	
the	change	preference	score	as	a	predictor.	This	analysis	revealed	a	main	effect	of	change	
preference	score,	C2(1)	=	23.02,	p	<	0.001	ηp2	=	0.02.	Critically,	however,	the	Load	and	Air	Quality	
main	effects	remained	significant	even	when	the	change	preference	score	was	included	as	a	
predictor	(see	Table	S3).	

Another	key	question	is	why	the	change	preference	measure	only	showed	a	robust	association	with	
air	quality	in	the	first	year.	As	discussed	in	the	Methods,	we	modulated	the	working	memory	load	in	
year	2	to	make	the	task	more	challenging	and	age-appropriate;	thus,	it	is	possible	we	made	the	task	
too	hard	for	some	infants,	dampening	our	ability	to	detect	individual	differences	in	working	
memory.	To	explore	this	possibility,	we	re-ran	the	change	preference	/	air	quality	analysis,	only	
using	data	from	load	2	trials	(i.e.,	the	‘medium’	load	in	year	1	and	the	‘low’	load	in	year	2;	see	
Methods).	In	this	analysis	with	identical	task	stimuli,	we	still	found	a	significant	Year	x	Air	Quality	
interaction,	F(1,340)	=	6.83,	p	=	0.009	ηp2	=	0.02	(see	Table	S4).	

Finally,	we	note	that	air	quality	did	not	significantly	impact	standardized	cognitive	scores	in	year	1	
(measured	using	the	Mullen	Scales)	or	year	2	(measured	using	the	ASQ;	see	Tables	8	and	9).	This	
may	indicate	that	the	effects	of	air	quality	are	specific	to	the	visual	cognitive	system	rather	than	
impacting	the	more	general	aspects	of	cognition	and	psychomotor	function	assessed	by	these	
measures.	

Discussion		

The	present	findings	indicate	that	poor	air	quality	(PM2.5)	is	associated	with	slower	visual	
processing	speed	in	the	first	two	years	of	life	and	poorer	visual	working	memory	scores	in	year	1.	
These	negative	impacts	were	evident	only	for	looking-based	measures	of	cognition.	Our	results	
contrast	with	findings	from	prior	studies	that	have	failed	to	show	an	association	between	outdoor	
air	quality	and	cognition	in	early	development.	It	is	possible	that	this	difference	reflects	the	broader	
range	of	PM2.5	exposure	in	our	sample.	For	instance,	Guxens	and	colleagues	(14)	reported	no	
systematic	relationships	between	air	quality	and	cognitive	measures	across	six	European	birth	
cohorts	(although	they	did	find	effects	on	psychomotor	function);	however,	air	quality	ranged	from	
AQI	values	of	53	to	72.	Our	mean	AQI	value	(207)	was	three	to	four	times	higher.	Thus,	infants	in	
the	present	report	were	exposed	to	much	poorer	air	quality	which	might	explain	the	strong	
relationship	with	visual	cognition.		

It	is	also	possible	that	indoor	levels	of	PM2.5	are	critical	to	cognition	in	infancy.	Most	prior	studies	
have	looked	at	outdoor	air	quality,	although	several	studies	have	reported	a	negative	impact	of	poor	
indoor	air	quality	on	cognition	as	assessed	via	questionnaires	(15–17, 45).	Interestingly,	Vrijheid	et	
al.	(17)	found	that	use	of	a	gas	cooker	in	the	home	showed	a	stronger	negative	association	with	
standardized	cognitive	scores	after	14	months.	Our	findings	extend	this	work	by	also	showing	an	
association	between	poor	indoor	air	quality	and	visual	cognition	as	early	as	6	months	of	age.		

One	question	raised	by	our	findings	is	why	visual	working	memory	effects	were	isolated	to	year	1.	
We	investigated	one	possibility	–	that	the	working	memory	task	was	too	difficult	in	year	2.	Results	
suggested	that	this	was	not	the	case:	when	we	compared	identical	conditions	across	years	1	and	2	
we	still	found	an	inverse	relationship	between	change	preference	scores	and	air	quality	in	year	1	
but	not	in	year	2.	Another	possibility	is	that	the	impact	of	indoor	air	quality	on	visual	cognition	
wanes	in	year	2.	Our	findings	for	shift	rate	argue	against	this	possibility	as	these	findings	were	
robust	across	both	years.	The	robustness	of	the	shift	rate	effect	may	suggest	that	visual	processing	
speed	is	a	particularly	sensitive	measure	in	infancy,	consistent	with	other	work	showing	that	visual	
processing	speed	in	infancy	is	predictive	of	schooling	outcomes	11	years	later	(21).	A	third	
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possibility	for	why	the	impact	of	air	quality	on	change	preference	scores	wanes	in	year	2	is	that	
other	factors	which	are	not	correlated	with	air	quality	have	a	stronger	impact	on	visual	working	
memory	in	year	2.	For	instance,	we	are	currently	examining	how	interactions	with	caregivers	
impact	infants’	visual	working	memory	abilities.	We	suspect	these	interactions	have	a	strong	
influence	on	visual	working	memory	development,	particularly	in	year	2	after	extended	
interactions	accumulate	over	time.	Interestingly,	infant-led	interactions	–	which	have	been	shown	
to	support	working	memory	development	(46, 47)	–	appear	to	be	quite	frequent	in	low	SES	families	
in	our	sample.	It	is	possible	such	positive	influences	counter	the	impact	of	poor	air	quality	in	some	
families.	

Another	interesting	result	from	the	present	study	was	the	specificity	of	our	findings	to	the	visual	
cognition	task.	In	particular,	although	results	from	the	Mullen	and	Ages	and	Stages	Questionnaire	
showed	robust	relationships	with	SES	suggesting	good	sensitivity,	these	measures	showed	no	
associations	with	air	quality.	Thus,	air	quality	may	have	specific	effects	in	infancy,	targeting	early	
emerging	cognitive	systems.	Future	work	will	be	needed	to	determine	if	this	is	the	case.	For	
instance,	it	would	be	interesting	to	examine	if	air	quality	has	an	impact	on	auditory	and/or	
statistical	learning	processes	in	the	first	two	years	of	life	(48).	
Strengths	of	the	current	study	include	our	use	of	multiple	measures	to	assess	infant	cognition	
including	looking-based	measures,	the	longitudinal	design,	inclusion	of	a	large	sample,	and	a	high	
density	of	air	quality	measurements	for	each	household.	We	also	included	a	continuous	range	of	
SES	families	from	the	same	micro-cultural	context,	allowing	us	to	tease	apart	influences	of	SES	
while	holding	culture	relatively	constant.		

Regarding	limitations,	we	note	that	effect	sizes	were	relatively	low	in	the	present	study.	In	addition,	
there	was	some	instability	in	the	air	quality	devices	over	time	(see	Methods).	Note	that	although	
laser	particle	sensors	have	shown	robust	correlations	with	beta	attenuation	monitors	in	laboratory	
and	field	tests	(49),	it	would	be	ideal	in	future	work	to	use	personal	air	quality	monitors	such	as	
gravimetric	devices	that	correct	light	scatter	and	use	weighted	PM2.5.	This	would	enable	a	direct,	
localized	measure	of	the	air	each	child	is	exposed	to.	

Another	limitation	of	the	present	study	was	the	absence	of	more	detailed	information	about	
cooking	practices	in	the	home.	Although	we	identified	the	primary	cooking	fuel	used	in	each	
household,	it	is	likely	some	households	used	multiple	cooking	methods,	and	other	fuels	for	
warming,	smoking,	and	so	on	(42, 43).	Future	work	will	also	be	needed	to	carefully	examine	
whether	poor	air	quality	has	a	causal	influence	on	cognition	in	early	development.	Given	recent	
data	on	the	impact	of	poor	air	quality	on	the	developing	brain	in	animals,	future	work	using	
neuroimaging	tools	might	be	particularly	useful	to	clarify	mechanistic	pathways	in	infancy.	

Our	data	suggest	that	global	efforts	to	improve	air	quality	could	have	benefits	to	infants’	emerging	
cognitive	abilities.	This,	in	turn,	could	have	a	cascade	of	positive	impacts,	including	positive	impacts	
on	families	as	well	as	economic	consequences	as	improved	cognition	can	lead	to	improved	
economic	productivity	longer-term	and	reduce	the	burden	on	healthcare	and	mental	health	
systems	(50).	Our	results	showing	links	between	indoor	air	quality	and	cooking	materials	also	
suggest	that	efforts	to	reduce	cooking	emissions	in	homes	should	be	a	key	target	for	intervention.	
This	requires	both	increased	availability	of	clean	technologies	and	uptake	of	such	technologies	in	
rural	households	where	traditional	methods	of	meal	preparation	might	be	a	barrier	(see	(43)).	Our	
findings	can	motivate	both	policymakers	and	families	to	improve	air	quality	as	this	should	
positively	boost	the	neurocognitive	health	of	young	infants.	
	

Data	and	materials	availability:	All	data	and	code	are	available	at	
https://osf.io/fspzb/?view_only=787893f2a3564947beda8d2aa37c1a1d.			
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Table	1.	
Proportional	distribution	of	key	demographic	indices	for	families	classified	as	high	versus	
low	SES	based	on	a	median	split	of	family	SES	measured	using	the	modified	Kuppuswamy	
scale.	
	
Electricity?	 Income*	 Cooking	Fuel	 High	SES	 Low	SES	
No	 Low	 Cow	dung	 0.02	 0.06	
	 	 Wood	 0.02	 0.25	
	 	 LPG	 0.01	 0.01	
	 Medium	 Cow	dung	 0.01	 0.02	
	 	 Wood	 0.04	 0.19	
	 	 LPG	 0.00	 0.00	
	 High	 Cow	dung	 0.00	 0.00	
	 	 Wood	 0.03	 0.08	
	 	 LPG	 0.01	 0.00	
Yes	 Low	 Cow	dung	 0.04	 0.01	
	 	 Wood	 0.08	 0.10	
	 	 LPG	 0.04	 0.01	
	 Medium	 Cow	dung	 0.03	 0.02	
	 	 Wood	 0.17	 0.17	
	 	 LPG	 0.02	 0.00	
	 High	 Cow	dung	 0.02	 0.01	
	 	 Wood	 0.22	 0.06	
	 	 LPG	 0.26	 0.02	
*Incomes	ranged	from	₹8,000	–	₹480,000	with	tertile	divisions	at	₹45,000	and	₹72,720.	
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Table	2.	
Model	parameters	for	linear	mixed	effect	model	assessing	the	impact	of	year,	load,	SES	
score	based	on	the	Kuppuswamy	scale,	age	cohort,	and	visual	dynamics	in	
LookingWindow1	on	the	‘first-look	no-change’	change	preference	scores	(baseline	change	
preference	model).	
	

Variable Estimate Std. Error DF t value Pr(>|t|) 
(Intercept) 0.488 0.054 534.793 9.062 <0.001 
Year -0.044 0.107 742.433 -0.411 0.681 
Load1 0.029 0.009 857.116 3.130 0.002 
Load2 -0.001 0.009 854.106 -0.114 0.909 
SES -0.006 0.013 527.033 -0.417 0.677 
LookingWindow1 -0.067 0.065 548.916 -1.038 0.300 
Age 0.027 0.014 183.400 1.913 0.057 
Year:SES 0.036 0.027 715.570 1.350 0.177 
Year:LookingWindow1 0.075 0.129 731.071 0.582 0.561 
SES:LookingWindow1 0.006 0.016 532.948 0.381 0.704 
Year:SES:LookingWindow1 -0.054 0.033 710.951 -1.665 0.096 
	
	 	



Air	quality	and	visual	cognition	in	the	first	two	years 

19 
 

19 

Table	3.	
Model	parameters	for	linear	mixed	effect	model	assessing	the	impact	of	year,	load,	SES	and	
age	cohort	on	the	shift	rate	(baseline	visual	processing	speed	model).	
	

Variable Estimate Std. Error DF t value Pr(>|t|) 
(Intercept) 0.631 0.014 196.30 45.260 <0.001 
Year 0.016 0.017 893.40 0.963 0.336 
Load1 0.040 0.011 812.80 3.485 <0.001 
Load2 0.001 0.011 811.70 0.071 0.943 
SES 0.002 0.003 207.00 0.545 0.587 
Age 0.012 0.028 195.80 0.429 0.668 
Year:SES -0.007 0.004 928.20 -1.553 0.121 
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Table	4.	
Model	parameters	for	linear	models	describing	effects	of	age	cohort	and	SES	on	
standardized	cognitive	scores	(baseline	standardized	cognitive	models).	Measures	included	
are	MSEL	composite	T-score	and	ASQ	problem	solving	score.	
	
	

Measure Variable Estimate Std. Error t value Pr(>|t|) 

Mullen 
Composite 

(Intercept) 101.299 0.960 105.562 <0.001 
Age -0.345 1.920 -0.180 0.857 
SES 0.769 0.232 3.308 0.001 

ASQ 
Problem 
Solving 

(Intercept) 30.581 0.955 32.032 <0.001 
Age -5.549 1.909 -2.907 0.004 
SES 0.923 0.231 3.998 <0.001 
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Table	5.	
Model	parameters	for	linear	models	assessing	the	baseline	variability	of	SES,	cooking	fuel,	
and	age	cohort	on	the	air	quality	reading	(baseline	air	quality	models).	
	

Model Variable Estimate Std. Error t value Pr(>|t|) 

Cooking 
Fuel 

(Intercept) 1.461 2.767 0.528 0.598 
Cooking Fuel1 10.866 4.517 2.405 0.017 
Cooking Fuel2 -1.519 3.119 -0.487 0.627 
Age -0.548 4.213 -0.13 0.897 

SES 
(Intercept) -0.004 2.099 -0.002 0.999 
SES -1.152 0.511 -2.255 0.025 
Age -1.714 4.198 -0.408 0.683 
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Table	6.	
Model	parameters	for	linear	mixed-effect	model	assessing	the	impact	of	air	quality	(AQI)	on	
the	baseline	change	preference	score	model	which	included	Year,	Load,	SES,	Age	Cohort,	
and	LookingWindow1	as	predictors	(see	Table	2).	
	

Variable Estimate Std. Error DF t value Pr(>|t|) 
(Intercept) 0.494 0.054 535.80 9.186 <0.001 
Year -0.044 0.107 741.90 -0.411 0.681 
Load1 0.029 0.009 858.10 3.135 0.002 
Load2 -0.001 0.009 855.20 -0.124 0.901 
SES -0.009 0.014 524.70 -0.663 0.508 
LookingWindow1 -0.075 0.065 549.90 -1.155 0.249 
Age 0.026 0.014 184.70 1.810 0.072 
AQI 0.000 0.000 181.80 -0.654 0.514 
Year:SES 0.040 0.027 720.10 1.471 0.142 
Year:LookingWindow1 0.075 0.128 730.70 0.585 0.559 
SES:LookingWindow1 0.010 0.016 530.80 0.607 0.544 
Year:AQI 0.001 0.000 965.10 2.431 0.015 
Year:SES:LookingWindow1 -0.057 0.033 714.90 -1.750 0.080 
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Table	7.	
Model	parameters	for	linear	mixed-effect	model	assessing	the	impact	of	air	quality	(AQI)	on	
the	baseline	visual	processing	speed	(shift	rate)	model	which	included	Year,	Load,	SES,	and	
Age	Cohort	as	predictors	(see	Table	3).	
	

Variable Estimate Std. Error DF t value Pr(>|t|) 
(Intercept) 0.631 0.014 195.40 45.655 <0.001 
Year 0.016 0.017 894.50 0.977 0.329 
Load1 0.040 0.011 813.20 3.501 <0.001 
Load2 0.001 0.011 812.10 0.045 0.964 
SES 0.001 0.003 205.10 0.225 0.823 
Age 0.009 0.028 195.30 0.318 0.750 
AQI -0.001 0.000 192.10 -2.166 0.032 
Year:SES -0.006 0.004 928.60 -1.493 0.136 
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Table	8.	
Model	parameters	for	linear	model	assessing	the	impact	of	air	quality	(AQI)	on	the	baseline	
Mullen	model	(Composite	T-Score)	which	included	Age	Cohort	and	SES	as	predictors	(see	
Table	4).	
	

Variable Estimate Std. Error t value Pr(>|t|) 
(Intercept) 101.301 0.961 105.398 <0.001 
Age -0.377 1.923 -0.196 0.845 
SES 0.746 0.236 3.163 0.002 
AQI -0.019 0.032 -0.596 0.552 
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Table	9.	
Model	parameters	for	linear	models	assessing	the	impact	of	air	quality	(AQI)	on	the	
baseline	ASQ	model	which	included	Age	Cohort	and	SES	as	predictors	(see	Table	4).	For	
comparison	with	prior	work,	we	include	analyses	of	the	ASQ	Problem	Solving	score	as	well	
as	Fine	and	Gross	Motor	scores.	
	
	
	

Measure Variable Estimate Std. Error t value Pr(>|t|) 

ASQ 
Problem 
Solving 

(Intercept) 30.563 0.955 32.004 <0.001 
Age -5.617 1.910 -2.941 0.004 
SES 0.890 0.233 3.817 <0.001 
AQI -0.030 0.031 -0.983 0.327 

ASQ Fine 
Motor 

(Intercept) 34.224 1.039 32.944 <0.001 
Age -5.655 2.078 -2.721 0.007 
SES 0.815 0.254 3.214 0.002 
AQI -0.025 0.033 -0.748 0.455 

ASQ Gross 
Motor 

(Intercept) 36.849 1.061 34.733 <0.001 
Age -8.221 2.122 -3.874 <0.001 
SES 0.571 0.259 2.206 0.029 
AQI -0.054 0.034 -1.582 0.115 
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Table	10	
Model	parameters	from	the	baseline	mixed-effects	model	assessing	the	effects	of	Year,	
Load,	SES,	LookingWindow1	and	Age	cohort	on	the	first	look	change	measure.	

Variable Estimate Std. Error DF t value Pr(>|t|) 
(Intercept) 0.592 0.054 613.50 11.009 <0.001 
Year -0.030 0.013 966.10 -2.353 0.019 
Load1 0.000 0.009 846.40 0.024 0.981 
Load2 0.002 0.009 847.40 0.175 0.861 
SES 0.002 0.002 205.30 0.874 0.383 
LookingWindow1 0.057 0.065 628.30 0.882 0.378 
Age -0.019 0.015 188.80 -1.331 0.185 
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Table	11	
Model	parameters	assessing	the	impact	of	air	quality	(AQI)	on	the	baseline	mixed-effects	
model	assessing	the	effects	of	Year,	Load,	SES,	LookingWindow1	and	Age	cohort	on	the	first	
look	change	measure.	

Variable Estimate Std. Error DF t value Pr(>|t|) 
(Intercept) 0.589 0.054 612.30 10.944 <0.001 
Year -0.030 0.013 967.10 -2.395 0.017 
Load1 0.000 0.009 847.40 -0.008 0.994 
Load2 0.002 0.009 848.30 0.182 0.855 
SES 0.002 0.002 205.30 1.105 0.270 
LookingWindow1 0.062 0.065 626.90 0.952 0.341 
Age -0.018 0.014 189.50 -1.275 0.204 
AQI 0.000 0.000 185.80 1.263 0.208 
Year:AQI -0.001 0.000 968.20 -1.402 0.161 
	
	
	


