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Abstract During the fabrication of quartz crystal resonators (QCRs), parallelism error is inevitably 

generated, which is rarely investigated. In order to reveal the influence of parallelism error on the working 

performance of QCRs, the coupled vibration of a non-paralleled AT-cut quartz crystal plate with electrodes 

is systematically studied from the views of theoretical analysis and numerical simulations. The two-

dimensional thermal incremental field equations are solved for the free vibration analysis via the 

coefficient-formed partial differential equation (PDE) module of the COMSOL Multiphysics software, 

from which the frequency spectra, frequency-temperature curves, and mode shapes are discussed in detail. 

Additionally, the piezoelectric module is utilized to obtain the admittance response under different 

conditions. It is demonstrated that the parallelism error reduces the resonant frequency. Additionally, 

symmetry broken by the non-parallelism increases the probability of activity dip and is harmful to QCR’s 

thermal stability. However, if the top and bottom surfaces incline synchronously in the same direction, the 

influence of parallelism error is tiny. The conclusions achieved are helpful for the QCR design, and the 

present methodology can also be used for other wave devices. 
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1. Introduction 

As a key component of narrow-band filters, the quartz crystal resonator (QCR) consisting of a quartz crystal 

plate with electrodes on one or both surfaces, is widely used to generate oscillation frequency for 

communications [1-3]. Due to the piezoelectricity of quartz, the voltage imposed on the electrodes can be 

transformed into plate vibration with a fixed working frequency. Owing to some unique superiorities, e.g., 

high frequency, small size, excellent stability, and easily embedded with chips, QCR has been widely 



2 

 

utilized in electronic products [4,5]. 

Generally speaking, the fundamental thickness-shear (TSh) mode with its resonant frequency mainly 

determined by the reciprocal of plate thickness is the working mode of QCR. It is expected that a pure TSh 

mode can be excited, so that the plate vibration can keep stable to some extent. However, because of the 

anisotropy of quartz and structural size, a pure TSh mode is impossible when QCR works, in which other 

modes like flexural, and face-shear modes are usually coupled together. In order to suppress these unwanted 

modes, the length/thickness ratio of the quartz plate should be chosen properly [6-9]. During the structural 

design process, the frequency spectrum is usually used to analyze the mode coupling of QCRs [6], from 

which certain length/ thickness ratios that are related to strong mode coupling and must be excluded can be 

clearly achieved. Additionally, there are still some anharmonic overtones (also called spurious modes) 

whose resonance frequencies are extremely close to TSh operating mode [10]. Spurious modes can lead to 

response admittance, which is also unexpected and should be refrained as far as possible. For suppressing 

spurious modes, some methods are developed, such as the stepped bi-mesa structure of AT-cut quartz plate 

[11, 12], and lateral field excitation [13, 14]. 

Temperature is an important factor that should be considered during the structural design of QCRs. 

Material parameters like elastic constant, piezoelectric coefficient, and dielectric constants, are related to 

the ambient temperature. Meanwhile, unmatched thermal expansion coefficients between quartz and 

electrodes can lead to thermal stress, which can furthermore contribute to the QCR’s working performance. 

In order to qualitatively reveal the underlying mechanism and quantitatively obtain the frequency shift 

caused by thermal variation, many efforts have been carried out during the past decades [15-19]. In 1979, 

an incremental field theory was proposed by Tiersten [15], based on which the frequency temperature 

characteristics of the operating TSh mode in an infinite quartz plate were revealed. After that, by expanding 

the incremental displacement into different series forms along the thickness direction, the frequency-

temperature relationship of QCRs was obtained by Lee and Yong [16, 17], Yang [18], and Wang [19]. It is 

expected that a QCR with good temperature stability can be achieved via some methods, such as novel 

structure design [20], additional compensating circuits [21], attached compensation layer with opposite 

thermal expansion coefficients [22], and so forth. 

However, the works mentioned above are for ideal QCRs without any fabrication error. Actually, the 

error is not inevitable during the manufacturing process, e.g., the parallelism error that is usually 

encountered when cutting the quartz plate from crystal columns, which can destroy the symmetry and then 
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furthermore affect the working performance. Manufacturing error usually has a great influence on the 

transmission characteristics and resonant frequency of resonators, which should be reduced to the minimum 

[23, 24]. For example, it has been revealed that the angular error caused by loss of parallelism has a great 

effect on the impedance, inductance, Q factor, and spurious modes [25]. In addition, the capacitance, 

sensitivity, electrostatic spring constant, and reliable operation range of accelerometers also vary as the 

oblique angle of the electrode-plate changes [26, 27]. To the knowledge of authors, the influence of 

parallelism error on performance indices of QCRs including resonant frequency, mode shape, and 

admittance has not been revealed so far, which is just the origin of the present contribution. 

In this paper, the coupled vibration analysis of QCRs with an inclined crystal plate is carried out, and 

the influence mechanism of parallelism error is revealed from the perspectives of theoretical analysis and 

numerical simulations. Firstly, the framework of three-dimensional (3D) thermal incremental field 

equations is introduced in Part 2, which degrades into two-dimensional (2D) equations when straight-

crested waves are considered for a finite QCR in Section 3. With the aid of the COMSOL Multiphysics 

software, the free vibration and forced vibration are analyzed and the influence of parallelism error is 

emphasized in Section 4. Finally, some conclusions are drawn. The conclusions obtained and 

methodologies adopted in this paper can provide a basic understanding of coupled vibrations of QCRs with 

parallelism error, which are also of significance for other acoustic devices. 

2. The 3D thermal incremental field equations 

For investigating the non-parallelism effect when external temperature varies, the 3D thermal incremental 

field equations are utilized in this paper, which are summarized in this section. Firstly, the equations of 

motion and electrostatics in the thermal increment field are [28] 
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where ij  and Di  (i, j, k=1,2,3) represent the incremental stress and the incremental electric displacement, 

respectively. ρ is the mass density, u denotes the incremental displacement vector, and t denotes the time. 

An index after a comma denotes partial differentiation with respect to the coordinate or time. For 

piezoelectric media, the constitutive equations are 
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with skl and Ek representing the strain and electric field in the piezoelectric incremental field, which are 

controlled by 
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Here φ is the incremental potential. In Eqs. (1), (2) and (3), the elastic constant Dijkl, piezoelectric 

coefficient kije , dielectric constant 
ik

 , and thermal expansion coefficient βik in the thermal incremental 

field are expressed as 
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with Θ = ΔT = (T−T0) being the temperature change from a reference temperature T0 set as 25°C. Cijkl, eijk, 

ɛik are the corresponding values measured at constant electric field and temperature, respectively. 
( )n

ijklD , 

( )n

ijke  and 
( )n

ikε  (n = 1,2,3) are the nth-order thermoelastic constants, nth-order temperature derivative of the 

piezoelectric constants, and nth-order temperature coefficients of the dielectric permittivity constants, 

respectively. ik is a non-dimensional parameter, δik represents the Kronecker delta, and 
( )n

ikα  is the nth-

order thermal expansion coefficient of quartz. In the following section, the coupled vibration of QCRs will 

be discussed with the aid of Eqs. (1) - (4) motioned above. 

3. Theoretical analysis of QCRs 

In this paper, a QCR consisting of an AT-cut quartz plate and two partial electrodes is considered, such as 

Fig. 1, with their thickness values respectively denoted by hq, 
1

eh  and 
2

eh . Because of inevitable fabrication 

errors, the plate surface is not standard with a parallelism error, which is described by  in Fig. 1. Therefore, 

the parallelism error can be calculated via tan( ) / 2q qh l = , in which hq stands for the thickness 
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variation related to a flat surface. Generally, parallelism error can be detected by several methods, such as 

stylus measurement, horizontal datum measurement [29], and interferometry [30]. For investigating the 

non-parallelism effect when external temperature varies, a 2D model with the thickness direction denoted 

by x2 is considered, which can depict the straight-crested waves propagating in the x1 direction. Therefore, 

the vibration is independent of x3, i.e., ∂/∂x3 = 0, and the 2D thermal incremental field equations are reduced 

as 
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Here u1 and u2 stand for the displacements in the x1 and x2 directions, respectively. Here, the double 

indices i, j and k has been converted to a single index p or q (p, q=1,2…6) [31].  

 

Fig. 1. Schematic of the QCR with a parallelism error on the top surface 

Correspondingly, the constitutive equation (2) is expressed 
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and Eq. (3) can be simplified as 
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Compared with the crystal plate, the electrodes are so thin, so that the elasticity can be neglected. Then, 

only considering the inertial effect is enough to calculate the resonance of QCRs [32-34]. Hence, the 

boundary condition on the upper and bottom surfaces are  
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Here, V is the driving voltage, ω is the driving frequency, and  denotes mass density of electrodes. At left 

and right edges 
1 0.5 qx l=   of the quartz crystal plate,  

 
6 1 10, 0.σ σ D= = =  (9) 

Totally speaking, the vibration response of QCRs is solving the straight-crested waves governed by 

Eq. (5) under consideration of boundary conditions (8) and (9). Under the external voltage, the electric field 

E2 can be calculated via 

 
2 exp( ) / .qE V iωt h= −  (10) 

After the electrical field D2 is obtained, the total charges on the top electrode and the equivalent current of 

the AT-cut quartz plate are respectively [35] 
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Then, the admittance of the QCR per unit electrode area can be expressed as [31] 

 / / (4 ).e eY I V l w=  (12) 

with le and we representing the length and width of the electrode, respectively. 

4. Numerical results and discussions 

As the numerical example, the AT-cut QCR (= 2.65×103 kg/m3) covered by silver electrodes with mass 

density  = 10.49×103 kg/m3 is considered. The material constants of the AT-cut crystal for the nth-order 
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temperature derivatives of the elastic constant, piezoelectric constant, and dielectric constant, as well as the 

thermal expansion coefficient, are obtained in Refs. [31, 36-38], which are listed in Appendix. The length 

and width of the crystal plate are respectively lq = 1.2 mm and hq = 0.03 mm, and the structural parameters 

of electrodes are le = 0.7 mm, we = 0.4 mm, 
1

eh  = 0.1×10-3 mm and 
2

eh  = 0.2×10-3 mm.  

Eq. (5) is so complex that an exact theoretical solution is hardly achieved for the QCR with a 

parallelism error. For exactly analyzing the free vibration properties, a 2D model is established and solved 

in the coefficient-formed PDE module of the COMSOL Multiphysics software. The parameters are input 

using Eqs. (5), (6) and (7), and the boundary conditions are set according to Eqs. (8) and (9). The solving 

procedure is the same as traditional Finite Element Method (FEM) simulations. The external voltage is set 

as zero for free vibration analysis, and the electrodes are added via an additional mass layer. Mapped 

rectangular elements are adopted with at least twenty elements distributed along the plate thickness 

direction and recomputation has been carried out with smaller elements before the final simulation, which 

can make the numerical results convergent and accurate. The element size is controlled via the node 

numbers along the plate length. Larger node number indicates finer meshes, which will produce more 

accurate resonant frequency, such as the Table 1. Therefore, the plate length is distributed 15 nodes during 

the simulations. Not limited by free vibration, another module, i.e., piezoelectric module, is adopted when 

V = 3 V, which is used to investigate the admittance of QCR and validate the results from the PDE module. 

Table 1. The resonant frequency f0 under different node numbers 

Node 

number 
6 7 8 9 10 11 12 13 14 15 

f0 (MHz) 

53.222

2900 

53.222

2900 

53.222

2903 

53.222

2907 

53.222

2911 

53.222

2914 

53.222

2917 

53.222

2920 

53.222

2922 

53.222

2923 

 

4.1. The working performance of QCRs when the top surface is inclined 

As an important performance index of QCR, the resonant frequency plays an important role in service. At 

resonances, the electrical output is maximal. Before fabrication, frequency spectrum, i.e., the quantitative 

relation between resonant frequency and length/thickness ratio lq/hq, is usually examined for structural 

design, as shown in Fig. 2. Curves consisting of different data points correspond to different modes. Totally 

speaking, curves are classified into two families, i.e., the relatively horizontal curves and the oblique ones. 
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Taking the ideal QCR without non-parallelism, i.e.,  = 0°, for example. The flat one with the resonant 

frequency near 53.2 MHz represents the essentially thickness-shear mode, which is the anticipated first-

order thickness-shear (TSh1) mode. The other flat portions represent the spurious modes. The oblique 

curves, represent face-shear (FS) modes, extensional (E) modes or flexural (F) modes, and the interaction 

between TSh1 modes and FS, E or F modes indicates mode coupling. It can be seen from Fig. 2a that the 

parallelism parameter  has a great impact on the frequency spectrum, and a larger non-parallelism will 

lead to a lower resonant frequency. It is because the resonant frequency is dependent on the reciprocal of 

plate thickness, and the increment of  leads to a thicker crystal plate.  

 

 

 

 

 

 

 (a) 

 

 

 

 

 

 

(b) 

Fig. 2. (a) Frequency spectra under different parallelism error; (b) Magnification of green rectangular 

area in Fig. 2(a) 

As we known, strong mode coupling is easy to occur at the beginning or ending points of the flat 

portions [39, 40]. Obviously, the non-parallelism has changed the intersection regions. To clearly 

demonstrate the influence of non-parallelism on mode coupling, Fig. 3a, 3b and 3c respectively illustrate 

the magnified frequency spectra near the mode coupling position when  is 0, 0.03°and 0.06°. Obviously, 

the flat TSh1 mode (black line) intersects with the E mode (green line), which means the two modes are 

not coupled and can be decoupled easily [41]. However, when θ is chosen as 0.03° or 0.06°, a strong mode 

A 
B 

C 
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coupling phenomenon appears, as shown in Fig. 3b and 3c. Because of the inclined surface, the QCR is not 

symmetric about x1 = 0, and the TSh1 mode is difficult to separate from other modes. 

The frequency-temperature curve, quantitatively depicting the frequency shift caused by external 

thermal variation, is usually utilized to analyze the stability of QCRs [42-44]. The influence of θ on the 

frequency-temperature curve is illustrated in Fig. 4. For the case of θ = 0°, i.e., the crystal plate is symmetric 

without parallelism error, the frequency tolerance of the TSh1 mode in QCRs is ±15ppm when the thermal 

variation locates [−75°C, 75°C], marked with the green dash line in Fig. 4a. Owing to the decoupling 

between the E mode and TSh1 mode, the frequency shift value detected in service totally belongs to the 

TSh1 branch. However, if θ is not zero, the frequency shift value detected does not totally belong to the 

TSh1 mode anymore. In some working temperature ranges, the E mode dominates, which makes the 

frequency shift increase rapidly. It is the activity dip [45], which should be avoided for QCR. Taking 

±15ppm marked with the green dash line as the frequency tolerance, the anomaly temperature variation 

region corresponding to activity dip can be calculated via vertical red lines in Fig. 4b and 4c. It is [−16°C, 

3°C] when θ is 0.06°, which is larger than that of θ = 0.03°, i.e., . [−2°C, 9°C]. In other words, a larger 

parallelism error will increase the probability of activity dip, which is harmful to QCRs.  
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 (c) 

Fig. 3. The local frequency spectra under different parallelism errors: (a) Region A: θ=0°; (b) Region B: 

θ=0.03°; (c) Region C: θ=0.06° 

In order to verify that strong mode coupling is the main reason for activity dip, Fig. 5 shows the mode 

shape represented by u1 at three typical cases, i.e., T respectively equals −30°C, 0°C, and 73°C when θ = 

0.03°. When T = −30°C, the frequency shift exceeds ±15ppm without activity dip. Combined with Fig. 

6a, it can be found that mode coupling is weak. As T increases, the activity dip occurs, such as T = 0°C 

in Fig. 4b. It is clearly seen from Fig. 5b that the mode coupling is strong. When T = 73°C, there is no 

mode coupling in Fig. 5c, and the activity dip disappears. Therefore, it is strong mode coupling that induces 

activity dip. Totally speaking, the parallelism error is not beneficial for QCRs, and should be suppressed as 

little as possible during fabrications. 
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(c) 

Fig. 4. The frequency-temperature curves when θ is (a)0°, (b) 0.03° and (c) 0.06° 
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(c) 

Fig. 5. Mode shapes when θ=0.03°: (a) ΔT = −30°C; (b) ΔT = 0°C; (c) ΔT = 73°C 

For further investigating the influence of θ on the working performance of QCRs, the force vibration 

is analyzed when lq/hq = 40, and the admittance and phase distributions are demonstrated in Fig. 6. The 

absolute value of admittance reaches its maxima at three different resonant frequencies, i.e., 53.22MHz for 

θ = 0°, 53.17MHz for θ = 0.03° and 53.06MHz for θ = 0.06°. They are consistent with the frequencies of 

TSh1 shown in Fig. 2, which can validate the correctness of the numerical results in this paper. Additionally, 

it can be seen that the resonant frequency of TSh mode decreases as θ increases, which also coincides with 

the results obtained from free vibration analysis in Fig. 2. It should be noted that different from 0.03° and 

0.06°, there is no obvious electrical and phase response at the second peak value when θ = 0°. This mode 

is antisymmetric about x1 = 0, and the whole QCR is strictly symmetric with x1 = 0, then the positive and 

negative charges generated by the piezoelectric effect completely vanish. However, for QCRs with a 

parallelism error, the crystal plate is not symmetric along the thickness direction anymore, and mode 

coupling causes electrical responses.  
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Fig. 6. The (a) admittance and (b) phase responses 
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(c) 

Fig. 7. The u1 distribution near the first peak value: (a) θ = 0°; (b) θ = 0.03°; (c) θ = 0.06° 

It also can be seen from Fig. 6a that the maximal value at the first resonance decreases with the increase 

of θ. For interpreting this phenomenon, the u1 distribution is plotted and shown in Fig. 7. For a perfect plate 

without parallelism error, the vibration energy is captured in the electroded region because of energy 

trapping, as shown in Fig. 7a. However, for QCRs with a parallelism error, the vibration deviates towards 

the left, i.e., the plate region with a larger thickness, and vibration begin to leak out of electrodes as θ 

increases. It is because the crystal plate is not symmetric when θ is not zero. The plate region with a larger 

thickness processes a lower cut-off frequency, which makes the TSh1 wave attenuate slowly. Therefore, it 

is the vibration leaking caused by the parallelism error that reduces the electrical response at the second 

resonance. 

4.2. The working performance when both surfaces of QCRs are inclined 

After analyzing the working performance of QCRs with the top surface inclined, the circumstance 

corresponding to both surfaces inclined is also considered in this paper. For convenience, it is assumed that 

parallelism errors on the top and bottom surfaces are the same, and both of them incline in the same or 

opposite direction, as shown in Fig. 8. 

 

 

 

 

(a)                                                                          (b) 

Fig. 8. QCRs with both surfaces inclined in the (a) opposite direction and (b) the same direction 

Both the free vibration and forced vibration are analyzed. Taking the QCRs with both surfaces inclined 

in the opposite direction, for example, Fig. 9a and 9b respectively depict the frequency spectra and the 

admittance response. Obviously, the variations of resonant frequency and admittance in Fig. 9 are 

significantly larger than that with one single inclined surface. The resonant frequency in Fig. 9a decreases 

with the increasing θ, which agrees with Fig. 2a. From the admittance response in Fig. 9b that is 

corresponding to the lq/hq = 40 labeled with green dash lines in Fig. 9a, it can be seen that there is an 

irregular ripple near the TSh1 mode when θ = 0.06°, which is because of strong coupling induced by the 

asymmetry along the plate thickness. 
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For the QCR with both surfaces inclined in the same direction, Fig. 10 shows the frequency spectra 

and the admittance response when lq/hq = 40. By contrast, the parallelism errors on this condition have a 

tiny effect on the working performance of QCRs. As we know, the resonant frequency mainly depends on 

the plate thickness. When the top and bottom surfaces incline synchronously, the plate thickness hardly 

changes, and then the resonant frequency hardly varies. Therefore, it is anticipated that fabricating the same 

parallelism error in another plate surface is an efficient method to keep the previous working performance 

of QCRs. 

 

 

 

 

 

 

(a)   

 

 

 

 

 

 

(b) 

Fig. 9. The (a) frequency spectra and (b) admittance response of QCR with both surfaces inclined in the 

opposite direction 
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(b) 

Fig. 10. The (a) frequency spectra and (b) admittance response of QCR with both surfaces inclined in the 

same direction 

5. Conclusions 

The influence of the non-parallelism effect on the free vibration and forced vibration is systematically 

investigated with the aid of COMSOL Multiphysics software. Totally speaking, the non-parallelism effect 

is not beneficial for the performance improvement of QCRs. The resonant frequency, as well as admittance 

at resonance, has been reduced in a QCR with its one or two surfaces inclined. Additionally, the non-

symmetricity caused by the non-parallelism effect makes mode coupling easier to occur, which increases 

the probability of activity dip and is harmful to QCR’s thermal stability. The quantitative results and 

qualitative conclusions obtained in this paper provide guidance for the structural design of QCRs and other 

similar devices. 
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Appendix: Material parameters of AT-cut quartz. 

The AT-cut quartz can be obtained by rotating the Y-cut quartz counterclockwise =35.25° around 

the x-axis, and then its elastic constant, piezoelectric constant, and dielectric constant can be obtained by 

Y-cut quartz through the Bond transformation matrix M. 
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The elastic constant matrix of Y-cut quartz crystal is  
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with 66 11 12( ) 2c c c  = − . There are six independent elastic constants in Y-cut quartz crystal, i.e., 

11 12 33

13 44 14

86.74GPa, 6.99GPa, 107.2GPa,

11.91GPa, 57.94GPa, 17.91GPa.

c c c

c c c

  = = =

  = = = −
                     (15) 

Similarly, the piezoelectric constant matrix of Y-cut quartz crystal is 

11 11 14

14 11

0 0 0

0 0 0 0 ,

0 0 0 0 0 0

e e e

e e

  − 
 
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with two independent piezoelectric constants e
ˊ 

11=0.171C/m2 and e
ˊ 

14=-0.0406C/m2. Similarly, the dielectric 

constant matrix of Y-cut quartz is 

11
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 
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with two independent components ɛ
ˊ 

11=39.21×10-12C/V/m and ɛ
ˊ 

33=41.03×10-12C//V/m. 

The elastic constants, piezoelectric constants, and dielectric constants of AT-cut quartz crystal plates  

are calculated as follows 

T

T

T T T

,

,

.
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c Mc M
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Here, coordinate transformation matrix a is 
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Table A1 The nth-order temperature derivative of elastic constants of Y-cut quartz at 25 °C (n=1,2,3) 

pq Dˊ(1) pq(×107N/m2/K) Dˊ(2) pq(×104 N/m2/K2) Dˊ(3) pq(×10 N/m2/K3) 

66 0.638907 0.619477 -0.996383 

11 -0.591490 -1.007325 -0.5191845  

44 -1.085111 -1.596966 -0.227747 

14 -0.154782 0.088914 1.470771 

13 -0.835112 -1.217100 -0.114015 

33 -2.102364 -1.694237 0.887281 

 

Table A2 The nth-order temperature derivative of piezoelectric constants of Y-cut quartz at 25 °C 

(n=1,2,3) 

pq eˊ(1) pq(×10-6C/m2/K) eˊ(2) pq(×10-9C/m2/K2) eˊ(3) pq(×10-12C/m2/K3) 

11 -1.37002 -0.748887 1.955179 

14 3.12403 2.600050 -4.692380 

 

Table A3 The nth-order temperature derivative of dielectric constants of Y-cut quartz at 25 °C (n=1,2,3) 

pq ɛˊ(1) pq(×10-15C/V/m/K) ɛˊ(2) pq(×10-18C/V/m/K2) ɛˊ(3) pq(×10C/V/m/K3) 

11 1.59020 5.377230 5.105736 

33 5.46123 0.1894809 -9.230945 

 

Table A4 First three orders thermal expansion coefficients of Y-cut quartz at 25 °C 

pq αˊ(1) pq(×10-6/°C) αˊ(2) pq(×10-

9/°C) 

αˊ(3) pq(×10-12/°C) 

11 13.71 6.5 -1.9 

22 13.71 6.5 -1.9 

33 7.48 2.9 -1.5 

 


