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a b s t r a c t

Median graphs are connected graphs in which for all three vertices there is a unique
vertex that belongs to shortest paths between each pair of these three vertices. In
this paper we provide several novel characterizations of planar median graphs. More
specifically, we characterize when a planar graph G is a median graph in terms of
forbidden subgraphs and the structure of isometric cycles in G, and also in terms of
subgraphs of G that are contained inside and outside of 4-cycles with respect to an
arbitrary planar embedding of G. These results lead us to a new characterization of
planar median graphs in terms of cubesquare-graphs that is, graphs that can be obtained
by starting with cubes and square-graphs, and iteratively replacing 4-cycle boundaries
(relative to some embedding) by cubes or square-graphs. As a corollary we also show
that a graph is planar median if and only if it can be obtained from cubes and square-
graphs by a sequence of ‘‘square-boundary’’ amalgamations. These considerations also
lead to an O(n log n)-time recognition algorithm to compute a decomposition of a planar
median graph with n vertices into cubes and square-graphs.
CrownCopyright© 2023 Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A median graph is a connected graph, in which, for each triple of vertices there exists a unique vertex, called the
edian, simultaneously lying on shortest paths between each pair of the triple [35]. While the term median graph was

introduced by Nebeský [36] in 1971, they have been studied at least since the 1940s [1,9]. Today, a great deal is known
about median graphs including several characterizations, see e.g. [4,32]. Median graphs naturally arise in several fields of
mathematics, for example, in algebra [6], metric graph theory [4] and geometry [14], and they have practical applications
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in areas such as social choice theory [3,20], phylogenetics (where Buneman graphs are of relevance; see [23]), and forensic
science [37]. It is therefore natural to develop approaches to better understand structural properties of median graphs, as
well as their subclasses.

Special classes of median graphs include, for example, trees, square-graphs (see Section 2 and e.g. [5]) and cube-free
edian graphs (e.g. [10,17,18]). Interestingly, to date the class of planar median graphs has received relatively little
ttention, although it is natural to consider such graphs from both a mathematical and an application oriented perspective
see e.g. [11]). Indeed, in contrast to the plethora of characterizations available for median graphs, so far only one direct
haracterization of planar median graphs has been established by Peterin in [38]. In addition, the only other results
oncerning planar median graphs that we are aware of are an Euler-type formula for planar, cube-free median graphs
31, Corollary 5], and an algorithm for deciding in O(|V |+ |E|) time whether or not a graph G = (V , E) is a planar median
raph [29, Cor. 3.4].
Before proceeding with stating our results, it is informative to briefly recall Peterin’s characterization for planar median

raphs. Given a graph G and a connected subgraph G′ of G, the expansion of G with respect to G′ is the graph H obtained
y attaching a disjoint copy G′′ of G′ to G by adding edges between corresponding vertices of G′ and G′′. Expansions play a
ey role in characterizing median graphs and their relatives [34]. More specifically, defining an expansion H to be convex
f G′ is a convex subgraph of G, a graph is a median graph if and only if it can be obtained from K 1 by a series of convex
xpansions [33,34]. Planar median graphs can be characterized by further restricting expansions. Call H a face expansion
f there is a planar embedding of G such that all vertices of G′ are incident with the same face of G. Then a graph is a
lanar median graph if and only if can be obtained from an edge by a sequence of convex face expansions [38].
In this paper, we shall characterize planar median graphs in an alternative way by considering amalgamations. This has

he advantage of allowing us to decompose the graph into simpler building blocks. A graph G is said to be an amalgam of
two induced subgraphs G1 and G2 if their union is G and their intersection G1 ∩ G2 is non-empty [7]. Amalgamation
procedures differ by requiring certain properties of G1 and G2 as subgraphs of G and constraints imposed on their
intersection G1∩G2. For instance, every median graph, can be obtained by successive convex amalgamations starting with
hypercubes [30,41], i.e., G1 and G2 are convex subgraphs of their amalgam G along G1 ∩G2. Note that amalgamations and
expansions are closely related for median graphs (see e.g. [35, Theorem 7]). Similar amalgamation results have been proven
for quasi-median graphs [8, Theorem 1] and pseudo-median graphs [8, Theorem 18] (in terms of ‘‘gated’’ amalgamations).
In this paper, we shall show that planar median graphs can be obtained by starting with cubes and square-graphs and
iteratively amalgamating along the boundary of certain faces in some planar embedding of the resulting graphs. This
gives new insights into the fundamental properties of planar median graphs as the structure of the basic building blocks
(square-graphs and cubes) is very well-understood [5,26]. As we shall discuss below, this approach is related to the 2-face
expansions that are used in [21,39] to characterize planar partial cubes.

The rest of this paper is organized as follows. After introducing the necessary notation and reviewing some relevant
results from the literature in Section 2, in Section 3 we present two characterizations of median graphs amongst planar
graphs. The first one (Theorem 3.5) is given in terms of forbidden subgraphs and isometric cycles of a planar graph; the
second one is given by the condition that every 4-cycle or square C in an embedding of a planar graph must divide the
graph into a planar median graphs that lie inside and outside of C (Theorem 3.9). The last results prompt us to introduce
an operation ⊛ that glues graphs together at boundary squares. In particular, in Section 4, we introduce QS-graphs as those
graphs that can be constructed from cubes and square-graphs by iterative application of the ⊛ operation. We then proceed
to show that the QS-graphs are exactly the planar median graphs that are not trees (Theorem 4.9). As a corollary we then
show that a graph is a planar median graph if and only if it can be obtained from cubes and square-graphs by a sequence
of square-boundary amalgamations (Theorem 4.14). Section 5 is devoted to deriving an efficient algorithm for finding a
sequence of ⊛ operations for decomposing a planar median graph into its basic pieces (i.e. cubes and square-graphs). In
the last section we discuss some open problems and possible future directions.

2. Preliminaries

Graphs. We consider undirected graphs G = (V , E) with finite vertex set V (G) = V and edge set E(G) = E ⊆
(V
2

)
,

i.e., without loops and multiple edges. If E =
(V
2

)
, the graph G is complete and denoted by K|V |. A complete bipartite graph

Km,n = (V , E) is a graph whose vertex set V can be partitioned into two subsets V 1 and V 2 with |V 1| = m and |V 2| = n
such that {v, w} ∈ E if and only if v ∈ Vi and w ∈ Vj with i ̸= j. We write G′ ⊆ G if G′ is a subgraph of G and G[W ]
for the subgraph in G that is induced by some subset W ⊆ V . The graph union G1 ∪ G2 (resp. graph intersection G1 ∩ G2)
of two graphs G1 = (V 1, E1) and G2 = (V 2, E2) is the graph (V 1 ∪ V 2, E1 ∪ E2) (resp. (V 1 ∩ V 2, E1 ∩ E2)). The graph
G − X with X ⊆ V is the graph obtained from G after removal of the vertices in X and its incident edges. A graph G is
{G′1, . . . ,G′m}-free if none of the graphs G′i is a subgraph of G. For simplicity, we write that G is G′-free instead of {G′}-free.

A shortest path between v and w in G is denoted by P⋆
G(v, w). The length dG(v, w) of a shortest path between two

vertices v and w is called distance of v and w (w.r.t. G). A subgraph G′ of G is isometric if dG′ (v, w) = dG(v, w) for all
vertices v, w ∈ V (G′), and G′ ⊆ G is convex if for any two vertices v, w ∈ V (G′) every shortest path P⋆

G(v, w) between v

and w is a subgraph of G′. Clearly, every convex subgraph of G is an isometric and induced subgraph of G. A graph G is
k-connected (for k ∈ N) if |V (G)| > k and G− X is connected for every set X ⊆ V with |X | < k.
39



C.R. Seemann, V. Moulton, P.F. Stadler et al. Discrete Applied Mathematics 331 (2023) 38–58

e

i
f

T
v

A cycle is a connected graph in which every vertex has degree two. The length of a cycle C is the number of edges or
quivalently, the number of vertices in C . A cycle Cn of length n ≥ 3 is called an n-cycle. A 4-cycle is also called a square.

A graph that does not contain cycles is acyclic and, otherwise, cyclic. A cogwheel Mn consists of a cycle Cn where n ≥ 8
s even and a ‘‘central’’ vertex that is adjacent to every second vertex of this cycle. A suspended cogwheel M∗n is obtained
rom the cogwheel Mn by adding an additional vertex adjacent to the central vertex of Mn.

A connected acyclic graph T = (V , E) is a tree. A tree is rooted if there is a distinguished vertex ρ ∈ V called the root of
. A (rooted) forest is a graph whose connected components are (rooted) trees. For a rooted forest T , we say that vertex
of T , is at level i if the distance from the root of the connected component in T that contains v to vertex v is precisely

i. Hence, all roots of the connected components of T are at level 0.
The Cartesian product G1□G2 of two graphs G1 = (V 1, E1) and G2 = (V 2, E2) is the graph with vertex set V (G1□G2) =

V 1 × V 2, and where {(u, u′), (v, v′)} ∈ E(G1□G2) precisely if either u = v and {u′, v′} ∈ E2 or u′ = v′ and {u, v} ∈ E1. The
Cartesian product is associative and commutative [25], which allows us to write □n

i=1Gi for the Cartesian product of the
graphs G1, . . . ,Gn. An n-dimensional hypercube Qn is the n-fold Cartesian product □n

i=1K2. A Q 3 is called cube. The subgraph
Q−3 of a cube Q 3 is obtained from this Q 3 by removing one vertex and its incident edges. A graph G is C iso

6-Q 3-inferring
if for each isometric C6 in G there is a cube Q 3 ⊆ G such that C6 ⊆ Q 3. Analogously, a graph G is Q−3-Q 3-inferring if for
each Q−3 in G there is a cube Q 3 ⊆ G such that Q−3 ⊆ Q 3.

We now provide here a simple result for later reference.

Lemma 2.1. Let G be a K 3-free graph. Then, every 4-cycle in G is convex if and only if G is K 2,3-free.

Proof. Let G = (V , E) be a K 3-free graph. By contraposition, assume that there is a 4-cycle C ⊆ G which is not convex.
Thus, there are two vertices v, w ∈ V (C) for which there is a shortest path P⋆

G(v, w) that is not contained in C . Since E ⊆
(V
2

)
and G is K 3-free, dG(v, w) = 2. Consequently, the graph union C ∪ P⋆

G(v, w) forms a subgraph of G that is isomorphic to a
K 2,3.

Conversely, assume that G is not K 2,3-free. Then, there is a square C ⊆ K 2,3 ⊆ G which is not convex. ■

Convex hull and shortest-path-extension (SPE). For a subgraph G′ of G, the convex hull H(G′) of G′ (w.r.t. G) is the intersection
of all convex subgraphs G′′ of G with G′ ⊆ G′′. Note that H(G′) is a convex subgraph of G and that H(G′) = G′ for every
convex subgraph G′ of G. A tool that will be useful in upcoming proof are shortest-path-extensions.

Definition 2.2. Let G′ be some subgraph of G. A shortest-path-extension (SPE) of G′ (w.r.t. G) is obtained by the following
procedure:

1. Set G′1 := G′, and set i = 1,
2. If G′i is a convex subgraph of G, then we stop. Otherwise, there is a shortest path P⋆

G(v, w) with v, w ∈ V (G′ i), which
is not a subgraph of G′i . In this case, we set G′i+1 := G′i ∪ P⋆

G(v, w), increment i and repeat Step 2.

Since we have G′ = G′1 ⊊ G′2 ⊊ G′3 ⊊ . . . ⊆ G, and since G is finite and convex (w.r.t. G), a shortest-path-extension of G′
must terminate. We call the final sequence S(G′) = (G′1,G′2,G′3, . . . ,G′m), with m ≥ 1, a SPE-sequence of G′ and the last
graph G′m in S(G′) the SPE-graph of G′.

As shown next, the convex hull can be constructed by means of SPE-sequences so that, in particular, the SPE-graph is
well-defined.

Lemma 2.3. Let G be a graph and let G′ be a subgraph of G. Then, the convex hull of G′ w.r.t. G is equal to the SPE-graph of
G′ w.r.t. G, and thus, the SPE-graph is unique.

Proof. Let G′ ⊆ G, H(G′) be the convex hull of G′ (w.r.t. G) and (G′1,G′2,G′3, . . . ,G′m) be an SPE-sequence of G′ (w.r.t. G).
Furthermore, let H ′ be some convex subgraph of G such that G′ ⊆ H ′. Note, such subgraph H ′ exists, since G is convex
(w.r.t. G) and therefore, we may set H ′ := G. We use induction on i ∈ {1, . . . ,m} to show that every G′i is a subgraph of
H ′, and hence G′m ⊆ H ′. For the base case, Definition 2.2 (1) implies G′1 = G′ ⊆ H ′.

Now, let us assume that G′k ⊆ H ′ for every k ∈ {1, . . . , i}, 1 ≤ k < m, and consider the graph G′i+1. By Definition 2.2 (2),
G′i ⊆ G′i+1. Since G′i ⊆ H ′ it remains to show that all v ∈ V (G′i+1) \ V (G′i) and e ∈ E(G′i+1) \ E(G

′

i) are also contained in H ′.
By definition, G′i+1 = G′i ∪ P⋆

G(w, w′) for some w, w′ ∈ V (G′ i) where P⋆
G(w, w′) is a shortest path which is not a subgraph

of G′i . Let v ∈ V (G′i+1) \ V (G′i) and e ∈ E(G′i+1) \ E(G
′

i). By construction, v and e must be contained in P⋆
G(w, w′). Since H ′ is

convex (w.r.t. G) and w, w′ ∈ V (G′i) ⊆ V (H ′), this shortest path P⋆
G(w, w′) must be a subgraph of H ′. Therefore, v ∈ V (H ′)

and e ∈ E(H ′). Consequently, V (G′i+1) ⊆ V (H ′) and E(G′i+1) ⊆ E(H ′), and thus, G′i+1 ⊆ H ′. By induction, we have G′m ⊆ H ′.
Finally, since H ′ was chosen arbitrarily and H(G′) is a convex subgraph of G, we may set H ′ := H(G′) and conclude that

G′m ⊆ H(G′). By definition, the SPE-graph G′m is a convex subgraph of G and G′ ⊆ G′m. Therefore, we have, by definition
of the convex hull, H(G′) ⊆ H(G′m) = G′m. In summary, H(G′) = G′m. Since the convex hull by definition is unique, G′m is
unique as well. ■
40
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Planar graphs, faces and boundaries. A planar graph G can be embedded in the plane such that its edges intersect only at
their endpoints (in particular, only in case they are incident with the same endpoints). Such embeddings are called planar
embeddings of G. A planar graph G together with a planar embedding π of G is called π-embedded.

Let G be a π-embedded planar graph. The connected regions in R2 of the complement of G are called faces. One of
these faces is unbounded in R2 and is called the outer face, while all other faces are bounded in R2. These are called inner
faces. The subgraph of G that encloses a face F is said to bound F and is called the boundary of F . If G′ ⊆ G bounds an
inner (resp., outer) face it is called inner (resp., outer) boundary of G. Note, by definition, boundaries are not part of a face.
However, a face is said to be incident with the vertices and edges of its boundary. Correspondingly, the vertices of G that
are incident with the outer face are called outer vertices, and every other vertex, i.e., every vertex that is not incident to
the outer face is called inner vertices. The set V̊ (G) denotes the set of inner vertices of G. Note that outer vertices can be
incident to inner faces. If G has different faces with the same boundary, then G must be a cycle [22, Lemma 4.2.5]. Note,
this is the only case where the inner and outer boundary coincide. In all other cases, different faces of a planar embedded
graph, have different boundaries. A planar graph G is outer-planar if G can be π-embedded in such a way that all vertices
of G are outer vertices (i.e., V̊ (G) = ∅) [12]. In particular, cycles, trees and K 2□Pn are outer-planar graphs.

Every planar graph has, in particular, an embedding on a 2-sphere S2. This observation immediately implies that every
bounded region can be chosen as the outer face, see e.g. [22, Sec. 4.3] for more information. We summarize the latter in

Observation 2.4. Let G be a π-embedded planar graph and G′ ⊆ G be a boundary of G. Then, there is a planar embedding of
G such that G′ is an inner boundary as well as a planar embedding of G such that G′ is the outer boundary of G.

It is well-known that an n-dimensional hypercube Qn is planar if and only if n ≤ 3, see e.g. [26]. Since every subgraph
of a planar graph is planar as well, we obtain

Lemma 2.5. For every hypercube Qn ⊆ G in a planar graph G it holds that n ≤ 3.

Two planar embeddings π1, π2 :G→ S2 are equivalent if there is a homeomorphism h : S2
→ S2 such that h ◦π1 = π2.

We say that a graph G is uniquely embeddable on S2 (up to equivalence) if any two planar embeddings of G on S2 are
equivalent.

Theorem 2.6 ([42]). Every 3-connected planar graph is uniquely embeddable on S2.

In the following, every square of G that bounds a face for some planar embedding of G is called square-boundary. We
will denote planar embeddings of cubes by ρ, see the graph Gd in Fig. 5 for such a ρ-embedded cube. Theorem 2.6 and
the fact that cubes are 3-connected implies

Observation 2.7. Let G be ρ-embedded cube. Then, all faces must be bounded by squares. In particular, C ⊆ G is a square if
and only if C is an inner or outer boundary in G w.r.t. ρ, and thus, if and only if C is a square-boundary of G.

The following definitions are central for the presentation below. Let G be a planar graph and G′ ⊆ G be some subgraph
of G. Fixing a planar embedding π of G and removing all edges and vertices from G that are not contained in G′ yields a
planar embedding of G′ that is ‘‘anchored’’ on the planar embedding π of G. We call such an embedding of G′ a (G, π )-
induced embedding. Let C be a cycle of G and fix a planar embedding π of G. A vertex v ∈ V (G) is outside (resp., inside) of C
if v is contained in the outer (resp., inner) face bounded by C w.r.t. the (G, π )-induced embedding. By definition, v ∈ V (C)
is neither inside nor outside of this C . A vertex v ∈ V (G) is almost-outside (resp., almost-inside) if either v ∈ V (C) or v is
outside (resp., inside) of C .

Below, we will make frequent use of the subgraphs Gin
C,π and Gout

C,π of G defined as follows. Let G be a π-embedded
planar graph and C ⊆ G be a square in G. Then, Gin

C,π (resp., Gout
C,π ) is the subgraph of G that is obtained by deleting

every vertex and every edge of G that is located in the outer (resp. inner) face bounded by C w.r.t. the (G, π )-induced
embedding of C . In particular, for K3-free graphs G, the subgraph Gin

C,π (resp. Gout
C,π ) is induced by all vertices that are

almost-inside (resp. almost-outside) of C . Note that the vertices of C are contained in both Gin
C,π and Gout

C,π . Given the
(G, π )-induced planar embedding of Gin

C,π and Gout
C,π , the square C is the outer boundary of Gin

C,π and an inner boundary
of Gout

C,π .
The next result provides some insights on the location of vertices w.r.t. subgraphs C4 of planar and {K 3, K 2,3}-free

graphs, which we need for later reference.

Lemma 2.8. Let G be a planar π-embedded and {K 3, K 2,3}-free graph, and C, C ′ ⊆ G be squares. If a, b ∈ V (C), then for
every c ∈ V (P⋆

G(a, b)), we have c ∈ V (C). Moreover, Gin
C,π and Gout

C,π as well as Gin
C,π ∩ Gout

C ′,π and Gout
C,π ∩ Gout

C ′,π and
Gin

C,π ∩ Gin
C ′,π are convex subgraphs of G.

Proof. Let G be a planar K 2,3-free graph, C ⊆ G be a square and a, b ∈ V (C). Hence, dG(a, b) ∈ {0, 1, 2}. If dG(a, b) ∈ {0, 1},
then there is nothing to show. Suppose that dG(a, b) = 2. In this case, there are two vertices c1, c2 ∈ V (C) on two shortest
path between a and b. If there would be a third shortest path of length two, then G would contain a K 2,3, which is not
possible. Hence, every vertex on the shortest paths between a and b must be part of C .
41
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Now, let π be an arbitrary planar embedding of G and consider the (G, π )-induced embedding of a square C and let
a, b ∈ V (G) and P⋆

G(a, b) be an arbitrary shortest path between a and b. Assume that a and b are almost-inside of C .
oreover, we assume for contradiction that there is some c ∈ V (P⋆

G(a, b)) that is outside of this C . Since G is planar, there
ust be two vertices a′, b′ ∈ V (C), which are part of this V (P⋆

G(a, b)) such that P⋆
G(a, b) = P⋆

G(a, a
′) ∪ P⋆

G(a
′, b′) ∪ P⋆

G(b
′, b)

and c ∈ V (P⋆
G(a
′, b′)), and with P⋆

G(a, a
′), P⋆

G(a
′, b′) and P⋆

G(b
′, b) being some shortest paths between a, a′ and a′, b′ and

b, b′, respectively. Since a′, b′ ∈ V (C) and P⋆
G(a
′, b′) is a shortest path with c ∈ V (P⋆

G(a
′, b′)), we conclude by analogous

arguments as above that c ∈ V (C). Hence, c is not outside of C; a contradiction. Thus, every c ∈ V (P⋆
G(a, b)) is almost-inside

of C . Since G is K 3-free, every edge {v, w} ∈ E(G) with v, w ∈ V (Gin
C,π ) is also contained in E(Gin

C,π ). Taken the last two
arguments together, Gin

C,π is a convex subgraph of G.
Analogous arguments show that Gout

C,π is a convex subgraph of G. Since the intersection of convex subgraphs yields a
convex subgraph (cf. e.g. [27, L. 5.2]), we conclude that Gin

C,π ∩ Gout
C ′,π , Gout

C,π ∩ Gout
C ′,π and Gin

C,π ∩ Gin
C ′,π are convex

subgraphs of G. ■

The following result is a direct consequence of Lemmas 2.3 and 2.8.

Lemma 2.9. Let G be a planar π-embedded {K 3, K 2,3}-free graph which contains a square C ⊆ G. Moreover, let G′ ⊆ G be
a subgraph and H(G′) be its convex hull (w.r.t. G). If every v ∈ V (G′) is almost-inside (resp., almost-outside) of C, then every
v′ ∈ V (H(G′)) is almost-inside (resp., almost-outside) of C, where inside and outside refer to the (G, π )-induced embedding of
C.

Note that shortest paths on isometric cycles C ′ ⊆ G connecting its vertices must be shortest paths in the underlying
graph G. By Lemma 2.8, the graphs Gin

C,π and Gout
C,π are convex subgraphs of planar π-embedded and {K 3, K 2,3}-free

graphs. Thus, every isometric cycles of such a graph must be entirely contained in Gin
C,π or Gout

C,π . We summarize the
latter discussion in

Lemma 2.10. Let G be a planar π-embedded and {K3, K2,3}-free graph, C ⊆ G be a square and C ′ be an isometric cycle of G.
Then, all vertices in V (C ′) \ V (C) are either inside or outside of C w.r.t. the (G, π )-induced embedding of C.

Lemma 2.11. Let G be a planar graph that contains a cube Q3 and let u, v ∈ V (Q3) such that dQ 3 (v, w) = 3. Then, Q 3−{v, w}

results in a 6-cycle C and, for every planar embedding π of G, v is located in the inner face and w in the outer face of C or
vice versa w.r.t. (G, π )-induced embedding of C.

Proof. Let G be a planar graph that contains a cube Q3 and let v, w ∈ V (Q3) such that dQ 3 (v, w) = 3. One easily observes
that Q 3 − {v, w} results in a 6-cycle C . If both v and w are inside (resp., outside) w.r.t. (G, π )-induced embedding of C ,
then C would be an outer (resp., inner) boundary of the cube Q3. However, every boundary of a cube has to be a square
(cf. Observation 2.7), and therefore, v must be located in the inner face and w in the outer face of C or vice versa. ■

Definition 2.12 (k-FS). A graph G satisfies the k-face-square-property (w.r.t. π) (k-FS, for short) if there is a planar
embedding π of G such that at least k faces are bounded by squares.

For instance, every square satisfies 2-FS and every cube satisfies 5-FS.

Median graphs and square-graphs. A vertex x ∈ V (G) is a median of three vertices u, v, w ∈ V (G) if dG(u, x) + dG(x, v) =
dG(u, v), dG(v, x)+ dG(x, w) = dG(v, w) and dG(u, x)+ dG(x, w) = dG(u, w). A connected graph G is a median graph if every
triple of its vertices has a unique median. In other words, G is a median graph if, for all u, v, w ∈ V (G), there is a unique
vertex that belongs to shortest paths between each pair of u, v and w. We denote the unique median of three vertices u,
v and w in a median graph G by medG(u, v, w).

For later reference, we summarize here some well-known properties of median graphs, see [32] and [33, p. 198].

Proposition 2.13. A connected graph G is a median graph if and only if the convex hull of any isometric cycle of G is a
hypercube.

Proposition 2.14. For every median graph G = (V , E) the following statements are satisfied.

1. G is bipartite;
2. G is K 2,3-free;
3. (a) G is an induced subgraph of a hypercube and thus, (b) every edge e ∈ E that lies on some cycle must be contained

in some C4;
4. (a) for every subgraph G′ of G, the convex hull H(G′) (w.r.t. G) is a median graph and thus, (b) every convex subgraph

of G is a median graph.

The following type of graphs will play a crucial role for our results.
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Definition 2.15. A square-graph is a connected graph for which a planar embedding exists such that

(a) every inner boundary is a square, and
(b) every inner vertex has at least degree 4.

Such a planar embedding of a square-graph will always be denoted by σ .

Simple examples of square-graphs are trees and the 4-cycle. Further examples of σ -embedded square-graphs are
hown in Fig. 2. Below, we will make use of the following results.

emma 2.16. Every square-graph as well as the cube Q3 is a planar median graph (cf. [15,16,40]). Moreover, it can be decided
in O(|V (G)| + |E(G)|) time whether a given graph G is a square-graph or not (cf. [5, Prop. 5.3]).

It has been shown by Soltan et al. [40] and Bandelt et al. [5, Prop. 9.1] that for every σ -embedded square-graph G
every square in G is an inner boundary. This, together with the definition of square-graphs, implies

Lemma 2.17. Let G be σ -embedded square-graph. Then, C ⊆ G is a square if and only if C is an inner boundary in G w.r.t.
σ . Consequently, C is a square if and only if C is a square-boundary w.r.t. σ . Moreover, every square-graph that contains k
squares, satisfies k-FS (w.r.t. σ ) and every cyclic square graph satisfies 1-FS (w.r.t. σ ).

Recall that every face of a planar graph can be both an inner and the outer face depending on the choice of the
embedding. This, together with Observation 2.4 and the fact that in a σ -embedded square-graph and ρ-embedded cube
every square is square-boundary, implies

Observation 2.18. Let G be a square-graph with planar embedding π = σ or a cube with planar embedding π = ρ. For
every square C of G we can adjust π to a planar embedding πC such that C becomes an outer boundary while all other squares
distinct from C are inner boundaries w.r.t. πC . In case G is a square-graph that contains at least two squares, there exists an
inner face that is bounded by a square w.r.t. πC .

In particular, Bandelt et al. [5] characterized square-graphs in terms of forbidden subgraphs of median graphs (see
Fig. 3).

Proposition 2.19 ([5, Prop. 5.1 (i,ii)]). Let G be a graph. Then, G is a square-graph if and only if G is a median graph such that G
does not contain any of the following graphs as induced subgraphs (or isometric subgraphs or convex subgraphs, respectively):
the cube Q 3, the book K 2□K 1,3, and suspended cogwheel.

3. Characterization of planar graphs that are median graphs

In this section, we present new characterizations for planar graphs being median graphs. To this end, we need the
following

Lemma 3.1. Let G be a planar median graph. Then, the length of every isometric cycle of G is either 4 or 6.

Proof. Let G be a planar median graph, and let Cn with n ≥ 3 be an isometric cycle of G. First, we show n ≤ 7. To this end,
we assume for contradiction that n ≥ 8. Then, Proposition 2.13 implies that there is a hypercube Qm with Cn ⊆ Qm ⊆ G,
nd Lemma 2.5 implies that m ≤ 3. Since n ≥ 8, we have Cn ⊆ Q 3 and n = 8. Thus, V (C8) = V (Q3). Since Cn contains
wo vertices at distance n

2 ≥ 4 and the diameter (i.e., the greatest distance) of Q3 is 3, this Cn cannot be isometric; a
ontradiction. Hence, n ≤ 7. Since every median graph is bipartite it cannot contain odd cycles. Therefore, n = 4 or
n = 6. ■

Lemma 3.2. Let G be a {K 3, K 2,3}-free graph. Moreover, let Q 3 ⊆ G be a cube, and let v, w ∈ V (Q 3) with dQ 3 (v, w) ∈ {1, 2}.
Then, for every shortest path P⋆

G(v, w) in G, we have P⋆
G(v, w) ⊆ Q 3. Moreover, if G is additionally planar, then P⋆

G(v, w) ⊆ Q 3
for all v, w ∈ V (Q 3).

Proof. Let G be a {K 3, K 2,3}-free graph and v, w ∈ V (Q 3) with Q 3 ⊆ G and dQ 3 (v, w) ∈ {1, 2}. Clearly, if dQ 3 (v, w) = 1,
then P⋆

G(v, w) is an edge that must be contained in Q 3. Now, assume that dQ 3 (v, w) = 2. Then, it is easy to see that there
is a (unique) square C ⊆ Q 3 with v, w ∈ V (C). Since G is {K 3, K 2,3}-free, we can apply Lemma 2.1 to conclude that C is a
convex subgraph of G. Hence, every shortest path P⋆

G(v, w) between v and w is contained in a square C ⊆ Q 3.
Now, assume that G is planar in addition and let π be an arbitrary planar embedding of G. By the latter arguments,

it suffices to consider vertices v, w ∈ V (Q3) with dQ 3 (v, w) = 3. By Lemma 2.11, Q 3 − {v, w} results in a 6-cycle C and
v is located in the inner face and w in the outer face of C or vice versa w.r.t. the (G, π )-induced embedding of C . This
and the fact that π is a planar embedding of G implies that P⋆

G(v, w) contains (at least) one vertex u of C . Hence, there
are shortest paths P⋆

G(v, u) and P⋆
G(u, w) such that P⋆

G(v, w) = P⋆
G(v, u)∪ P⋆

G(u, w). We distinguish two (mutually exclusive)
cases: (i) {v, u} ∈ E(Q 3) ⊆ E(G) and (ii) {u, w} ∈ E(Q 3) ⊆ E(G).

In Case (i) we have P⋆
G(v, u) ⊆ Q 3 and dQ 3 (u, w) = 2. By the latter arguments, P⋆

G(u, w) ⊆ Q 3. Hence, P⋆
G(v, w) =

P⋆(v, u) ∪ P⋆(u, w) ⊆ Q . Similar arguments imply in Case (ii) that P⋆(v, w) ⊆ Q . ■
G G 3 G 3
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For later reference, we show that every isometric cycle C6 and every Q−3 of a median graph must be contained in a
ube.

emma 3.3. Every median graph is Q−3-Q 3-inferring and C iso
6-Q 3-inferring.

roof. Let G be a median graph. First, let Q−3 ⊆ G. Consider the unique subgraph C6 ⊆ Q−3 that is an isometric subgraph in
−

3 . Assume, for contradiction, that this C6 is not an isometric subgraph of G, i.e., that there are two vertices a, b ∈ V (C6)
with dC6 (a, b) > dG(a, b) ≥ 1 and, therefore, dC6 (a, b) ∈ {2, 3}. If dC6 (a, b) = 2, then dG(a, b) = 1. Thus, there must be a
K 3 in G; a contradiction to Proposition 2.14 (1). Moreover, if dC6 (a, b) = 3 and dG(a, b) = 2, then G must contain a K3 or
C5; again a contradiction to Proposition 2.14 (1). Finally, assume that dC6 (a, b) = 3 and dG(a, b) = 1. Let x, y, z ∈ V (C6)
be the three vertices that have degree 3 in Q−3 . Among these vertices x, y, z has to be a or b; w.l.o.g. assume that x = a.
Note, there is a vertex v ∈ V (Q−3 ) \ V (C6) that is adjacent to every vertex in {x, y, z}. Moreover, b is adjacent to every
vertex in {x, y, z} in G, since dG(x, b) = 1. Hence, there is a K 2,3 with V (K2,3) = {x, y, z, v, b} in G; which is a contradiction
to Proposition 2.14 (2). Thus, C6 is an isometric subgraph of G.

Thus, by Proposition 2.13 there is a hypercube that contains C6. Since we have |V (C6)| = 6, we conclude that
there is a cube Q ⊆ G with C6 ⊆ Q . Let w be the unique vertex in Q that is not adjacent to x, y and z
in Q and let x′, y′, z ′ be the three vertices in C6 that are adjacent to w in Q , where x′ is adjacent to x and y,
y′ is adjacent to y, and z and z ′ is adjacent to x and z. The graph H with vertices V (C) ∪ {v, w} and edge set{
{x′, x}, {x′, y}, {y′, y}, {y′, z}, {z ′, x}, {z ′, z}, {v, x}, {v, y}, {v, z}, {w, x′}, {w, y′}, {w, z ′}

}
is by the preceding arguments a

subgraph of G and, in particular, a cube for which H − {w} is equal to the graph Q−3 chosen at the beginning of this
proof. Hence, G is Q−3-Q 3-inferring.

Now, let C6 be an isometric cycle of G. Then, Proposition 2.13, together with the previous arguments, imply that there
is a cube Q 3 ⊆ G with C6 ⊆ Q 3. Hence, G is C iso

6-Q 3-inferring. ■

Lemma 3.4. Let G be {K 3, K 2,3}-free, planar and C iso
6-Q 3-inferring graph. Then, the convex hull of every isometric cycle C6 in

G is a Q 3. Moreover, if C6 is an isometric cycle in a cube Q 3 ⊆ G, then C6 is an isometric cycle in G.

Proof. Let G be chosen as in the statement and let C6 be an arbitrary isometric cycle of G. Since G is C iso
6-Q 3-inferring

there is a cube Q 3 ⊆ G such that C6 ⊆ Q 3. Moreover, let (G′1,G′2,G′3, . . . ,G′m) be a SPE-sequence of C6. It is easy to verify
that Q 3 ⊆ G′m. Since G is {K 3, K 2,3}-free and planar, we can apply Lemma 3.2 to conclude that P⋆

G(v, w) ⊆ Q 3 for every
shortest path P⋆

G(v, w) with v, w ∈ V (Q 3). Hence, Q 3 ⊆ G′m is a convex subgraph of G, and by construction of (G′1, . . . ,G
′
m),

we have Q 3 = G′m. By Lemma 2.3, it follows that Q 3 is the convex hull of C6 (w.r.t. G).
Finally, let C6 be an isometric cycle in a cube Q 3 ⊆ G. Now, let P⋆

G(v, w) be a shortest path with v, w ∈ V (C6) ⊆ V (Q 3).
By the same arguments as above, P⋆

G(v, w) ⊆ Q 3 and Q3 is a convex subgraph of G. Thus, every vertex (resp., edge) of Q 3
lies on some shortest path P⋆

G(v, w) for all v, w ∈ V (C6), we conclude that the convex hull HG(C6) (w.r.t. G) is this Q 3.
This, together with C6 being an isometric cycle of that Q 3 ⊆ G, implies C6 is an isometric cycle in G. ■

Theorem 3.5. Let G be a planar graph. Then, G is a median graph if and only if the following statements are satisfied:

(1) G is connected,
(2) G is K 2,3-free,
(3) C iso

6-Q 3-inferring, and
(4) every isometric cycle in G has length 4 or 6.

Proof. Let G be a planar graph. First, assume that G is a median graph. Then, by definition Statement (1) is satisfied,
Proposition 2.14 (2) implies Statement (2), Lemma 3.3 implies Statement (3), and Lemma 3.1 implies Statement (4).

Conversely, assume that Statements (1)–(4) are satisfied. Now, let C ⊆ G be an arbitrary isometric cycle. By Statement
(4), this cycle C is either a C4 or C6. Note that G is K 3-free, since any K 3 would be an isometric cycle. If C = C4, then
we can apply Lemma 2.1 to conclude that C4 is convex in G, and thus, the convex hull H(C4) is precisely this C4 ≃ Q2. If
C = C6, then Lemma 3.4 implies that the convex hull of this C6 (w.r.t. G) is a cube Q 3. Hence, in either case, the convex
hull of any isometric cycle of G is a hypercube. Thus, Proposition 2.13 implies that G is a median graph. ■

Corollary 3.6. Let G be a planar graph. Then, G is a cube-free median graph if and only if the following statements are satisfied:
1. G is connected,
2. G is K 2,3-free,
3. every isometric cycle in G has length 4.

Proof. Let G be a planar and cube-free median graph. Then, by definition, Statement 1 is satisfied, and Proposition 2.14 (2)
implies Statement 2. Moreover, every isometric cycle in G has length 4 or 6 (cf. Lemma 3.1). However, if there is an
isometric cycle of length 6, then we can apply Theorem 3.5 (3), to conclude that G contains a cube Q 3, which is not

possible by assumption. Hence, Statement 3 is satisfied.
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Conversely, assume that G is a planar graph that satisfies Statements 1–3. Then, in particular, G satisfies the statements
of Theorem 3.5, which implies that G is a median graph. Now, assume for contradiction that G contains a cube Q 3. This Q 3
ontains an isometric cycle C6 w.r.t. Q 3. By Lemma 3.4, C6 is an isometric cycle in G; which is a contradiction to Statement
. In summary, G is a cube-free median graph. ■

As a direct consequence of Lemma 2.10 and since every square in a median graph is isometric, we obtain

orollary 3.7. If G is a median graph containing a square C ⊆ G, then all squares of G are contained in the union of the
squares contained in Gin

C,π and Gout
C,π .

In other words, if we have two graphs Gin
C,π and Gout

C,π such that G = Gin
C,π C ⊛ CGout

C,π results in a median graph,
hen the only squares in G are the ones contained in Gin

C,π and Gout
C,π . Corollary 3.7 can be generalized further to show

hat {K 3, K 2,3}-free planar graphs G can be characterized in terms of their subgraphs Gin
C,π and Gout

C,π .

emma 3.8. Let G be a π-embedded planar graph and C ⊆ G be a square. Then, G is {K 3, K 2,3}-free if and only if Gin
C,π and

out
C,π are {K 3, K 2,3}-free.

roof. Let G be a π-embedded planar graph, and let C ⊆ G be a square. If G is {K 3, K 2,3}-free, then every subgraph of G
s {K 3, K 2,3}-free, and thus, Gin

C,π and Gout
C,π must be {K 3, K 2,3}-free as well.

The terms ‘‘inside’’ and ‘‘outside’’ in the following refer to the (G, π )-induced embedding of C . Consider two vertices
, w ∈ V (G), where v is outside of C and w is inside of C (and thus, in particular, v, w /∈ V (C)). We observe that v and w

annot be adjacent in G, since in the planar embedding π an edge {v, w} would cross edges or vertices of C .
Now, suppose that Gin

C,π and Gout
C,π are {K 3, K 2,3}-free. Assume first, for contradiction, that G contains a subgraph

≃ K 3. This subgraph can neither be located entirely in Gin
C,π nor in Gout

C,π . Hence, there are vertices v, w ∈ V (H) such
hat v is outside of C and w is inside of C . Since H ≃ K3 it holds that {v, w} ∈ E(H) ⊆ E(G); a contradiction. Hence, G
ust be K 3-free.
Assume now, for contradiction, that G contains a subgraph H ≃ K 2,3. Again, this subgraph can neither be located

ntirely in Gin
C,π nor in Gout

C,π . Hence, there are vertices v, w ∈ V (H) such that v is outside of C and w is inside of C .
ince, as argued above, {v, w} ∈ E(H) is not possible, we can conclude that dH (v, w) = 2, and thus, there must be (at
east) two distinct paths PH (v, w) and P ′H (v, w) of length 2. Let V (PH (v, w)) = {v, a, w} and V (P ′H (v, w)) = {v, b, w}.
ince {v, w} /∈ E(G) and v is outside while w is inside of that C , the only vertices that can be adjacent to v and w are
ertices of C . Hence, a, b ∈ V (C). Note dH (v, w) = 2, and since G is K 3-free, we can conclude that dG(a, b) = 2. But
hen, the subgraph of Gout

C,π induced by V (C) ∪ {v} contains a subgraph isomorphic to K 2,3; a contradiction. Hence, G is
K 3, K 2,3}-free. ■

Recall that a connected graph is either cyclic or a tree. We are now in the position to provide an additional
haracterization of planar graphs that contain squares and are median graphs.

heorem 3.9. Let G be a π-embedded planar graph that contains a square C ⊆ G. Then, G is a median graph if and only if
in
C,π and Gout

C,π are median graphs.

roof. Let G be a π-embedded planar graph, and let C be a square of G. By construction, C ⊆ Gin
C,π and C ⊆ Gout

C,π .
First, assume that G is a median graph. Moreover, let C ′ be an isometric cycle of Gin

C,π , and let HG(C ′) be its convex
ull w.r.t. G. Hence, Lemma 2.9 implies that every v′ ∈ V (HG(C)) lies almost-inside of this C w.r.t. the (G, π )-induced
mbedding of G. Thus, by definition of Gin

C,π , we conclude that HG(C ′) ⊆ Gin
C,π . Hence, since C ′ ⊆ Gin

C,π ⊆ G, we conclude
hat HG(C ′) is also the convex hull of C ′ w.r.t. Gin

C,π . Since G is a median graph, Proposition 2.13 implies that HG(C ′) is
hypercube. Thus, the convex hull of an arbitrary isometric cycle C ′ in Gin

C,π is a hypercube. Hence, Proposition 2.13
mplies that Gin

C,π is a median graph. Analogously, one can show that Gout
C,π is a median graph as well.

Conversely, assume that Gin
C,π and Gout

C,π are median graphs. Proposition 2.14 (1) implies that Gin
C,π and Gout

C,π are
ipartite, and thus, they are K3-free. This, together with Proposition 2.14 (2), implies that Gin

C,π and Gout
C,π are {K 3, K 2,3}-

ree. By Lemma 3.8, G is {K 3, K 2,3}-free. Now, let C ′ be an isometric cycle of G. Hence, Lemma 2.10 implies that all vertices
∈ V (C ′) lie almost-inside (resp. almost-outside) of this C . First, assume that all vertices v ∈ V (C ′) lie almost-inside of

he C . By definition of Gin
C,π and by Lemma 2.9, we conclude that the convex hull HG(C ′) of C ′ w.r.t. G is equal to the

onvex hull HGinC,π
(C ′) of C ′ w.r.t. Gin

C,π . Since Gin
C,π is a median graph, we conclude that HGinC,π

(C ′) is a hypercube. Thus,
G(C ′) is a hypercube. Analogously, one can show that the convex hull HG(C ′) of C ′ w.r.t. G is a hypercube if all vertices
′
∈ V (C ′) are almost-outside of this C . Hence, in either case, the convex hull of any isometric cycle C ′ of G is a hypercube.

hus, Proposition 2.13 implies that G is a median graph. ■

. Cubesquare-graphs

In this section, we establish a further characterization of planar median graphs. To this end, we provide a definition
f an operator ⊛ to ‘‘glue’’ two graphs together. This definition is motivated in part by Theorem 3.9.
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Definition 4.1. Let G and H be two vertex-disjoint graphs with squares C ⊆ G and C ′ ⊆ H . Let ϕ be any isomorphism
etween the squares C and C ′. Then, the composition G C⊛ C ′H is obtained from G and H by identifying the vertices and
dges of C with their ϕ-images in C ′ ⊆ H .

We will omit the explicit reference to C and C ′ in C⊛C ′ whenever it is not needed. Note that ⊛ is not defined for graphs
hat do not contain squares. Since the choice of ϕ will not play a role here, we suppress it in our notation. Fig. 4 gives
an illustrative example of Definition 4.1. There are eight different ways to define an isomorphism on squares. Therefore,
there are up to eight non-isomorphic graphs G C⊛ C ′H obtained by gluing together G and H at the same squares with the
elp of different isomorphisms ϕ.
It is easy to see that the square C4 serves as a unique ‘‘unit’’ element, that is, G ⊛ C4 ≃ C4 ⊛ G ≃ G. Moreover,

the operator ⊛ is commutative, i.e. G C ⊛ C ′H ≃ H C ′ ⊛ CG for all graphs G and H . However, it is not associative, since
(G1 C ⊛ C ′G2) C ′′⊛ C ′′′G3 can be well-defined, but G1 C ⊛ C ′ (G2 C ′′⊛ C ′′′G3) is not; a case that in particular happens when the
quare C ′′ is part of G1 but not of G2; see Fig. 5 for an example.
We will use the convention that ⊛-composition is read from left to right, i.e.,

G1 ⊛ G2 ⊛ G3 ⊛ · · · ⊛ Gℓ := (. . . ((G1 ⊛ G2) ⊛ G3) ⊛ · · · ⊛ Gℓ−1) ⊛ Gℓ (1)

Setting G(i) := G1 ⊛ G2 ⊛ G3 ⊛ · · · ⊛ Gi, we therefore have G(i+ 1) = G(i) C⊛ C ′Gi+1, where C is a square in G(i) and C ′ is a
quare in Gi+1. Note that, by Definition 4.1, G = Gin

C,π C⊛ CGout
C,π .

In the following, we will consider the class of cubesquare-graphs as defined below. As we shall see later, a planar
edian graph is either a tree or a cubesquare-graph.

efinition 4.2. A cubesquare-graph (or QS-graph for short) is defined as follows:

(Q1) Every cube Q 3 and every cyclic square-graph is a QS-graph, called basic QS-graph.
(Q2) The ordered composition G(ℓ) of basic QS-graphs Gi, 1 ≤ i ≤ ℓ is a QS-graph, where G(ℓ) is defined recursively as

G(1) = G1 and G(i) = G(i− 1) Ci−1⊛ CiGi, 2 ≤ i ≤ ℓ using square-boundaries Ci−1 in G(i− 1) and Ci in Gi.

In other words, every QS-graph can be obtained from a cube or a square-graph by iteratively replacing boundaries
w.r.t. some embedding) that are 4-cycles by cubes or square-graphs. We emphasize that, in contrast to Definition 4.1,
he squares chosen in the construction of QS-graphs are not arbitrary but must be square-boundaries for some planar
mbedding in each iteration. We shall see below that this construction is always possible since each partial composition
(i) and each basic QS-graph contains a square-boundary. An illustrative example of QS-graphs is given in Fig. 5.
In the following, we will make frequent use of the planar embeddings ρ and ρC of cubes (cf. Observation 2.18) and

he embeddings σ and σC of square-graphs (cf. Definition 2.15 and Observation 2.18).

emma 4.3. QS-graphs are well-defined and planar graphs that satisfy 1-FS.

roof. Recall that for G = G1 C ⊛ CG2, the square C must be a square-boundary in G1 and G2 but not necessarily in G,
ee Fig. 4. In order to show that QS-graphs are well-defined, we must, in particular, show that in each step of creating a
ew QS-graph at least one square-boundary remains which allows us to add another QS-graph (cf. (Q2)). Hence, we must
how that every QS-graph satisfies 1-FS. This, in particular, implies that QS-graphs must be planar.
Let us first consider basic QS-graphs. By Lemma 2.17 and Observation 2.7, every square-graph and cube satisfies 1-FS.

n particular, if a basic QS-graph contains at least two squares, then Observation 2.7 and Lemma 2.17 imply that it must
atisfy 2-FS. Thus, every basic QS-graph satisfies 1-FS and every basic QS-graph containing at least two squares satisfies
-FS.
We proceed now by induction on the number ℓ of factors to show that the ordered composition ⊛ of ℓ basic QS-graphs

s well-defined and satisfies 1-FS which, in particular, implies that we obtain a planar QS-graph. The base case are the
asic QS-graphs. Assume that G1 ⊛ G2 ⊛ · · · ⊛ Gi is well-defined and results in a planar graph that satisfies 1-FS for all
≤ i < k. Consider now a product of k basic QS-graphs G1 ⊛G2 ⊛ · · ·⊛Gk. Set H := G(k− 1) and H ′ := Gk. We show first,

laim 1. H C⊛ C ′H ′ is well-defined and a planar graph.

roof of Claim 1. By assumption, H and H ′ satisfy 1-FS. Let C be a square-boundary of H and C ′ a square-boundary of
′ w.r.t. some planar embedding of H , resp., H ′. Now, we can use the embeddings πC ′ ∈ {σC ′ , ρC ′} for H ′ depending on
hether H ′ is a cube or a cyclic square-graph such that the square C ′ is the outer boundary of H ′. Since C is a square-
oundary in H , there is a planar embedding πC of H such that C is an inner boundary w.r.t. πC (cf. Observation 2.4). The
uter boundary C ′ of H ′ intersects H ⊆ H C⊛ C ′H ′ only in the 4 vertices of the chosen square C by definition of H C⊛ C ′H ′.
ow, consider the embedding κ(πC , πC ′ ) of H C⊛ C ′H ′. It consists of the drawing of H C⊛ C ′H ′ based on πC together with
he ‘‘scaled’’ planar drawing πC ′ such that H ′ intersects H only in the vertices contained in C and the remaining vertices
f H ′ are placed inside of the inner face of H bounded by C . Thus it yields a planar embedding of H C⊛ C ′H ′. In summary,
C⊛ C ′H ′ is well-defined and results in a planar graph. ⋄

laim 2. H ⊛ ′H ′ satisfies 1-FS.
C C
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Proof of Claim 2. We will make frequent use of the planar embeddings πC of H , πC ′ of H ′ and κ(πC , πC ′ ) of H C⊛ C ′H ′ as
pecified in the proof of Claim 1.
First, assume that H ′ contains only one square. Since H ′ is a basic QS-graph, it must therefore be square-graph and

hus, H ′ is isomorphic to a C4 to which possibly a couple of trees are attached. Let C̃ be the square in H C⊛ C ′H ′ that refers
o the two identified cycles C and C ′ via the chosen subgraph isomorphism. By construction of κ(πC , πC ′ ), C̃ together with
hese possible attached tree forms an inner boundary in H C⊛ C ′H ′ w.r.t. κ(πC , πC ′ ). Hence, every tree that is attached to
vertex v in C̃ can safely be re-located in some face of H C ⊛ C ′H ′ that is incident to v w.r.t. κ(πC , πC ′ ). In this way, we
btain a new planar embedding of H C ⊛ C ′H ′ such that C̃ is the boundary of an inner face and thus, H C ⊛ C ′H ′ satisfies
-FS.
Now, assume that H ′ contains more than one square. As argued above, H ′ together with its planar embedding

C ′ ∈ {σC ′ , ρC ′} satisfies 2-FS w.r.t. πC ′ and thus in H ′ there are two faces bounded by a square w.r.t. πC ′ . Since C ′ is an
uter boundary of H ′ w.r.t. πC ′ the other face that is bounded by a square C ′′ must be an inner face. It is straightforward
o see that C ′′ still bounds an inner face in H C⊛ C ′H ′ w.r.t. κ(πC , πC ′ ). Hence, H C⊛ C ′H ′ satisfies 1-FS. ⋄

In particular, H C⊛ C ′H ′ is planar and contains the required square-boundary. Thus, G1 ⊛ G2 ⊛ · · ·⊛ Gk is a well-defined
lanar graph for all k. ■

emark 4.4. For a QS-graph G(i) C⊛ C ′Gi+1, we will use the notation πC as well as πC ′ ∈ {ρC ′ , σC ′} and κ(πC , πC ′ ) for the
lanar embedding of G(i),Gi+1 and G(i) C⊛ C ′Gi+1, respectively, as specified in the proof of Lemma 4.3.

emma 4.5. Every QS-graph is a planar median graph.

roof. We show now, by induction on the number of factors, that every QS-graph is a median graph. As base case, we
ave a basic QS-graph, i.e., either a cube or a cyclic square-graph. These are planar and Lemma 2.16 implies that they are
edian graphs. Now, let G = G1 ⊛ G2 ⊛ · · · ⊛ Gk = G(k− 1) C⊛ C ′Gk be the ordered composition of k basic QS-graphs and
ssume that the ordered composition of i < k basic QS-graphs is a median graph. Since G = G(k − 1) C ⊛ C ′Gk is planar
y Lemma 4.3, we can use the planar embedding π := κ(πC , πC ′ ) of G (cf. Remark 4.4). It is straightforward to verify that
(k− 1) = Gout

C,π and Gk = Gin
C,π . Thus, Theorem 3.9 implies that G is a median graph. ■

We now want to consider the converse of Lemma 4.5. We begin with some observations.

emma 4.6. Let G be a book or a suspended cogwheel. Then, for any planar embedding π of G, there is a square C∗ ⊆ G such
hat Gin

C∗,π ̸= G and Gout
C∗,π ̸= G.

roof. First, let G = K2□K1,3 be a book. Assume that V (K2) = {0, 1} and V (K1,3) = {0, 1, 2, 3} where 0 is the unique
ertex adjacent to the remaining ones. By definition of the Cartesian product, V (G) = {00, 10, 01, 11, 02, 12, 03, 13} and
e have exactly three squares C, C ′, C ′′ in G that consist of the vertices V (C) = {00, 10, 02, 12}, V (C ′) = {00, 10, 01, 11},
nd V (C ′′) = {00, 10, 03, 13}. Below, the terms ‘‘inside’’ and ‘‘outside’’ of some subgraph G′ ⊆ G refer to the (G, π )-induced
mbedding of G′. Now, consider the square C and an arbitrary embedding π of G. We have to examine the cases that k1
ertices are inside C and k2 are outside of C where k1 + k2 = 4, the number of remaining vertices in V (G) \ V (C). Hence,
1 ∈ {0, 1, 2, 3, 4}.
Let us start with k1 = 2 and thus, k2 = 2. Assume w.l.o.g. that 01 is inside of C . In this case, Lemma 2.8 implies that

he second vertex inside of C must be vertex 11. Hence, the two vertices outside of C are 03 and 13. Now one readily
bserves that Gin

C,π ̸= G and Gout
C,π ̸= G. The latter reasoning implies that the case k1 = 1 cannot occur, since if one

ertex is inside C there must also be a second vertex inside C . By symmetry, this also excludes the case k2 = 1 and thus,
1 = 3.
Thus, we are left with the case k1 ∈ {0, 4}. Let k1 = 4. Consider the square C ′. By similar arguments as above, there

re either 0, 2 or 4 vertices inside of C ′. However, the latter case cannot occur, since all k1 = 4 remaining vertices are
nside C and thus, there must be vertices outside C ′. If there are 2 vertices inside of C ′, then the vertices inside C ′ must
e 03 and 13 since C ′ is almost-inside of C . Now, one easily verifies that Gin

C ′,π ̸= G and Gout
C ′,π ̸= G. If there are no

ertices inside of C ′, then all vertices 02, 12, 03, 13 must be outside of C ′. Since 03,13 are inside of C , we can conclude
hat Gin

C ′′,π ̸= G and Gout
C ′′,π ̸= G. By symmetry, the case k2 = 4 and thus, k1 = 0 is shown.

In summary, for all possible cases we found a square C∗ ⊆ G in the book G such that Gin
C∗,π ̸= G and Gout

C∗,π ̸= G.
Now, let G ≃ M∗n be a suspended cogwheel. Let x be the vertex that is adjacent to the central vertex c of the underlying

ogwheel Mn. Moreover, denote with c1, . . . , cn the vertices of the cycle Cn ⊆ M∗n that are distinct from x and adjacent to
. We assume that the edges of this cycle Cn are {cn, c1} and {ci, ci+1}, 1 ≤ i ≤ n− 1. In addition, let ck with k being even
e the vertices that are adjacent to c. In what follows, all indices j, i, i+ 1, i+ 2, . . . are taken w.r.t. (mod n).
Let π be an arbitrary embedding of G. In what follows, the terms ‘‘inside’’ and ‘‘outside’’ of some subgraph G′ ⊆ G

efer to the (G, π )-induced embedding of G′. It is easy to see that the vertex x must be located in one of the faces that
s bounded by a subgraph G′ ⊆ G such that G′ contains two vertices ci and ci+2 with i being even. Thus, assume that x
s in a face bounded by G′ ⊆ G such that ci, ci+2 ∈ V (G′), i even. We continue by showing that, in this case, the square
+ x induced by the vertices x, c, c , c , c must be a boundary in G. Assume, for contradiction, that this is not the
i i+1 i+2
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case. Hence, one cj with j /∈ {i, i+1, i+2} must be contained inside of C . But then also cj+1 must be contained inside of C
as otherwise the edge {cj, cj+1} would cross one of the edges or vertices of C w.r.t. the planar drawing π of G. Repeating
the latter argument shows that all vertices cj with j /∈ {i, i+ 1, i+ 2} must be located inside of C . In this case, however, x
is located in a face that is bounded by some G′′ ⊆ G that contains the vertices cj, cj+2 ∈ V (G′) where j is even and where
at least one of cj and cj+2 is distinct from ci or ci+1; a contradiction. Hence, C + x must be a boundary in G.

Finally, observe that either Gin
C,π = C + x or Gout

C,π = C + x and thus, either Gout
C,π = G− x or Gin

C,π = G− x. Hence,
we found the square C∗ = C such that Gin

C∗,π ̸= G and Gout
C∗,π ̸= G. ■

Lemma 4.7. If G is a π-embedded cyclic planar median graph that is not a basic QS-graph, then there is a square C∗ ⊆ G
such that Gin

C∗,π ̸= G and Gout
C∗,π ̸= G.

Proof. Let G be a π-embedded planar median graph that is not a basic QS-graph. Proposition 2.19 implies that G must
contain a cube, a book or a suspended cogwheel. Let H ⊆ G be such a forbidden subgraph.

First, assume that H is a cube. Note, every face of H must be bounded by squares (cf. Observation 2.7). Since H ⊆ G
and G is not a cube, there must be a vertex v ∈ V (G) \ V (H) that lies in a face of H that is bounded by a square
C∗ ⊆ H in H (w.r.t. the (G, π )-induced embedding of H). Note, C∗ is not necessarily a boundary in G but, of course, a
subgraph of G. Let v′ ∈ V (H) \ (V (C∗) ∪ {v}). If v lies in the outer face of H w.r.t. the (G, π )-induced embedding, then
Gin

C∗,π ⊆ G − v ⊊ G and Gout
C∗,π ⊆ G − v′ ⊊ G. Otherwise, if v lies in an inner face of H w.r.t. the (G, π )-induced

embedding, then Gout
C∗,π ⊆ G− v ⊊ G and Gin

C∗,π ⊆ G− v′ ⊊ G. In either case, there is a square C∗ such that Gin
C∗,π ̸= G

and Gout
C∗,π ̸= G.

If H is a book or a suspended cogwheel, then we can apply Lemma 4.6 to conclude that there is a square C∗ ⊆ H
such that Gin

C∗,π ̸= H and Gout
C∗,π ̸= H for every planar embedding of H and thus, in particular, for the (G, π )-induced

embedding of H . The latter immediately implies that Gin
C∗,π ̸= G and Gout

C∗,π ̸= G. ■

Lemma 4.8. Every cyclic planar median graph is a QS-graph.

Proof. Since squares that are possibly amalgamated with trees are square-graphs and thus, median graphs, for every
integer n ≥ 4 there is a cyclic planar median graph on n ≥ 4 vertices. Thus, we can proceed by induction on |V (G)|. The
square is the only cyclic median graph with n = 4 vertices. By definition, it is also a (basic) QS-graph, and thus serves as
base case.

For the induction step consider a π-embedded planar median graph G with n = |V (G)| > 4 vertices and assume that
every planar median graph G′ with |V (G′)| < |V (G)| vertices is a QS-graph. If G is a cube or a square-graph then G is a
QS-graph and we are done. Hence, assume that G is neither a cube nor a square-graph and let π be a planar embedding of
G. By Lemma 4.7, there is a square C∗ ⊆ G such that Gin

C∗,π ̸= G and Gout
C∗,π ̸= G. As shown in the proof of Lemma 4.7, we

can find such a square C∗ by taking a forbidden subgraph H , i.e., a book, a cube or suspended cogwheel, and a particular
square C∗ ⊆ H . We may assume w.l.o.g. that Gin

C∗,π is either a cube or does not contain a book, a cube or a suspended
cogwheel as a subgraph. Otherwise, we could iteratively replace H by such a forbidden subgraph H̃ ⊆ Gin

C∗,π , and replace
C∗ by a square C̃∗ of H̃ with the property that Gin

C̃∗,π ̸= G and Gout
C̃∗,π ̸= G, until we eventually obtain a forbidden

subgraph H and a square C∗ such that Gin
C∗,π is either a cube or, otherwise, does not any longer contain a book, a cube

or a suspended cogwheel.
By Theorem 3.9, Gin

C∗,π and Gout
C∗,π are median graphs. If Gin

C∗,π is not a cube, then Proposition 2.19 and the fact
that Gin

C∗,π does not contain a cube, book or a suspended cogwheel, implies that Gin
C∗,π is a square-graph. In either

case, Gin
C∗,π is a basic QS-graph. Moreover, since Gout

C∗,π is a median graph with |V (Gout
C∗,π )| < |V (G)| = n, induction

hypothesis implies that Gout
C∗,π is a QS-graph. Hence, Gout

C∗,π has an ordered composition Gout
C∗,π = (. . . (G1⊛G2) . . . )⊛Gk

of basic QS-graphs. Therefore, the ordered composition ((. . . (G1 ⊛ G2) . . . )⊛ Gk) C∗⊛ C∗Gin
C∗,π is well-defined and yields a

QS-graph that is identical to G. ■

As an immediate consequence of Lemmas 4.5 and 4.8 we obtain

Theorem 4.9. A graph G is a planar median graph if and only if G is a QS-graph or a tree.

Theorem 4.9, together with Theorem 3.9, furthermore implies the following:

Theorem 4.10. Let G be a π-embedded planar graph and C ⊆ G be a square. Then, G is a QS-graph if and only if Gin
C,π and

Gout
C,π are QS-graphs.

Corollary 4.11. A planar median graph with n vertices contains O(n) squares.

Proof. Let G be a planar median graph. Hence, it is a QS-graph with composition G = G1 ⊛ · · · ⊛ Gk of basic QS-graphs.
Let ni be the number of vertices in Gi, 1 ≤ i ≤ k. If a factor Gi = (Vi, Ei) is a square-graph, then it contains O(ni) squares
(cf. [31, Cor. 5]) and, if it is a cube it contains 6 < ni = 8 squares. Hence, each factor Gi adds O(ni) squares to G and
therefore, G has O(

∑
n ) = O(n) squares. ■
i i
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Fig. 1. Two distinct planar embeddings of a graph G (left and middle). Left: G is the outer boundary and every inner face is bounded by a square.
ince G has no inner vertices, the conditions of Definition 2.15 are satisfied and G is a square-graph and, in particular, a planar median graph.
iddle: G′ = G − e is an inner boundary which bounds the gray shaded face F . The graph induced by {a, b, c, d, e} is the outer boundary and the
-cycle induced by {a′, b′, c ′, d′} an inner boundary. Right: Consider the embedding π of G as in the middle figure. Then, shown is the (G, π )-induced
mbedding of the cycle C induced by {a, b, c, d} and additionally, all other vertices of G. W.r.t. the (G, π )-induced embedding of C , the vertices

a, b, c, d are almost-inside and almost-outside C , the vertex e is outside (and, in particular, almost-outside) C and the vertices a′, b′, c ′, d′ are inside
(and in particular, almost-inside) of C . Placing vertex e inside C yields an embedding πC such that the outer boundary of G is C while placing the
subgraph with vertices a′, b′, c ′ and d′ outside C yields an embedding πC such that C is an inner boundary in G.

Fig. 2. Left: A square-graph with three articulation points. Middle: a 2-connected square-graph. Right: a so-called ‘‘polyomino’’.
Source: Three examples of square-graphs adapted from [5, Fig. 1.1].

Propositions 2.14 and 2.19 and Lemma 4.6 can be used to obtain the following interesting result.

Proposition 4.12. Let G be a planar median graph. Then, the convex hull of each boundary is a square-graph.

Proof. Let G be a planar median graph together with some planar embedding π . Moreover, let G′ be some arbitrary
oundary in G. Then, Proposition 2.14 (4a) implies that the convex hull H(G′) of G′ in G is a median graph.
We continue with showing that the convex hull H(G′) is a square-graph. To this end, assume for contradiction that

there is a subgraph H ⊆ H(G′) that is isomorphic to a cube, a book, or a suspended cogwheel.
If H is isomorphic to a book or a suspended cogwheel, then Lemma 4.6 implies that there is a square C∗ ⊆ H ⊆ H(G′)

such that there is a vertex v ∈ V (H) inside and a vertex w ∈ V (H) outside of C∗ (w.r.t. its (G, π )-induced embedding).
Since G′ is a boundary in G, it has to be almost-inside or almost-outside of C∗. The latter two statements together with
Lemma 2.9 imply that v ∈ V (H) ⊆ V (H(G′)) or w ∈ V (H) ⊆ V (H(G′)) cannot be a part of H(G′); a contradiction. Hence,
H cannot be a book or a suspended cogwheel, and thus H must be a cube. However, all vertices v ∈ V (G′) have to be in
some face of that cube Q 3 (w.r.t. its (G, π )-induced embedding), which has to be bounded, in particular, by a square C∗
(cf. Observation 2.7). By Lemma 2.9, none of the vertices v′ ∈ V (Q 3) \ V (C∗) ̸= ∅ can be part of H(G′); a contradiction.
Thus, H cannot be a subgraph of H(G′).

This together with H(G′) being a median graph and Proposition 2.19 implies that H(G′) is a square-graph. ■

As an illustration of Proposition 4.12, we refer to Fig. 5. Consider the graphs G(1) and G(7) with its outer boundary;
the 8-cycle C . Here, H(C) ≃ G(1) is a square-graph. Note, however, not all boundaries are necessarily cycles (cf. Fig. 1).

To recall, a graph G is an amalgam of two induced subgraphs G1 and G2 if their union is G and their intersection
is non-empty. Every finite median graph is obtained from a collection of hypercubes by successive amalgamations of
49
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Fig. 3. (a) Cube Q 3; (b) the book K 2□K 1,3; (c) and (d) the first two suspended cogwheels M∗8 and M∗10 .
Source: Forbidden induced subgraphs of square-graphs adapted from [5, Fig. 5.1].

Fig. 4. There are three non-isomorphic graphs G C ⊛ CG obtained by gluing together G with a copy of itself at the square C . Shown are the four
otations of C relative to its copy. By symmetry, the four rotations of the mirror image, i.e., mapping the vertex order (1, 3, 4, 2) to the order
1, 2, 4, 3) in the other copy, yields the same four configurations. Furthermore, the 2nd and the 4th case result in isomorphic graphs. Note that all
raphs G C ⊛ CG are planar. A generic planar embedding of the second case is provided by the drawing of the graph G(2) in Fig. 5. However, only
or the 3rd case graph, the square C remains a square-boundary and, in particular, the resulting graph is a square-graph.

onvex subgraphs [30,41]. Every pseudo-median graph can be built up by successive amalgamations along so-called gated
ubgraphs of certain Cartesian products of wheels, snakes (i.e., path-like 2-trees), and complete graphs minus matchings
7]. We now explain how our results also fit into this framework. To this end, we define square-boundary amalgamations
s follows. A graph G is a square-boundary amalgam (w.r.t. C) of two induced subgraphs G1 and G2, if G is an amalgam of
1 and G2 and the intersection G1 ∩ G2 := C is a square-boundary of both G1 and G2.

bservation 4.13. G is a square-boundary amalgam of two induced subgraphs G1 and G2 w.r.t. C if and only of G = G1 C⊛CG2.

Theorem 4.9 and Observation 4.13 can be used to show the following

heorem 4.14. A graph is a planar median graph if and only if it can be obtained from cubes and square-graphs by a sequence
f square-boundary amalgamations.

roof. Let G be a planar median graph. By Theorem 4.9, G is a tree or a QS-graph. If G is a tree, then it is a square-graph.
therwise, G is cyclic and thus, by definition, there is an ordered composition G = G1 ⊛ G2 ⊛ · · · ⊛ Gk of basic QS-graphs,
hat is, cubes or cyclic square-graphs. In particular, the subgraphs Gi ⊆ G, 1 ≤ i ≤ k are induced. Hence, G is obtained
rom cubes and square-graphs by a sequence of square-boundary amalgamations. Conversely, if G is obtained from cubes
nd square-graphs by a sequence of square-boundary amalgamations, the graph G must be a tree or a QS-graph and thus,
y Theorem 4.9, a planar median graph. ■

. Fast decomposition of planar median graphs into an ordered sequence of basic QS-graphs

Lemma 4.7 immediately implies a recursive strategy to determine an ordered composition of QS-graphs of a given
lanar median graph. Importantly, it is not necessary to find forbidden subgraphs as in the proof of Lemma 4.8, which we
sed in this proof to properly apply the induction step. First, we test if G is a planar median graph and, in the affirmative
ase, compute a planar embedding π of G and continue. If G is square-graph or a cube, we are done. Otherwise, G is not
basic QS-graph and thus, by Lemma 4.7, there is a square C ⊆ G such that Gin

C,π ̸= G and Gout
C,π ̸= G. There are two

ases, either (i) both Gin
C,π and Gout

C,π are basic QS-graphs or (ii) at least one of them is not. In Case (i), we are done,
ince we found a decomposition of G = Gin

C,π C⊛ CGout
C,π into basic QS-graphs. In Case (ii), we recurse on the non-basic

S graph Gin
C,π or Gout

C,π , resp., and repeat the latter until all such squares have been examined. In this recursion, we
ust, however, determine for all remaining squares C after we found a basic QS-graph H ′ if H in

C,π ̸= H and Hout
C,π ̸= H

here H is obtained from G by removing H ′ except for the square C , and, in particular, keep track of the order of the
hosen factors to obtain an ordered composition of the input graph.
To address these issues, we will design a non-recursive algorithm instead. To this end, we will use a partial order on

he set of all squares of G that is defined in terms of ‘‘almost-inside’’ w.r.t. (G, π ) induced embedding
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Fig. 5. In the upper part, four graphs Ga,Gb,Gc and Gd are shown. Here, Ga ≃ Gb is a square-graph and Gd is a cube. Moreover, Gc is a square-graph
since there is an alternative planar embedding σ such that all vertices become outer vertices, and thus, that each inner face is bounded by a square. By
Definition 4.2, Ga to Gd are (basic) QS-graphs. Moreover, G(1) = Ga , and thus, G(1) is a QS-graph. We have G(7) = (((((Ga⊛Gb)⊛Gd)⊛Gc )⊛Gd)⊛Gb)⊛Gc .
Hence, every G(i) with i ∈ {2, . . . , 7} is precisely the graph G(i− 1) ⊛ Gx , where Gx is the appropriate QS-graph with x ∈ {b, c, d} together with its
shown planar embedding. Therefore, every G(i) is a QS-graph. This example also shows that ⊛ is not associative, in general. To see this, consider
the QS-graph G(3) = (Ga Ca⊛ CbGb) C ′a⊛ CdGd where Ca and C ′a are the two squares in Ga that are ‘‘identified’’ with the squares Cb and Cd that form the
outer boundary in Gb and Gd , respectively. Hence, we cannot write G(3) as Ga Ca ⊛ Cb (Gb C ′a ⊛ CdGd) since the square C ′a does not exist in Gb . In some
cases, however, associativity is given. By way of example, consider G(5) = (G(3) C ⊛ CcGc ) Cc ⊛ CdGd , where C is the square in G(3) that bounds F , Cc
the square that bounds F ′ and Cd the outer-boundary of Gd . It is easy to see that G(5) ≃ G(3) C⊛ Cc (Gc Cc ⊛ CdGd), since these constructions ‘‘overlap’’
on the cycle Cc .

Definition 5.1. A square C ′ ⊆ G is almost-inside a square C ⊆ G, in symbols C ⪯G,π C ′, if all vertices of C ′ are almost-inside
C w.r.t. the (G, π )-induced embedding of C . In particular, we write C ≺G,π C ′ if C ⪯G,π C ′ and C ̸= C ′.

In the following let S(G) denote the set of all squares contained in G.

Lemma 5.2. For every π-embedded planar graph G, (S(G),⪯G,π ) is a partially ordered set.

Proof. In the following, the terms ‘‘(almost-)inside’’ and ‘‘outside’’ refer to the (G, π )-induced embedding. By definition,
⪯G,π is reflexive. Moreover, if C ⪯G,π C ′ ⪯G,π C ′′, then all vertices of C are inside or part of C ′. The same applies for C ′ and
C ′′. Now, it is easy to see that ⪯G,π is transitive (i.e., C ⪯G,π C ′′). We continue with showing that ⪯G,π is anti-symmetric.
To this end, let C, C ′ ∈ S(G) such that C ⪯G,π C ′ and C ′ ⪯G,π C . Assume, for contradiction, that C ̸= C ′. Since C ⪯G,π C ′

and C ̸= C ′, at least one vertex of C must be located inside of C ′ while all other vertices of C are almost-inside of C ′. But
then, at least one vertex of C ′ must be outside of C and thus, C ′ ̸⪯G,π C; a contradiction. Therefore, ⪯G,π is anti-symmetric.
In summary, (S(G),⪯G,π ) is a partially ordered set. ■

Next, we consider a condition for the nesting of squares in planar median graphs.

Lemma 5.3. Let G be a π-embedded planar median graph and let C, C ′ ∈ S(G). If there is a vertex v ∈ V (C) such that v is
inside of C ′ w.r.t. (G, π )-induced embedding, then C ≺ C ′, i.e., C is almost-inside C ′ w.r.t. (G, π )-induced embedding.
G,π
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Proof. In the following, the terms ‘‘(almost-)inside’’ and ‘‘outside’’ refer to the (G, π )-induced embedding. Let C, C ′ ∈ S(G)
nd suppose that there is a vertex v ∈ V (C) such that v is inside of C ′. Assume, for contradiction, that C is not almost-inside
f C ′. By definition, there must be a vertex w ∈ V (C) that is outside of C ′. Hence, there is a square C that is not entirely
ontained in Gin

C ′,π or Gout
C ′,π ; a contradiction to Corollary 3.7. ■

orollary 5.4. Let G be a π-embedded planar median graph. Then, for all C ∈ S(G), there is a unique ⪯G,π -maximal element
′
∈ S(G).

Now, we define the rooted graph F := F (G, π ) for any given π-embedded planar median graph G = (V , E). Let
:= V \

(⋃
C∈S(G) V (C)

)
be the set of all vertices of G that are not contained in a square. The vertex set of F is

(F ) = W ∪ S(G) and we add edges in the following cases:

• {C, C ′} ∈ E(F ) with C, C ′ ∈ S(G) if and only if C ≺G,π C ′ and there is no C ′′ ∈ S(G) such that C ≺G,π C ′′ ≺G,π C ′, and
• {C, x} ∈ E(F ) with C ∈ S(G) and x ∈ W if and only if x is inside C and there is no C ′ ∈ S(G) such that C ′ ≺G,π C and

x is inside C ′.

To root this graph F , observe first that if the outer boundary of G is a square C , then there must be a path from C to
ll other vertices in F and thus C is the unique ⪯G,π -maximal element for all squares and vertices in V (F ). In this case,
must be connected and we choose C as its root. If F is connected but S(G) = ∅, then F consists of a single vertex
∈ W which is chosen as the root. If F is disconnected, then every connected component T of F is either a single vertex
∈ W in which case x is chosen as the root of T , or T contains vertices in S(G) in which case the unique ⪯G,π -maximal
lement of the squares that are contained in the vertex set of T is chosen as the root of T . This unique ⪯G,π -maximal
lement exists due to Corollary 5.4.

emma 5.5. Let G be a π-embedded planar median graph. Then, F (G, π ) is a rooted forest. In particular, F (G, π ) is a tree if
he outer boundary of G w.r.t. π is a square.

roof. By construction and the arguments preceding this lemma, F := F (G, π ) is a rooted graph, i.e., all its connected
omponents T are rooted at the unique ⪯G,π -maximal element of the squares in T or, in case V (T ) = {x} ⊆ W , T is rooted
t x. For simplicity, we extend in this proof the partial order ⪯G,π S(G) to an order ⪯∗G,π on S(G)∪W by putting C ⪯∗G,π C ′
henever C ⪯G,π C ′ for all C, C ∈ S(G) and x ⪯∗G,π C for all edges {C, x} ∈ E(F ) with C ∈ S(G) and x ∈ W . It is easy to
erify that (S(G) ∪W ,⪯∗G,π ) remains a partially ordered set.
Now, we assume for contradiction that F is not a forest. Hence, it must contain a cycle. Let T be a connected component

hat contains a cycle CT . Since ⪯∗G,π is a partial order on the set S(G)∪W of all squares of G and all vertices not contained
n squares, the cycle CT must contain a vertex v ∈ V (T ), such that v ⪯∗G,π w for all w ∈ CT . Note, v corresponds either
o a square in G or a vertex that is not contained in a square. Now, consider the two vertices w and w′ that are adjacent
o v in CT . Since v ⪯∗G,π w, w′, the vertices w and w′ coincide, by definition of ⪯G,π , with two squares C and C ′ of G,
espectively. Furthermore, we have C ̸= C ′.

However, C ≺∗G,π C ′ is not possible since, in this case, the edge {C ′, v} would not exist in F , by definition. Similarly,
′
≺
∗

G,π C is not possible. However, all vertices of one square, say C , must be almost-inside C ′, as otherwise, C is not
ntirely contained in Gin

C ′,π and Gout
C ′,π and we would obtain a contradiction to Corollary 3.7. But then, C ≺∗G,π C ′; a

ontradiction. Hence, F cannot contain cycles and is therefore, a forest.
By the arguments preceding this lemma, if the outer boundary of G is a square C , then there must be a path from C

o all other vertices in F and thus, F is a tree. By construction, this tree is rooted at C . □

Since F = F (G,⪯G,π ) is a forest and based on the definition of edges {C, x} ∈ E(T ) with C ∈ S(G) and x ∈ W :=
\

(⋃
C∈S(G) V (C)

)
, every x ∈ W in F must be a leaf (i.e., it has degree one in F ) or a singleton (i.e., it is an isolated

ertex in F ).
Note that the structure of F does not completely determine the structure of G, since it only accounts for the ‘‘hierarchy’’

f the nested squares. As an example, consider F (G,⪯G,π ) = F (G′,⪯G′,π ′ ) = ({C1, C2},∅) for the graph G, resp., G′, where
ll vertices are located at the outer boundary and where G, resp., G′, consists precisely of two squares identified on a
ingle vertex, resp., identified on a single edge. The forest F , however, does determine whether or not Gin

C,π ̸= G for the
quares C ⊆ G, since Gin

C,π ̸= G if and only if there are vertices that are contained outside of C and thus, there must be
ertices or squares on the same level of C in F or squares above the level of C in the connected component T of in F

hat contains C . In a similar way, one can determine whether or not Gout
C,π ̸= G.

The latter observation can also be applied to subgraphs of G in order to find basic QS-graphs as follows. Let us consider
connected induced subgraph H ⊆ G where H contains only squares and vertices of G that are located in level i and i+1
ut none of the squares and vertices of other levels j with j < i and j > i + 1. Then, for every square C in H from level
the equality H in

C,π = H holds and for every square C in H from level i + 1 the equality Hout
C,π = H holds. Hence, for

ll squares C ⊆ H either H in
C,π = H or Hout

C,π = H . By Lemma 4.7, H is a basic QS-graph, provided that H is a median
raph (a property that is always satisfied as shown in the proof of Lemma 5.6). Hence, in order to find a composition of
planar median graph into basis QS-graphs, we traverse F in top-down fashion from level to level and, in principle, use
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Fig. 6. A π-embedded planar median graph G and its forest F := F(G, π ). For better readability, set Gout
i (C) := Hout

C,π and Gin
i (C) := H in

C,π for
H = Gi . The vertices of F correspond to the squares of G and to the vertices of G that are not part of a square. The vertices of F are horizontally
aligned based on the level in which they occur (highlighted by gray lines). According to Algorithm 1, we compute first the subgraph of G that is
induced by the vertices (of squares) on Level 0 and we obtain the graph G1 . Since for all squares C of G1 the equality Gout

1 (C) = G1 holds. Lemma 4.7
implies that G1 must be a basic QS-graph. We then proceed in the next step to consider the subgraph H of G that is induced by the vertices (of squares)
on Level 0 and 1 that are not isolated in F (cf. Line 10). Hence, H is induced by the vertices V (G)\(V (C7)∪{b, c, d}). The connected components of H
yield the factors G2,G3 and G4 . Here, G2 corresponds to the subtree of F consisting of the edge {C1, C2}. According to Algorithm 1, C1 is the cycle in
level 0 which is used to identify G1 and G2 , and we obtain G1 C1⊛ C1G2 . For G2 we have Gin

2 (C1) = G2 as well as Gout
2 (C2) = G2 and thus, by Lemma 4.7,

G2 is a basic QS-graph. Proceeding in this manner, we obtain the final decomposition G = ((((G1 C1⊛ C1G2) C5⊛ C5G3) C8⊛ C8G4) C2⊛ C2G5) C9⊛ C9G6 of G
into basic QS-graphs.

Algorithm 1 Ordered Composition of Planar Median Graphs into basic QS-graphs.

Input: Graph G = (V , E)
Output: Ordered composition G = (. . . (G1 C∗2

⊛ C∗2
G2) . . . ) C∗k ⊛ C∗k

Gk of basis QS-graphs, if G is a planar median graph and
otherwise, return ‘‘false’’

1: if G is not planar or a median graph then return ‘‘false’’
2: else if G is a square or a tree then return G
3: else Compute planar embedding π of G
4: Compute forest F := F (G, π )
5: j← 1
6: if F is disconnected then
7: V ′ ← subset of vertices of G corresponding to squares and vertices in F on level 0
8: Gj ← G[V ′] and j← j+ 1
9: for i = 1 to last_level of F do
0: V ′ ← subset of vertices of G corresponding to non-isolated squares and vertices in F on level i− 1 and i
1: for all connected components H in G[V ′] do
2: Gj ← H
3: Cj ← square from level i− 1
4: j← j+ 1
5: return G = (. . . (G1 C2⊛ C2G2) . . . ) Cj−1⊛ Cj−1Gj−1

the connected components of the subgraphs of G that are determined by the vertices x and squares C on level i and i+ 1
s basic QS-graphs, see Fig. 6 for an illustrative example. The pseudocode of this approach is summarized in Algorithm 1.

emma 5.6. Algorithm 1 determines whether a graph G is a planar median graph and, in the affirmative case, it returns an
rdered decomposition of G into basic QS-graphs. Unless G is a square, none of the factors is the unit element C4.

roof. Let G be an arbitrary graph. Line 1 ensures that G is a planar median graph and we compute in Line 3 a respective
lanar embedding of G. In particular, Line 2 ensures that if G is a tree or a square, then G is returned and we obtain
he trivial composition G = G. Else, G is a cyclic planar median graph having at least five vertices. As argued above, the
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forest F computed in Line 4 is well-defined. For better readability, we use in the following the notation Gin(∗) and Gout(∗)
instead of Gin

∗,π and Gout
∗,π , respectively.

Assume that F is disconnected (Line 6), then the outer boundary of G cannot be a square. In particular, F must have
at least two connected components. By definition, all connected components in F are trees whose vertices correspond
to single vertices in G or to squares C ⊆ G. We collect in V ′ all such vertices of G and the vertices of these squares of
G that are in level 0 of F (Line 7) and put G1 = G[V ′]. Let C1, . . . , Ck be the respective squares that are in level 0 of F .
Note, since G is a cyclic median graph, at least one such square must exist. Recall that G is planar and {K3, K2,3}-free. By
onstruction, G1 = ∩

k
i=1G

out(Ci), and by Lemma 2.8, G1 is a convex subgraph of G. Proposition 2.14 (4b) implies that G1 is
a median graph. This, together with the fact that Gout

1 (C) = G1 for all squares C ⊆ G1 and Lemma 4.7, implies that G1 is a
basic QS-graphs.

Now, we proceed on all levels i = 1 to the last level of F (Line 9), which covers also the case that F is connected.
Let us assume we are in some step i. In this case, we consider the squares and vertices in level i − 1 and i. We collect
in V ′ all such vertices v of G and the vertices of the squares of G that are in level i and i − 1 of F (Line 10). Now, let H
be some connected component of G[V ′], and consider the respective connected of component T in F that corresponds
to H . The vertex in level i− 1 of T must correspond to a square C for which all vertices on level i in T are almost-inside
C . We set Gj := H . Since C is an outer boundary of Gj, we have Gin

j (C) = Gj. All other squares C ′ ̸= C of Gj must be inner
squares that satisfy Gout

j (C ′) = Gj by construction. In case that Gj is a planar median graph, we can apply the contraposition
of Lemma 4.7 to conclude that Gj must be a basic QS-graphs. Clearly, Gj is planar. Thus, it remains to show that Gj is a
median graph. Recall that G is planar and {K3, K2,3}-free. Let C ′1, . . . , C

′

k be the squares of Gj that correspond to the vertices
of T in level i. By construction, Gj = Gin(C)

⋂
(∩k

i=1G
out(C ′i )) and Lemma 2.8 implies that Gj is a convex subgraph of G. By

Proposition 2.14 (4b), Gj is a median graph. By the aforementioned arguments, Gj is a basic QS-graph.
Thus, all graphs Gj computed by Algorithm 1 are basic QS-graphs. We traverse the connected components of G[V ′]

in Step i according to the subtrees in F with vertices in level i − 1 and i. Since we consider in Line 10 only vertices
that correspond to squares and vertices that are not isolated in F on level i − 1 and i, for every connected component
Gj ⊆ G[V ′] that is examined in Step i in Lines 12–14, the graph Gj is based on the squares and vertices that correspond to
adjacent vertices in F that are in level i− 1 and i. Let x be a vertex in F on level i and assume that x corresponds to the
square Cx ⊆ G in Gj. Moreover, let V ′′ be the set of all such vertices computed in Step i+ 1 in Line 10. The square Cx will
be part of some connected component Gj′ of G[V ′′]. Note, Gj′ cannot be a square, since we consider on level i and i + 1
non-isolated vertices in F . Otherwise, Gj′ is not the unit element and all remaining squares and vertices distinct from Cx
are the adjacent vertices of x in F in level i + 1. We set Cj′ = Cx (Line 13). Since Cj′ = Cx is contained in the previous
factor Gj we can ensure that (. . . ) Cj′⊛ Cj′Gj′ is well-defined in each step. The latter arguments also imply that only factors
that are distinct from the unit-element are used. ■

Let G be an outer-planar median graph and π be a planar embedding such that all vertices of G are incident with the
outer face. Hence, G is a tree, a square, or F (G, π ) contains only vertices that are located at level 0 of F (G, π ). In this case,
either the graph G is returned in Line 2 or the if -condition in Line 6 is executed and, afterwards, G is immediately returned.
In both cases, Algorithm 1 returns the basic QS-graph G. This, together with the fact that cubes are not outer-planar,
implies

Corollary 5.7. Every outer-planar median graph is a square-graph.

Using Corollary 5.7, we can say even more. Given a 2-connected square-graph G, we let D(G) be the graph with vertex
set consisting of the squares in G and edge-set consisting of pairs of squares that share an edge. We call a square-graph
G arboreal if D(G) is a forest.

Theorem 5.8. A graph G is an outer-planar median graph if and only if it is an arboreal square-graph.

Proof. If G is an arboreal square-graph, then it is, in particular, a median graph. Hence, G is K2,3-free and thus, every two
squares share at most one edge. Assume, for contradiction, that G is not outer-planar. Consider the planar embedding σ of
G. Since G is not outer-planar, G must contain inner vertices of degree k ≥ 4 (w.r.t. σ ). Now, it is straight-forward to check
hat D(G) must contain a cycle of length k. Thus, D(G) is not a forest; a contradiction. Therefore, G must be outer-planar.

Conversely, if G is an outer-planar median, then Corollary 5.7 implies that G is a squaregraph. Since G consists of outer
vertices only and since every square is square-boundary (w.r.t. σ ) it is straight-forward to check that D(G) must be a forest
nd, therefore, G is arboreal. □

We proceed with investigating the running time of Algorithm 1.

emma 5.9. Algorithm 1 can be implemented to run in O(|V | log |V |) time for every input graph G = (V , E).

roof. In the following, let n = |V | and m = |E|. Then O(m + n) time is required to check whether a graph G is
planar [19,28], and a median graph [29] in Line 1. Since a planar graph has at most m ≤ 3(n − 2) edges for all n ≥ 3,
we have O(m) ⊆ O(n). Testing for planarity first ensures that no graphs that violate this condition are processed further,
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which implies that testing whether G is a median graph can be done in O(n) time as well. Line 2 can be done in O(n)
ime.

All squares in a planar graph can be coded efficiently in O(m) ⊆ O(n) time [25, Thm. 20.3 and 20.5]. Moreover, by
orollary 4.11, G has O(n) squares. Hence, all squares can be identified in O(n) time.
In Line 3, we compute a planar embedding π of G and are, in particular, interested in an embedding such that all

dges are straight lines which can be done in O(n log n) time [24]. The construction of a forest describing the nesting
f the squares and the vertices not contained in a square can then be obtained by a modified version of the O(n log n)
ime algorithm solving the polygon nesting problem for disjoint (not necessarily convex) polygons [2]. In brief, the non-
quare vertices can be treated as ‘‘polygons’’ consisting of a single vertex and pose no problem. In contrast to [2], we may
ave squares that share vertices and edges. If, during the line-sweep step, a vertex u is encountered that is contained
n more than one square, one can determine the nesting of these incident squares by considering clock-wise ordering
f the corresponding edges pointing to the right of the sweeping line. If multiple squares share the same first edge in
his ordering, then their nesting is defined by ordering of the second edge. If both edges are shared, then the nesting
s determined by the horizontal coordinate of the fourth point. For nx squares sharing a point x, the nesting can thus
e computed by sorting the 2nx edges incident with x at most thrice, and thus in O(nx log nx) time. The total effort for
isentangling squares with common points thus is also bounded by O(n log n).
The forest F has O(n) vertices and edges and can, thus, be traversed in O(n) time. Finding induced subgraphs G[V ′]

ith n′ vertices and m′ edges can be done in O(n′ +m′) time. In each step i we have the vertices from graphs level i− 1
nd i with ni−1 vertices and mi−1 edges from level i − 1 and ni vertices and mi edges from level i. The time needed to
ompute all the subgraphs used in the computation therefore adds up to O(2(m+ n)) = O(n).
The overall complexity is therefore O(n log n). ■

Consider a π-embedded planar graph G for which Gout
:= Gout

C,π and Gin
:= Gin

C,π are QS-graphs. In this case, Gout

as an ordered composition of the form Gout
= (. . . (G1 ⊛ G2) ⊛ · · ·Gℓ−1) ⊛ Gℓ of ℓ ≥ 1 basic QS-graphs. Similarly,

in
= (. . . (H1⊛H2)⊛· · ·Hk−1)⊛Hk is composed of k ≥ 1 basic QS-graphs. Since this ordered composition is not associative,

e cannot in general write

Gin
C⊛ CGout

= (. . . ((((. . . (H1 ⊛ H2) ⊛ · · ·Hk−1) ⊛ Hk) C⊛ C G1) ⊛ G2) ⊛ · · ·Gℓ−1) ⊛ Gℓ . (2)

n particular, this expression is not well-defined whenever C is not contained in G1. Algorithm 1, however, makes it
ossible to find ordered compositions for both Gout and Gin such that we can write G in the form of Eq. (2).

roposition 5.10. Let G be a connected π-embedded planar graph and C ⊆ G be a square. Suppose that Gout
:= Gout

C,π

nd Gin
:= Gin

C,π are QS-graphs, and the factorization Gout
= (. . . (G1 ⊛ G2) ⊛ · · ·Gℓ−1) ⊛ Gℓ of Gout and Gin

= (. . . (H1 ⊛

2) ⊛ · · ·Hk−1) ⊛ Hk of Gin has been computed with Algorithm 1 w.r.t. the (G, π )-induced planar embedding of Gout and Gin,
espectively. Then, (. . . ((((. . . (H1 ⊛H2)⊛ · · ·Hk−1)⊛Hk)⊛ G1)⊛G2)⊛ · · ·Gℓ−1)⊛Gℓ is well-defined and yields a factorization
f G into basic QS-graphs.

roof. Theorem 4.10 implies that G is a QS-graph. The outer boundary of Gin w.r.t. (G, π )-induced embedding is the square
C and thus, F (Gin, π ) is connected and rooted at C . The square C serves an inner boundary in Gout w.r.t. (G, π )-induced
embedding and there are no further vertices of Gout inside C . Hence C is a leaf in F (Gout, π ). Now, it is easy to see that
F (G, π ) is identical to the forest that is obtained from F (Gout, π ) and F (Gin, π ) by identifying the leaf C of F (Gout, π )
with the root C of F (Gin, π ). In a similar fashion as in Algorithm 1, we traverse F (G, π ) but use first only the vertices that
are contained in F (Gout, π ) in the same order that yields the factorization Gout

= (. . . (G1 ⊛ G2) ⊛ · · ·Gℓ−1) ⊛ Gℓ provided
by Algorithm 1 applied on Gout and afterwards, we traverse the subtree F (Gin, π ) in the same order as in Algorithm 1
to obtain the factorization Gin

= (. . . (H1 ⊛ H2) ⊛ · · ·Hk−1) ⊛ Hk. This yields the factorization G = (. . . ((((. . . (H1 ⊛ H2) ⊛
· ·Hk−1) ⊛ Hk) C⊛ C G1) ⊛ G2) ⊛ · · ·Gℓ−1) ⊛ Gℓ. ■

The result of Algorithm 1 depends crucially on the chosen planar embedding. To see this, consider the vertex b in the
raph G shown in Fig. 6. Placing b into the face bounded by the square C7 yields an additional factor that is isomorphic
o a square to which an additional vertex is attached. Another example is shown in Fig. 7.

By Theorem 4.10 G = G1⊛G2 is a QS-graph whenever G1 and G2 are QS-graphs. We say that a QS-graph G is irreducible
if G = G1⊛G2 implies that G1 or G2 is the unit element, i.e., a square. Irreducible QS-graphs are for example the ‘‘domino’’
P3□K2 or a square to which a single edge is attached. The composition of (G, π ′′) in Fig. 7 consists of irreducible QS-graphs
only. The observations above imply that basic QS-graphs are neither necessarily irreducible nor that there is a unique way
to decompose a planar median into basic QS-graphs. Moreover, Fig. 8 provides an example of a graph H = (G⊛G)⊛ (G⊛G)
that cannot be written as ((G⊛G)⊛G)⊛G, since the square C used in each ‘‘⊛-step’’ is not a square-boundary in ((G⊛G)⊛G).
Thus, although each factor G of H is irreducible the graph H cannot be written as ordered composition ((G ⊛ G) ⊛ G) ⊛ G
of irreducible graphs. The latter observation suggests to consider the following notation. A graph G that has an ordered
composition G = G1 ⊛ · · · ⊛ Gk of irreducible QS-graphs Gi is called irreducible-representable. Moreover, a graph G that
has an ordered composition G = G1 ⊛ · · · ⊛ Gk of irreducible or irreducible-representable QS-graphs Gi is called almost
irreducible-representable. In addition, an ordered composition G = G1 ⊛ · · ·⊛Gk is irreducible-well-formed if every factor Gi
is irreducible, irreducible-representable, or has a irreducible-well-formed ordered composition. By way of example, the
graph H = G1 ⊛ G2 with G1 ≃ G2 ≃ G ⊛ G in Fig. 8 is irreducible-well-formed as well as almost irreducible-representable
since both factors G and G are irreducible-representable. We suspect that the following statements are true.
1 2

55



C.R. Seemann, V. Moulton, P.F. Stadler et al. Discrete Applied Mathematics 331 (2023) 38–58

A

Fig. 7. Four different planar embeddings π , π ′ , π ′′ , and π ′′′ of the graph G result in different forests F . Depending on the particular embedding,
lgorithm 1 returns different solutions: For (G, π ) we obtain G = G; for (G, π ′) we obtain G = G′ C2⊛C2H; for (G, π ′′) we obtain G = (H C2⊛C2H) C3⊛C3G

′′

and for (G, π ′′′) = G′′′ 3⊛ 3G′′ . It can easily be verified that the factorization of (G, π ′′) contains irreducible factors only.

Fig. 8. Shown is a square-graph G as well as the compositions G⊛ G, (G⊛ G)⊛ G and (G⊛ G)⊛ (G⊛ G) with ⊛ := C⊛ C . The square C that is used in
each ⊛-step is highlighted with bold-lined edges. Note, C is not a square-boundary in (G ⊛ G) ⊛ G and thus, ((G ⊛ G) ⊛ G) ⊛ G is not well-defined.

Conjecture 1. Every irreducible-representable planar median graph G has a unique composition G = G1 ⊛ · · · ⊛ Gk, k ≥ 1 of
irreducible QS-graphs Gi, 1 ≤ i ≤ k up to isomorphism and possible re-order of the factors.

Conjecture 2. Every almost irreducible-representable planar median graph G has a unique composition G = G1 ⊛ · · · ⊛ Gk,
k ≥ 1 of irreducible or irreducible-representable QS-graphs up to isomorphism and possible re-order of the factors.

Conjecture 3. Every planar median graph G has a unique irreducible-well-formed composition G = G1 ⊛ · · · ⊛ Gk up to
isomorphism and possible re-order of the factors.

6. Summary and outlook

In this contribution, we have provided novel characterizations for planar median graph. Theorem 3.5 makes use of
forbidden subgraphs and the structure of their isometric cycles. Theorem 3.9, furthermore, shows that it is sufficient to
consider the induced subgraphs Gin

C,π and Gout
C,π almost-inside and almost-outside of an arbitrary square C ⊆ G. A more

constructive characterization is obtained in terms of the gluing operation ⊛ for QS-graphs that stepwise identifies square-
boundaries along which two graphs are identified. Theorem 4.9 shows that planar median graphs are exactly the union
of QS-graphs and trees. The operation ⊛ corresponds to a specific amalgamation of graphs and provides a corresponding
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characterization of planar median graphs by amalgamation (cf. Theorem 4.14). The structure of QS-graphs leads to an
O(n log(n)) time algorithm that computes an ordered composition G = G1 ⊛ · · · ⊛ Gk into square-graphs and cubes for a
planar median graph G with n vertices.

It would be interesting to know if these results might be extended to planar partial cubes (noting that any median
graph is a partial cube). As with median graphs, partial cubes arise by isometric expansions [13], and planar partial cubes
can be characterized by an expansion procedure [21]. The latter reference emphasizes that subtle constraints on the 2-
fact expansions proposed in [39] are critical by showing that an additional non-crossing condition is necessary. The ⊛
operation is closely related to the non-crossing 2-face expansion employed in [21] used to characterize partial cubes: H is
a 2-face expansion of G if G1 and G2 have planar embeddings such that G′ := G1 ∩ G2 lies on a face in both the respective
embeddings. If G′ is an edge e = uv, then u and v are trivially located on the same face in G1 and G2. Restricting G′ to be
an edge leads to a definition of a ‘‘restricted 2-face expansion’’ that can be expressed in terms of our gluing operation:
We expand only G1 on this edge (to get a square C) and only expand G2 on this edge (to get a square C ′) and then set
H = G1 C ⊛ C ′G2. Every restricted 2-face expansion can therefore be expressed as ‘‘expand single edges in G1 and G2 and
glue together G1 and G2 along the resulting squares via the ⊛ operation’’. It could therefore be worth while investigating
if a variant of the ⊛ operation could be used to give new insights into the structure of planar partial cubes.

In another direction, define a planar median graph G as irreducible if G = G1 ⊛ G2 implies that G1 or G2 is the unit
element, i.e., a square. It would be interesting to understand whether one can decompose a given planar median graph into
irreducible factors in polynomial-time. Moreover, does every planar median graph admit a unique irreducible-well-formed
composition? Algorithm 1 depends crucially on the particular planar embedding of G. Does Algorithm 1 yield the same
factors (possibly in a different order) if the planar embeddings differ only by the choice of the outer boundary? Answers to
the latter question would possibly provide an avenue to determine the irreducible factors — at least for 3-connected planar
median graphs, since all their planar embedding are equivalent. Moreover, one may ask how different forests F (G,⪯G,π )
and F (G,⪯G,π ′ ) are related to each other for different embeddings π and π ′ in the case that G has unique composition
of irreducible QS-graphs?

Finally, Theorem 3.5 provides a characterization of planar median graphs in terms of forbidden subgraphs and the
structure of their isometric cycles. Note, there is no forbidden subgraph characterization of planar median graphs, since
the property of being a median graph is not hereditary. However, it is natural to ask whether a planar median graph can
be solely characterized amongst median graphs in terms of a collection of forbidden subgraphs or minors. A good starting
point for answering this question could be to understand how either 2-face expansions, convex face expansions or square-
boundary amalgamations might shed new light on the forbidden subgraph theorem for square-graphs mentioned above
in Proposition 2.19, with the view to extending these considerations to planar median networks.

Data availability

No data was used for the research described in the article.
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