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Graph invariants are a useful tool in graph theory. Not only do they encode useful 
information about the graphs to which they are associated, but complete invariants can 
be used to distinguish between non-isomorphic graphs. Polynomial invariants for graphs 
such as the well-known Tutte polynomial have been studied for several years, and recently 
there has been interest to also define such invariants for phylogenetic networks, a special 
type of graph that arises in the area of evolutionary biology. Recently Liu gave a complete 
invariant for (phylogenetic) trees. However, the polynomial invariants defined thus far 
for phylogenetic networks that are not trees require vertex labels and either contain a 
large number of variables, or they have exponentially many terms in the number of 
reticulations. This can make it difficult to compute these polynomials and to use them 
to analyse unlabelled networks. In this paper, we shall show how to circumvent some of 
these difficulties for rooted cactuses and cactuses. As well as being important in other areas 
such as operations research, rooted cactuses contain some common classes of phylogenetic 
networks such phylogenetic trees and level-1 networks. More specifically, we define a 
polynomial F that is a complete invariant for the class of rooted cactuses without vertices 
of indegree 1 and outdegree 1 that has 5 variables, and a polynomial Q that is a complete 
invariant for the class of rooted cactuses that has 6 variables whose degree can be bounded 
linearly in terms of the size of the rooted cactus. We also explain how to extend the Q
polynomial to define a complete invariant for leaf-labelled rooted cactuses as well as 
(unrooted) cactuses.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Given a class C of graphs, and a polynomial P (C) as-
signed to each element C in this class, we call P an in-
variant of C if P (C) = P (C ′) when C is isomorphic to C ′
for all C, C ′ ∈ C; if P (C) = P (C ′) also implies that C is 
isomorphic to C ′ we call P a complete invariant for the 
class (see e.g. [15]). Polynomial invariants have been de-
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fined for various classes of graphs (see e.g. [4]), including 
the extensively studied Tutte polynomial (see e.g. [1] and 
the references therein). These usually encode useful infor-
mation about the graph (e.g. number of edges, spanning 
forests), but they are not always complete invariants, and 
finding complete invariants for graphs remains an impor-
tant area of research in graph theory and computer science 
[15].

Recently there has been interest in defining polynomial 
invariants for graphs that arise in the field of phylogenet-
ics [13,17]. Such graphs are called phylogenetic networks, 
and they often come equipped with a leaf-labelling of the 
vertices corresponding to some collection of species (see 
e.g. [18, Chapter 10] for a recent overview). Phylogenetic 
networks are commonly used to elucidate the evolution-
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ary history for a collection of species that has undergone 
non-treelike evolution (such as e.g. bacteria or plants) [3], 
and an important problem asks to find ways to distinguish 
between distinct networks to compare evolutionary histo-
ries (see e.g. [5]). Hence finding complete invariants for 
special classes of phylogenetic networks could be useful 
as, for example, they would yield metrics on networks in 
question (see e.g. [14] where this approach has been re-
cently used to study how the influenza virus evolves).

In this paper, we focus on the problem of finding com-
plete polynomial invariants for the classes of rooted cac-
tuses and cactuses (with or without leaf-labellings), two 
special classes of phylogenetic networks [7,8] which also 
arise in other areas such as operations research [12] and 
genome comparisons [16]. More specifically, recall that 
a cactus (also known as a Husimi tree) is a connected 
undirected graph in which any two cycles are edge dis-
joint [10]; a rooted cactus is a directed acyclic graph with 
a single source or root whose underlying undirected graph 
is a cactus, and such that there is a directed path from the 
root to any vertex in the graph [8] (see Fig. 1 for an exam-
ple of a cactus and a rooted cactus). Observe that rooted 
cactuses are related to, but different from directed cactuses, 
which are strongly connected directed graphs where each 
edge is contained in exactly one directed cycle [2]. Also 
note that in general a rooted graph may also mean any 
type of graph that contains a distinguished vertex, which 
is slightly different from our meaning of rooted. If the un-
derlying graph of a rooted cactus is an undirected tree (or, 
for brevity, a tree), we call it a rooted tree (also known as 
an arborescence). As well as trees, there are various other 
subclasses of unrooted and rooted cactuses such as (un-
labelled) level-1 networks and galled trees (see e.g. [18, 
p.247]).

In previous related work, for trees, one of the first com-
plete invariants for rooted trees was introduced in [6]. In 
fact, this polynomial is defined as the restriction of a cer-
tain greedoid polynomial (the Tutte polynomial of a gree-
doid) which arises from the fact that any rooted directed 
graph gives rise to a certain greedoid structure [6]. In [19]
a modification was made to this polynomial to also give a 
complete invariant for rooted undirected unicyclic graphs 
(note that rooted undirected unicyclic graphs are similar 
but different from rooted cactuses, as the former is undi-
rected and contains at most one cycle, while the latter is 
directed and can contain more than one cycle in the un-
derlying graph). Interestingly, the problem of defining a 
complete invariant for (undirected) trees remained open 
until a solution was recently proposed in [13], in which 
Liu defined a new complete invariant B for rooted trees, 
which was extended to the class of (undirected) trees.

More recently, polynomial invariants have also been 
introduced for classes of phylogenetic networks, build-
ing on Liu’s approach. In [13], Liu showed how to ex-
tend the polynomial invariant B to leaf-labelled trees, and 
more recently a polynomial invariant was introduced for 
rooted binary internally multi-labelled phylogenetic net-
works (where vertices with indegree at least 2, or retic-
ulations, are distinctly labelled) in [17]. This was shown 
to be a complete invariant for a certain subclass of such 
partly-labelled networks. In [11], a polynomial invariant 
2

is defined for rooted unlabelled networks based on their 
spanning trees, and it is briefly mentioned that the poly-
nomial is a complete invariant restricted to the class of 
so-called rooted, leaf-labelled2 tree-child networks.

The polynomial invariants defined thus far for phylo-
genetic networks (that are not trees) require vertex labels 
and either contain a large number of variables, or they 
have exponentially many terms in the number of reticula-
tions. This can make it difficult to compute these polyno-
mials and to use them to analyse unlabelled networks. In 
this paper, we shall show how to circumvent some of these 
difficulties for rooted cactuses and cactuses. More specif-
ically, we begin in Section 2 by introducing a complete 
invariant for a certain class of vertex-labelled trees (which 
we call special pairs), which generalizes the tree polynomial 
presented in [13]. We then use this new invariant to intro-
duce two new polynomial invariants for rooted cactuses.

Our first polynomial invariant F given in Section 3 is 
based on unfolding a network, a technique used in [17] and 
inspired by [9]. When unfolding a rooted cactus, copies of 
the subnetwork rooted at every reticulation are created. 
Labels are subsequently added to the unfolded network, 
which is a directed tree, to create a special pair. In The-
orem 3.3 we give a one-to-one correspondence between 
a rooted cactus and its labelled unfolded network. This 
immediately gives a polynomial invariant F for rooted cac-
tuses using the special pair definition from before. The 
polynomial F has 5 variables when leaves are unlabelled, 
and at most n + 4 variables when its n leaves are labelled. 
In addition, as we shall show, F is a complete invariant for 
the class of rooted cactuses without elementary vertices, 
that is vertices with indegree and outdegree one. Note 
that in phylogenetics this is not a strong assumption since 
elementary vertices are commonly excluded from phyloge-
netic networks as they do not correspond to evolutionary 
events such as speciation or hybridization.

Our second polynomial invariant Q for rooted cactuses 
which is given in Section 4, is based on expanding a rooted 
cactus, a process in which we encode every reticulation 
with two appended leaves and an added edge. Each itera-
tion of the expansion removes one reticulation vertex from 
the network; labelling the vertices creates a special pair, 
that uniquely encodes the original rooted cactus. As we 
prove in Theorem 4.3, this gives a complete invariant for 
the class of rooted cactuses (where we now allow for ele-
mentary vertices), which we call Q . The Q polynomial has 
6 variables when leaves are unlabelled, and at most n + 5
variables when its n leaves are labelled. We also show that 
the degree of the Q polynomial is linear in the number of 
leaves and the reticulations of the network.

In Section 5, we show how to define a complete invari-
ant for the class of leaf-labelled rooted cactuses, by gen-
eralising an approach used in [13]. We also explain how 
to use Q to obtain a complete invariant for (undirected) 
cactuses, either with or without leaf-labels. Finally, in Sec-
tion 6, we discuss our findings and give suggestions for 
future research.

2 In [11] this result is stated to hold for unlabelled networks, but in 
a personal correspondence with the authors we were informed that it 
should be stated to hold for labelled networks.
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2. Liu’s polynomial revisited

In this section, we define a polynomial invariant P for 
rooted trees with certain vertex labellings which general-
izes Liu’s polynomial for rooted (leaf-labelled) trees. We 
shall use this polynomial to define our new invariants for 
cactuses in the following sections.

Let T denote the class of rooted trees. For T ∈ T we let 
ρT denote the root of T , V (T ) and L(T ) be the vertex and 
leaf-sets of T respectively, and • denote the single vertex 
tree in T . The stem of a tree T ∈ T is the shortest directed 
path in T that starts at the root of T and does not end in 
a vertex of outdegree 1. We call a stem trivial if it consists 
only of the root. Note that if T is the single vertex tree we 
regard it as a root and a leaf. Given a set {T1, . . . , Tk}, k ≥
1, of rooted trees we let ∧(T1, . . . , Tk) denote the rooted 
tree obtained by taking a single vertex v and joining this 
vertex to the root ρi of each tree Ti by an arc (v, ρi).

Now, given an arbitrary rooted tree T = ∧(T1, . . . , Tk)

where Ti ∈ T , define the 2-variable polynomial B(T ) ∈
Z[x, y] by recursively applying the following rules [13, Def. 
2.1]:

(1) B(•) = x, and
(2) B(T ) = y + ∏k

i=1 B(Ti).

In [13, Theorem 2.8] it is shown that B is a com-
plete invariant for T . Moreover in [13, Corollary 3.5], it 
is proven that a complete invariant Bl for the class of 
leaf-labelled, rooted trees can be defined as follows. For 
T = ∧(T1, . . . , Tk) where Ti ∈ T , and • j denoting the sin-
gle vertex tree with label x j , define Bl(T ) by replacing 
rules (1) and (2) with [13, Def. 3.4]:

(1’) Bl(• j) = x j , and

(2’) Bl(T ) = y + ∏k
i=1 Bl(Ti).

Note that different leaf vertices in T may have the same 
label.

We now generalize these polynomial invariants to 
rooted trees whose vertices are labelled. We call a max-
imal directed path of outdegree-1 vertices a string.

For any set of variables K , we call a pair (T , λ) a 
vertex-labelled rooted tree if T ∈ T and λ : V (T ) → K . Let 
K ⊆ {x1, x2 . . . } ∪ {y, z} ∪ {s}, be a fixed set of variables 
(possibly infinite). We call the pair (T , λ) special if:

(i) λ(L(T )) ∈ {x1, x2 . . . },
(ii) If W = (w1, . . . , w p) is a string in T , then λ(w1) ∈

{y, z} and if p > 1, then λ(wi) = y for all 2 ≤ i ≤ p, 
and

(iii) For every vertex v ∈ V (T ) that is not in L(T ) or in a 
string, λ(v) ∈ {y, z} ∪ S .

Hence, basically, the vertices of a special pair can be 
labelled arbitrarily as long as the labelling of the leaves 
is disjoint from the labelling of the internal vertices and 
strings are labelled (z, y, y, . . . ) or (y, y, . . .). Moreover, we 
shall see below, given any T ∈ T , there is some λ so that 
(T , λ) is a special pair. Note also that if T = ∧(T1, . . . , Tk)
3

where Ti ∈ T , then (Ti, λi = λ|V (Ti)) is a special pair for all 
1 ≤ i ≤ k.

We now define a polynomial invariant P K for the class 
of vertex-labelled trees. Given a vertex-labelled tree (T , λ)

define P K (T , λ) recursively as follows:

• If T = ({v}, ∅), set P K (T , λ) = λ(v).
• If T = ∧(T1, . . . , Tk), set P K (T , λ) = λ(ρT ) +∏k

i=1 P K (Ti, λi).

To ease notation, in case the set K is clear from the con-
text, we denote P K (T , λ) by P (T , λ).

An example of a special pair is given by setting x = x1
and K = {x, y}, and, for any rooted tree T ∈ T , defining 
λ : V (T ) → K by λ(v) = y if v is an internal vertex and 
λ(v) = x if v is a leaf. Then P (T , λ) = B(T ) is in fact Liu’s 
polynomial for T .

For another example, set K = {x1, x2, . . . } ∪ {y} (note 
this is an infinite set). Suppose T ∈ T is a leaf-labelled tree 
with φ : L(T ) → {x1, x2, . . . , xn} where n ≥ 1. Then define 
λL : V (T ) → K , by setting λL(v) = y if v is an internal ver-
tex and λL(v) = φ(v) if v is a leaf. Then P (T , λL) = Bl(T )

is Liu’s polynomial for T with leaf-labels.
We say that special pairs (T , λ) and (T ′, λ′) are isomor-

phic if T is isomorphic to T ′ via a map ψ : V (T ) → V (T ′)
such that λ(v) = λ′(ψ(v)) for all v ∈ V (T ). We now show 
that P is a complete invariant for special pairs.

Theorem 2.1. Suppose that (T , λ) and (T ′, λ′) are special 
pairs. P (T , λ) = P (T ′, λ′) if and only if (T , λ) is isomorphic 
to (T ′, λ′).

Proof. It is straight-forward to check that P is an invariant 
for special pairs using a similar proof to [13, Prop 2.2]. To 
show that P is also a complete invariant, we use a similar 
proof to [13, Cor. 3.5].

Suppose P (T , λ) = P (T ′, λ′). We want to show that 
(T , λ) is isomorphic to (T ′, λ′). Assume λ(V (T )) = {s1, . . . ,
sk} ⊆ {x1, x2 . . . } ∪ {y, z} ∪ S , where k ≥ 2. Since P (T , λ) =
P (T ′, λ′), it follows that λ(V (T ′)) = {s1, . . . , sk} (i.e., P (T , λ)

and P (T ′, λ′) are both polynomials in the same variables).
Consider the polynomial P ′ in Z[x, y] obtained from 

the polynomial P (T , λ) in Z[s1, . . . , sk] by replacing each 
variable xi by x and each variable in S ∪ {z} by y. Then 
P ′ is Liu’s polynomial for T , i.e. B(T ), and so P ′ is irre-
ducible in Z[x, y] [13, Lem. 2.6]. It follows that P (T , λ) is 
irreducible in Z[s1, . . . , sk].

We now use strong induction on n, the number of leaf 
vertices in T .

If n = 1, then T = (w1, . . . , wl), where l ≥ 1, is a di-
rected path of length l −1. If l > 1, then (w1, w2, . . . , wl−1)

is a string in T . If l = 1, then P (T , λ) = xi , and if l ≥ 2, 
then P (T , λ) = (l − 1)y + xi or P (T , λ) = z + (l − 2)y + xi , 
for some i ≥ 1. In either case it is straight-forward to 
check that P (T , λ) = P (T ′, λ′) implies (T , λ) is isomorphic 
to (T ′, λ′).

Now suppose that T has N > 1 leaves and that the re-
sult holds for trees with n leaves where 1 ≤ n ≤ N − 1. 
First note that if T has a stem (w1, . . . , wl, v) with length 
greater than 0 (with outdegree of v at least 2), then 
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(w1, . . . , wl) is a string with l ≥ 1. It follows that the de-
gree 1 terms in P (T , λ) are either ly +λ(v) or z+(l −1)y +
λ(v), where λ(v) ∈ {y, z} ∪ S . Hence, as P (T , λ) = P (T ′, λ′), 
it follows that T ′ has a stem of the same length as T and 
that λ and λ′ restricted to the stems are the same.

It follows that we can assume that T and T ′ both 
have trivial stems consisting of a root with outdegree at 
least 2, and hence that λ(ρT ), λ′(ρT ′ ) ∈ {y, z} ∪ S . So T =
∧(T1, . . . , Ti) where i > 1, and T ′ = ∧(T ′

1, . . . , T
′
j) where 

j > 1. But then

P (T , λ) = λ(ρT ) +
i∏

k=1

P (Tk, λk)

= λ′(ρT ′) +
j∏

l=1

P (T ′
l , λ

′
l) = P (T ′, λ′).

Since i, j > 1, the products are polynomials in which all 
terms have degree 2 or higher, and so λ(ρT ) = λ′(ρT ′ ) as 
these are both degree 1 polynomials. Moreover, (Tk, λk), 
1 ≤ k ≤ i, and (T ′

l , λ
′
l), 1 ≤ j ≤ l, are all special pairs and so 

their polynomials must be irreducible. It follows that i = j
and after reordering of indices, P (Tk, λk) = P (T ′

k, λ
′
k) for 

all 1 ≤ k ≤ i. Since the trees Ti and T ′
i have fewer than N

leaves, it follows by the induction hypothesis that Ti and 
T ′

i must be isomorphic. Therefore (T , λ) is isomorphic to 
(T ′, λ′). �
3. A rooted cactus invariant based on unfolding

In this section we modify the technique used in [17] to 
obtain a complete polynomial invariant for a special sub-
class of rooted cactuses. To define this polynomial we first 
require some additional notation. Recall that a rooted cac-
tus is a directed acyclic graph with a single root ρ whose 
underlying undirected graph is a cactus, and such that 
there is a directed path from the root to any vertex in the 
graph. Note that from this definition, it follows that ρ is 
the only vertex with indegree 0 and that all vertices of V
have indegree at most 2. Note that cycles of the underlying 
cactus may overlap in a vertex. We call a vertex elementary
if it has indegree 1 and outdegree 1. A vertex with outde-
gree 0 is called a leaf and a vertex with indegree 2 is called 
a reticulation (so we allow a vertex to be both a leaf and 
a reticulation). A reticulation cycle for a reticulation v in a 
cactus is a pair of internally vertex-disjoint paths ending 
in v and with the same origin vertex w; we call w the top 
vertex of the reticulation cycle.

We now define a polynomial invariant for the class of 
rooted cactuses, which we will show to be complete for 
rooted cactuses without elementary vertices. First, we as-
sociate a vertex-labelled pair (U N , λN ) to a rooted cactus N
as follows (see Fig. 1 for an example):

(A) For every vertex v in N that is the top vertex for c ≥
1 reticulation cycles, resolve the vertex v as follows. 
Let w1, w ′

1, . . . , wc, w ′
c be children of v such that each 

pair (wi, w ′
i) is in the same reticulation cycle. For 1 ≤

i ≤ c, add a new vertex vi with an arc (v, vi), replace 
the arcs (v, wi), (v, w ′) by arcs (vi, wi), (vi, w ′) and 
i i

4

Fig. 1. Example of four rooted cactuses. All arcs are directed downwards. 
The networks N1 and N2 have the same F polynomials F (N1) = F (N2) =
y + s + [y + x(y + z + x)] [y + z + x], but different Q polynomials, since 
Q (N1) = y + s + [y + x(y + q)](z + x)(y + q) and Q (N2) = y + s + (y +
xq)(z + y + x)q (for example, Q (N1) has an xyzq term while Q (N2) does 
not).

give vi label s, i.e., set λN (vi) = s. Call the resulting 
network N ′ .

(B) Unfold the network N ′ to get U N as follows. While 
there exists a lowest reticulation v , make a copy of the 
tree rooted at v and replace one incoming arc (w, v)

of v by an arc (w, v ′) with v ′ the root of the copy 
of v . If v and v ′ are leaves, label them r. Otherwise, 
label them z.

(C) Give all leaf vertices in U N , that are not already la-
belled, label x. Give all remaining unlabelled vertices 
in U N label y.

Observe that each vertex of U N that corresponds to a 
reticulation of N is either an internal vertex labelled z or 
a leaf labelled r. We now show that (U N , λN ) is a special 
pair if N has no elementary vertices.

Lemma 3.1. Let N be a rooted cactus without elementary ver-
tices. Then (U N , λN) is a special pair with K ⊆ {x1 = x, x2 =
r} ∪ {y, z} ∪ {s}.

Proof. Each string consists of exactly one vertex, which is 
labelled z. In addition, each leaf is labelled x or r and each 
internal vertex is labelled y, z or s. �

Note that Lemma 3.1 would not be true if we al-
lowed N to contain elementary vertices, as then (U N , λN )

could contain a string with a sequence of labels (y, z, . . .). 
See Fig. 1 for two non-isomorphic networks that have the 
same F polynomials. We now define operations that undo 
the unfolding described above. The lowest common ancestor 
(LCA) of two vertices u and v of a rooted cactus is the 
unique lowest vertex that has a path to both u and v . 
Given (U N , λN ), for a rooted cactus N without elemen-
tary vertices, we construct a digraph M(U N , λN) from the 
rooted tree U N as follows.

(a) While there exists a pair of vertices a, b in U N that 
are either both internal vertices labelled z or both 
leaves labelled r, choose such a pair with lowest LCA 
vt . Fold-up the two rooted cactuses below a and b by 
adding an arc from the parent of b to a and then delet-
ing b and all its descendants. Remove the label (r or z) 
from a.

(b) Contract all arcs of the form (v, u) where u has label s.
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Observe that this digraph M(U N , λN) is unlabelled as it 
does not come with a labelling map.

Lemma 3.2. If N is a rooted cactus without elementary vertices, 
then N is isomorphic to M(U N , λN ).

Proof. We will show that (a) reverses (B). Since it is clear 
that (b) reverses (A), and since the vertices of N and 
M(U N , λN ) are unlabelled, it will follow that M(U N , λN )

is isomorphic to N .
We now show that (a) reverses (B). Each iteration of 

(B), acting on a reticulation v of a reticulation cycle with 
top vertex vt , creates a pair a, b of vertices that are either 
both internal vertices labelled z or both leaves labelled r. 
In either case, their lowest common ancestor is vt . Call 
such a triple (a, b, vt) a good triple. Future iterations may 
make copies of such good triples, which will also all be 
good. We will show that (a) only selects good triples.

To do so, we first observe that, for any pair of good 
triplets (a, b, vt), (a′, b′, v ′

t) (with {a, b} �= {a′, b′}), the 
paths from vt to a and b are vertex disjoint from the 
paths from v ′

t to a′ and b′ . This follows from the ob-
servation that, after step (A), all reticulation cycles are 
vertex disjoint. We now show that (a) only selects good 
triples. Suppose (a) selects a triple (a, b, vt) that is not 
good. Since a is labelled z or r, it is also in a good triple 
(a, c, wt). Note that wt is not strictly below vt because 
then (a) would not select (a, b, vt). So either wt = vt or 
wt is above vt .

Now note that also b is in a good triple (b, d, ut). More-
over, ut is below vt , and ut �= vt , because otherwise the 
paths from ut to b and d would not be vertex disjoint from 
the paths from wt to a and c. This gives a contradiction 
because in this case (a) would not select (a, b, vt ).

We conclude that (a) only selects good triples. Hence, 
each iteration of (a) undoes an iteration of (B) on one 
copy of the created good triple. It follows that (a) reverses 
(B). �

Now define a polynomial F for a rooted cactus N by 
setting

F (N) = P (U N , λN).

Note that if N ∈ T is a rooted tree, then F (N) = B(T ), 
i.e., Liu’s polynomial for T . Moreover, if N is binary, i.e., 
if all vertices have outdegree at most 2 and all reticula-
tions have outdegree 1, then F is a polynomial in the four 
variables x, y, z and s, and otherwise in the five variables 
x, y, z, r and s.

We now show that F (N) is a complete invariant for the 
class of rooted cactuses without elementary vertices.

Theorem 3.3. If N and N ′ are rooted cactuses without elemen-
tary vertices, then F (N) = F (N ′) if and only if N is isomorphic 
to N ′ .

Proof. It is straight-forward to check that if N is isomor-
phic to N ′ , then (U N , λN) is isomorphic to (U N ′ , λN ′ ). So 
by Theorem 2.1 F (N) = F (N ′).
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Conversely, suppose F (N) = F (N ′). By Lemma 3.1, (U N ,

λN) and (U N ′ , λN ′ ) are both special pairs. Therefore by 
Theorem 2.1, (U N , λN) is isomorphic to (U N ′ , λN ′ ). So 
M(U N , λN ) is isomorphic to M(U N ′ , λN ′ ). By Lemma 3.2 it 
now follows that N is isomorphic to N ′ . �
Remark 3.4. Observe that the polynomial F (N) can be ob-
tained directly from N by defining a polynomial F (N, v)

for each vertex v of N = (V , A) as follows, and let-
ting F (N) = F (N, ρ).

• If v is a leaf, then

F (N, v) =
{

r if v is a reticulation,

x otherwise.

• Otherwise, v is the top vertex of c ≥ 0 reticula-
tion cycles, with w1, w ′

1, . . . , wc, w ′
c children of v

such that each pair (wi, w ′
i) is in the same reticu-

lation cycle, and wc+1, . . . , wd−c the other children 
of v (with d the outdegree of v). Let G(N, v) =∏c

i=1

[
s + F (N, wi)F (N, w ′

i)
]∏d−c

i=c+1 F (N, wi). Then,

F (N, v) =
{

z + G(N, v) if v is a reticulation

y + G(N, v) otherwise.

4. A rooted cactus invariant based on expanding

In the last section, we defined a polynomial F that is a 
complete invariant for the special class of rooted cactuses 
without elementary vertices. Although this polynomial has 
the advantage of being in at most 5 variables, it is not 
a complete invariant for all rooted cactuses, and F could 
have degree that is exponentially dependent on the num-
ber of reticulations (observe that copies of networks rooted 
at each reticulation are created when obtaining the special 
pair). In this section, we introduce a polynomial invariant 
Q for the class of rooted cactuses, which has the advan-
tages of not needing to exclude elementary vertices and 
having a linearly bounded degree.

To define Q and show that it is a complete invariant 
for cactuses, we use a similar approach to the one used for 
F . Suppose that N = (V , E) is a rooted cactus. We begin by 
associating a vertex-labelled tree (T N , μN ) to N as follows 
(see Fig. 2 for an example):

(A) As in page 4.
(B’) Expand the network N ′ to get T N as follows. While 

there exists a reticulation, take a lowest reticulation 
cycle in N ′ , with top vertex vt and with reticulation v
having parents u, u′ . Remove arcs (u, v), (u′, v). Add 
vertices p, p′ and arcs (u, p), (u′, p′). Add arc (vt , v). 
Give both of the vertices p, p′ (which are leaves) la-
bel q. Give v the label z if it is an internal vertex and 
r if it is a leaf.

(C) As in page 4.

The following lemma is straight-forward to prove.

Lemma 4.1. (T N , μN ) is a special pair with K ⊆ {x1 = x, x2 =
r, x3 = q} ∪ {y, z} ∪ {s}.
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Fig. 2. Example of how the special pairs (U N3 , λN3 ) and (T N4 , μN4 ) are obtained from rooted cactuses N3 and N4 of Fig. 1, respectively. All arcs are directed 
downwards.
Now, given (T N , μN ), we construct a digraph M(T N ,

μN ) from the rooted tree T N as follows:

(a’) While there exists a pair of leaves p, p′ labelled q in 
T N , choose such a pair with lowest LCA vt . Let u, u′
be the (necessarily unique) parents of p and p′ , re-
spectively. Let v be the (necessarily unique) child of vt

labelled z or r. Remove leaves p, p′ and arc (vt , v). 
Add arcs (u, v), (u′, v).

(b) Contract all arcs of the form (v, u) where u has label s.

Lemma 4.2. If N is a rooted cactus, then N is isomorphic to 
M(T N , μN).

Proof. The proof follows from observing that (a’) reverses 
(B), that (b) reverses (A) and that the vertices of both N
and M(T N , μN ) are unlabelled. �

Now define a polynomial Q for a rooted cactus N by 
setting

Q (N) = P (T N ,μN). (1)

Note that if N ∈ T is a rooted tree, then Q (N) = F (N) =
B(T ). Moreover, if N is binary, then Q is a polynomial in 
the five variables x, y, z, q, s and otherwise in the six vari-
ables x, y, z, q, r and s.

We now show that Q (N) is a complete invariant for 
rooted cactuses.

Theorem 4.3. If N and N ′ are rooted cactuses, then Q (N) =
Q (N ′) if and only if N is isomorphic to N ′.

Proof. This is analogous to the proof of Theorem 3.3, by 
replacing Lemmas 3.1 and 3.2 with Lemmas 4.1 and 4.2. �

Note that, in contrast to the polynomial F , Q less di-
rectly reflects the structure of a cactus. Indeed, with the 
construction of Q , we add two additional leaves for every 
reticulation. On the other hand, with the construction used 
for F , every leaf of the unfolded tree corresponds to a leaf 
of the original network. However, as we shall now show, 
unlike F , the degree of Q can linearly bounded in terms 
of the number of leaves and reticulations.
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Theorem 4.4. Let N be a rooted cactus with n leaves and k retic-
ulations. Then Q (N) is a polynomial of degree n + 2k.

Proof. We have defined Q (N) as the polynomial P of the 
special pair (T N , μN ). By a similar argument to the one 
presented in [[13], Lemmas 2.3 and 2.4], each term of 
the polynomial Q (N) corresponds to a rooted subtree SN
of T N , where SN and T N share the same root, and any leaf 
of T N is a leaf of SN or a descendant of a leaf of SN (for 
example, the term cxarbqd ye z f sg in Q (N) corresponds to 
a primary subtree of T N that contains a + b +d + e + f + g
leaves: a labelled x, b labelled r, d labelled q, e labelled 
y, f labelled z, and g labelled s). Such rooted subtrees are 
called primary subtrees. The coefficient c of the term counts 
exactly how many primary subtrees exist with match-
ing leaves. The degree of the polynomial Q (N) is then 
the greatest number of leaves across all primary subtrees 
of T N . This corresponds to, amongst possibly other primary 
subtrees, the primary subtree that is isomorphic to T N . To 
count the number of leaves in T N , observe that we add 
two leaves labelled q every time we expand a reticula-
tion cycle. It follows that the number of leaves in T N , and 
therefore the degree of the polynomial Q (N), is n +2k. �
Remark 4.5. As with the polynomial F , we observe that 
the polynomial Q (N) can be obtained directly from N by 
defining a polynomial Q (N, v) for each vertex v of N =
(V , A) as follows, and letting Q (N) = Q (N, ρ).

• If v is a leaf then

Q (N, v) =
{

r if v is a reticulation,

x otherwise

• Otherwise, v is the top vertex of c ≥ 0 reticulation cy-
cles, with w1, w ′

1, . . . , wc, w ′
c children of v such that 

each pair (wi, w ′
i) is in the same reticulation cycle 

with reticulation vi , and wc+1, . . . , wd−c the other 
children of v (with d the outdegree of v). Let R(N,

v) = ∏c
i=1[s + Q ′(N, wi)Q ′(N, w ′

i)Q (N,

vi)] ∏d−c
i=c+1 Q ′(N, wi) where

Q ′(N, v) =
{

q if v is a reticulation,

Q (N, v) otherwise.



L. van Iersel, V. Moulton and Y. Murakami Information Processing Letters 182 (2023) 106394
Then we have

Q (N, v) =
{

z + R(N, v) if v is a reticulation,

y + R(N, v) otherwise,

See Fig. 1 for an example of a Q polynomial for a given 
network.

5. Cactuses and leaf-labellings

In this section, we show that the invariant Q can be 
used to give an invariant for cactuses (which are undi-
rected), and that it is relatively simple to extend its def-
inition so as to give an invariant for partially leaf-labelled 
rooted cactuses and cactuses (note that for cactuses a leaf 
is a vertex with degree 1).

First, recall, that a cactus is an (undirected) graph in 
which any two cycles are edge-disjoint. For a cactus G , let 
R(G) be the set of all rooted cactuses that can be obtained 
from G by picking some vertex to be the root and choosing 
some orientation for each edge in G . Note that R(G) may 
contain isomorphic rooted cactuses. The following observa-
tion follows a similar idea to the one used in [13, Lemma 
3.1].

Lemma 5.1. Suppose that G, G ′ are undirected cactuses. Then 
G and G ′ are isomorphic if and only if R(G) ∼ R(G ′) (i.e., there 
is a bijection f : R(G) → R(G ′) such that f (D) is isomorphic 
to D for all D ∈ R(G)).

Proof. If G and G ′ are isomorphic, then clearly R(G) ∼
R(G ′). Conversely, if R(G) ∼ R(G ′) then pick any D ∈ R(G). 
Then there is a D ′ ∈ R(G ′) that is isomorphic to D . Since G
and G ′ are the underlying undirected graphs of D and D ′ , 
respectively, it follows that G and G ′ are isomorphic. �

Now suppose that C is any complete polynomial in-
variant for rooted cactuses with C(N) ∈ Z[t1, . . . , tm]
for some variables t1, . . . , tm , and C(N) is irreducible in 
Z[t1, . . . , tm], for any rooted cactus N . Given a cactus G , 
we define the polynomial Cu by

Cu(G) =
∏

D∈R(G)

C(D).

Note that this polynomial can have large degree in gen-
eral, depending on the number of cycles and the size of 
each cycle (larger sizes lead to more rootings). The fol-
lowing result is related to the observation following [13, 
Theorem 3.2].

Theorem 5.2. The polynomial Cu is a complete invariant for 
cactuses.

Proof. By assumption, for each D ∈ R(G), C(D) is an irre-
ducible polynomial in Z[t1, . . . , tm]. The result now follows 
from Lemma 5.1 and the fact that Z[t1, . . . , tm] is a unique 
factorization domain. �
Corollary 5.3. For the polynomial Q defined in (1), Q u is a 
complete invariant for cactuses.
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Note that Q u restricted to the class of rooted trees is 
not the same as Liu’s polynomial since our rooting proce-
dure differs the one in [13].

We now consider leaf-labelled rooted cactuses (see e.g. 
[8]). As mentioned in the introduction, in phylogenetics 
it is common to consider (di)graphs in which the leaves 
are labelled by some set of species (see e.g. [18, Section 
10.3]). Using our results on special pairs it is straight-
forward to obtain a complete invariant for partially leaf-
labelled rooted cactuses (i.e. ones in which some subset of 
the leaves is labelled), in a similar way used to deal with 
leaf-labelled trees in [13]. Indeed, given a rooted cactus N
and a map φ : L′ → {x1, x2, . . . , xp} from a subset L′ of the 
leaves of N to some collection of species {x1, x2, . . . xp}, we 
can define a special pair (T N , μN) as in the definition of 
Q above, except that in step (C), we give all remaining 
leaf vertices v the label xi (instead of x) if φ(v) = xi and 
label x (as before) if v /∈ L′ . Then using the same argument 
as in Theorem 4.3, it can be seen that this leads to a com-
plete invariant for the class of partially leaf-labelled rooted 
cactuses. Moreover, using a partially leaf-labelled version 
of Lemma 5.1 (in which we only select roots at vertices 
that are unlabelled), it is possible to also define a poly-
nomial invariant for the collection of partially leaf-labelled 
cactuses (see e.g. [7]), and to show that it is a complete 
invariant for this class.

6. Discussion

We have introduced a new complete polynomial invari-
ant Q for the class of rooted cactuses which has at most 6 
variables, and also shown how to use Q to obtain a com-
plete invariant for cactuses. In addition, we have shown 
that the degree of the Q polynomial for a rooted cactus 
with n leaves and k reticulations is n + 2k [Theorem 4.4]. 
We have also introduced a polynomial invariant F for 
rooted cactuses which has only 5 variables regardless of 
the number of reticulations in the network, and more nat-
urally respects the structure of the network. However, F is 
only a complete invariant for rooted cactuses without ele-
mentary vertices and the degree of F for a rooted cactus 
may be exponential in the number of reticulations in the 
rooted cactus.

It could be of interest to look for other polynomial in-
variants of rooted cactuses/cactuses which shed different 
light on their structure. For example, in [6] it is asked if 
the greedoid polynomial invariant introduced for rooted 
trees gives a complete invariant for larger classes of di-
rected rooted graphs, and so it is natural to ask if it gives 
a complete invariant for rooted cactuses. However, in re-
cent work [20] it is shown that, even for a simple example 
of a rooted cactus [20, Fig. 3], the polynomial does not 
reflect the structure of the directed graph, so this seems 
unlikely to be the case. Another possibility would be to 
consider the TVT polynomial in [19] or the “B-polynomial” 
for digraphs introduced in [1]; the TVT polynomial gives 
a complete invariant for rooted trees [19, p. 569] but it is 
not known whether this is the case for the B-polynomial 
[1, Question 10.6].

Another natural question is to look for complete invari-
ants for broader classes of (di)graphs that are of interest in 
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phylogenetics. For example, we could consider the classes 
C and C′ that consist of directed acyclic graphs that are 
uniquely determined by the graphs obtained by applying 
steps (A), (B), and (C) or (A), (B’), and (C), used to obtain 
a special pair in the definition of F and Q , respectively. 
It would be interesting to know if we could obtain com-
plete invariants for C and C′ in a similar way to F and Q
and, if so, which well-known classes of (non leaf-labelled) 
phylogenetic networks are contained in these classes (note 
that for generalizing the approach used to obtain F , re-
sults on so-called stable networks in [9] might be rele-
vant). More specifically, it would be interesting to know 
for which k ≥ 0 is the collection of level-k networks (net-
work in which every biconnected component contains at 
most k reticulations) contained in either C or C′? Note that 
(non-leaf-labelled) level-0 and level-1 networks are rooted 
trees and cactuses, respectively, so k = 2 is the first case 
of interest. Extra care must be taken in this k = 2 case, as 
reticulation cycles may have more than one top vertex. In 
particular, this means unfolding and expanding will have 
to be redefined, perhaps depending on the comparability 
of top vertices of reticulation cycles.

As we have seen, different constructions of polynomi-
als give rise to advantages and disadvantages with respect 
to the number of variables, the polynomial size, and the 
graph classes for which it is complete. Ideally, it would be 
useful to find complete invariants that can be computed 
in polynomial time for special classes of phylogenetic net-
works.3 However, even if it is not possible to find such 
invariants, it could still be interesting to look for polyno-
mials like the Tutte polynomial which may not provide 
complete invariants but may be easier to compute and can 
still provide useful information about the underlying struc-
ture of the network.
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