
Binary Shapelet Transform for Multiclass Time
Series Classification

Aaron Bostrom and Anthony Bagnall

University of East Anglia, Norwich, UK, NR47TJ.

Abstract. Shapelets have recently been proposed as a new primitive for
time series classification. Shapelets are subseries of series that best split
the data into its classes. In the original research, shapelets were found re-
cursively within a decision tree through enumeration of the search space.
Subsequent research indicated that using shapelets as the basis for trans-
forming datasets leads to more accurate classifiers.
Both these approaches evaluate how well a shapelet splits all the classes.
However, often a shapelet is most useful in distinguishing between mem-
bers of the class of the series it was drawn from against all others.
To assess this conjecture, we evaluate a one vs all encoding scheme.
This technique simplifies the quality assessment calculations, speeds up
the execution through facilitating more frequent early abandon and in-
creases accuracy for multi-class problems. We also propose an alternative
shapelet evaluation scheme which we demonstrate significantly speeds up
the full search.

1 Introduction

Time series classification (TSC) is a subset of the general classification problem,
the primary difference being that the ordering of attributes within each instance
is important. For a set of n time series, T = {T1, T2, ..., Tn}, each time series
has m ordered real-valued observations Ti = {ti1, ti2, ..., tim} and a class value
ci. The aim of TSC is to determine a function that relates the set of time series
to the class values.

One recently proposed technique for TSC is to use shapelets [17]. Shapelets
are subseries of the series T that best split the data into its classes. Shapelets
can be used to detect discriminatory phase independent features that cannot
be found with whole series measures such as dynamic time warping. Shapelet
based classification involves measuring the similarity between a shapelet and each
series, then using this similarity as a discriminatory feature for classification. The
original shapelet-based classifier [17] embeds the shapelet discovery algorithm in
a decision tree, and uses information gain to assess the quality of candidates.
A shapelet is found at each node of the tree through an enumerative search.
More recently, we proposed using shapelets as a transformation [9]. The shapelet
transform involves a single-scan algorithm that finds the best k shapelets in a
set of n time series. We use this algorithm to produce a transformed dataset,
where each of the k features is the distance between the series and one shapelet.

Hence, the value of the ith attribute of the jth record is the distance between
the jth record and the ith shapelet. The primary advantages of this approach
are that we can use the transformed data in conjunction with any classifier, and
that we do not have to search sequentially for shapelets at each node. However,
it still requires an enumerative search throughout the space of possible shapelets
and the full search is O(n2m4). Improvements for the full search technique were
proposed in [17, 12] and heuristics techniques to find approximations of the full
search were described in [15, 6, 4].

Our focus is only on improving the exhaustive search. One of the problems
of the shapelet search is the quality measures assess how well the shapelet splits
all the classes. For multi-class problems measuring how well a shapelet splits
all the classes may confound the fact that it actually represents a single class.
Consider, for example, a shapelet in a data set of heartbeat measurements of
patients with a range of medical conditions. It is more intuitive to imagine that
a shapelet might represent a particular condition such as arrhythmia rather
than discriminating between multiple conditions equally well. We redefine the
transformation so that we find shapelets assessed on their ability to distinguish
one class from all, rather than measures that separate all classes. This improves
accuracy on multi-class problems and allows us to take greater advantage of the
early abandon described in [17].

A further problem with the shapelet transform is that it may pick an excessive
number of shapelets representing a single class. By definition, a good shapelet will
appear in many series. The best way we have found to deal with this is to generate
a large number of shapelets then cluster them [9]. However, there is still a risk
that one class is generally easier to classify and hence has a disproportionate
number of shapelets in the transform. The binary shapelet allows us to overcome
this problem by balancing the number of shapelets we find for each class.

Finally, we describe an alternative way of enumerating the shapelet search
that facilitates greater frequency of early abandon of the distance calculation.

2 Shapelet Based Classification

The shapelet transform algorithm described in [9] is summarised in Algorithm 2.
Initially, for each time series, all candidates of length min to max are generated
(i.e. extracted and normalised in the method generateCandidates). Then the
distance between each shapelet and the other n− 1 series are calculated to form
the order list DS . Distance between a shapelet S length l and a series T is given
by

sDist(S, T) = min
w∈Wl

(dist(S,w)) (1)

where Wl is the set of all l length subseries in T and dist is the Euclidean distance
between the equal length series S and w. The order list is used to determine the
quality of the shapelet in the assessCandidate method. Quality can be assessed
by information gain [17] or alternative measures such as the F, moods median or
rank order statistic [11]. Once all the shapelets for a series are evaluated they are

sorted and the lowest quality overlapping shapelets are removed. The remaining
candidates are then added to the shapelet set. By default, we set k = 10n with
the caveat that we do not accept shapelets that have zero information gain.

Algorithm 1 FullShapeletSelection(T, min, max, k)

Input: A list of time series T, min and max length shapelet to search for and k,the
maximum number of shapelets to find)

Output: A list of k shapelets
1: kShapelets← ∅
2: for all Ti in T do
3: shapelets← ∅
4: for l← min to max do
5: Wi,l ← generateCandidates(Ti, l)
6: for all subseries S in Wi,l do
7: DS ← findDistances(S,T)
8: quality ← assessCandidate(S,DS)
9: shapelets.add(S, quality)

10: sortByQuality(shapelets)
11: removeSelfSimilar(shapelets)
12: kShapelets← merge(k, kShapelets, shapelets)
13: return kShapelets

Once the best k shapelets have been found, the transform is performed with
Algorithm 2. A more detailed description can be found in [8].

Extensions to the basic shapelet finding algorithm can be categorised into
techniques to speed up the average case complexity of the exact technique and
those that use heuristic search. The approximate techniques include reducing the
dimensionality of the candidates and using a hash table to filter [15], searching
the space of shapelet values (rather than taking the values from the train set
series) [6] and randomly sampling the candidate shapelets [4]. Our focus is on
improving the accuracy and speed of the full search. Two forms of early abandon
described in [17] can improve the average case complexity. Firstly, the Euclidean
distance calculations within the sDist (Equation 1) can be terminated early
if they exceed the best found so far. Secondly, the shapelet evaluation can be
abandoned early if assessCandidate is updated as the sDist are found and the
best possible outcome for the candidate is worse than the current top candidates.

A speedup method involving trading memory for speed is proposed in [12].
For each pair of series Ti, Tj , cumulative sum, squared sum, and cross prod-
ucts of Ti and Tj are precalculated. With these statistics, the distance between
subseries can be calculated in constant time, making the shaplet-discovery al-
gorithm O(n2m3). However, precalculating of the cross products between all
series prior to shapelet discovery requires O(n2m2) memory, which is infeasible
for most problems. Instead, [12] propose calculating these statistics prior to the
start of the scan of each series, reducing the requirement to O(nm2) memory, but
increasing the time overhead. Further refinements applicable to shapelets were

described in [14], most relevant of which was a reordering of the sequence of
calculations within the dist function to increase the likelihood of early abandon.
The key observation is that because all series are normalised, the largest absolute
values in the candidate series are more likely to contribute large values in the dis-
tance function. Hence, if the distances between positions with larger candidate
values are evaluated first, then it is more likely the distance can be abandoned
early. This can be easily implemented by creating an enumeration through the
normalised candidate at the beginning, and adds very little overhead. We use
this technique in all experiments.

Algorithm 2 FullShapeletTransform(Shapelets S,T)

1: T′ ← ∅
2: for all T in T do
3: T ′ ←<>
4: for all shapelets S in S do
5: dist← sDist(S, T)
6: T ′ ← append(T ′, dist)
7: T ′ ← append(T ′, T.class)
8: T′ ← T′ ∪ T ′

9: return T′

2.1 Classification technique

Once the transform is complete we can use any classifier on the problem. To
reduce classifier induced variance we use a heterogenous ensemble of eight clas-
sifiers. The classifiers used are the WEKA [7] implementations of k Nearest
Neighbour (where k is set through cross validation), Naive Bayes, C4.5 decision
tree [13], Support Vector Machines [3] with linear and quadratic basis func-
tion kernels, Random Forest [2] (with 100 trees), Rotation Forest [16] (with 10
trees) and a Bayesian network. Each classifier is assigned a weight based on the
cross validation training accuracy, and new data are classified with a weighted
vote. The set of classifiers were chosen to balance simple and complex classifiers
that use probabilistic, tree based and kernel based models. With the exception
of k-NN, we do not optimise parameter settings for these classifiers via cross
validation. More details are given in [8].

3 Shapelet Transform Refinements

3.1 Binary shapelets

The standard shapelet assessment method measures how well the shapelet splits
up all the classes. There are three potential problems with this approach when

classifying multi-class problems. The problems apply to all possible quality mea-
sures, but we use information gain to demonstrate the point. Firstly, useful in-
formation about a single class may be lost. For example, suppose we have a
four class problem and a shapelet produces the order line presented in Figure 1,
where each colour represents a different class.

Fig. 1. An example order line split for two shapelets. The top shapelet discriminates
between class 1 and the rest perfectly, yet has lower information gain than the orderline
shown below it.

The first shapelet groups all of class 1 very well, but cannot distinguish
between classes 2, 3 and 4 and hence has a lower information gain than the
split produced by the second shapelet in Figure 1 which separates class 1 and
2 from class 3 and 4. The more classes there are, the more likely it is that the
quantification of the ability of a shapelet to separate out a single class will be
overwhelmed by the mix of other class values. We can mitigate against this
potential problem by defining a binary shapelet as one that is assessed by how
well it splits the class of the series it originated from from all the other classes.
The second problem with searching all shapelets with multi-class assessment
arises if one class is much easier to classify than the others. In this case it is likely
that more shapelets will be found for easy class than other classes. Although our
principle is to find a large number of shapelets (ten times the number of training
cases) and let the classifier deal with redundant features, there is still a risk that
a large number of similar shapelets for one class will crowd out useful shapelets
for another class. If we use binary shapelets we can simply allocate a maximum
number of shapelets to each class. We adopt the simple approach of allocating
a maximum of k/c shapelets to each class, where c is the number of classes.
Finally, the shapelet early abandon described in [17] is not useful for multi-class
problems. Given a partial orderline and a split point, the early abandon works by

Algorithm 3 BinaryShapeletSelection(T, min, max, k)

Input: A list of time series T, min and max length shapelet to search for and k,the
maximum number of shapelets to find)

Output: A list of k Shapelets
1: numClasses← getClassDistribution(T)
2: kShapeletsMap← ∅
3: prop← k/numClasses
4: for all Ti in T do
5: shapelets← ∅
6: for l← min to max do
7: Wi,l ← generateCandidates(Ti, l)
8: for all subseries S in Wi,l do
9: DS ← findDistances(S,T)

10: quality ← assessCandidate(S,DS)
11: shapelets.add(S, quality)
12: sortByQuality(shapelets)
13: removeSelfSimilar(shapelets)
14: kShapelets← kShapeletsMap.get(T.class)
15: kShapelets← merge(prop, kShapelets, shapelets)
16: kShapeletsMap.add(kShapelets, T.class)
17: return kShapeletsMap.asList()

upper bounding the information gain by assigning the unassigned series to the
side of the split that would give the maximum gain. However, the only way to
do this with multi-class problems is to try all permutations. The time this takes
quickly rises to offset the possible benefits from the early abandon. If we restrict
our attention to just binary shapelets then we can take maximum advantage of
the early abandon. The binary shapelet selection is described by Algorithm 3.

3.2 Changing the shapelet evaluation order

Shapelets are phase independent. However, for many problems the localised
features are at most only weakly independent in phase, i.e. the best matches
will appear close to the location of the candidate. Finding a good match early
in sDist increases the likelihood of an early abandon for each dist calculation.
Hence, we redefine the order of iteration of the dist calculations within sDist so
that we start with the index the shapelet was found at and move consecutively
left and right from that point. Figure 2 demonstrates the potential benefit of
this approach. The scan from the beginning is unable to early abandon on any
of the subseries before the best match. The scan originating at the candidate’s
location finds the best match faster an hence can early abandon on all the
distance calculations at the beginning of the series. Hence, if the location of
the best shapelet is weakly phase dependent, we would expect to observe an
improvement in the time complexity. The revised function sDist, which is a
subroutine of findDistances (line 9 in Algorithm 3), is described in Algorithm 4.

a b

Fig. 2. An example of Euclidean distance early abandon where the sDist scan starts
from the beginning (a) and from the place of origin of the candidate shapelet (b). For
the scan from the beginning, there are no early abandons until the scan has passed the
best match. Because the best match is close to the location of the candidate shapelet,
starting from the shapelets original location allows for a greater number of early aban-
dons.

4 Results

We demonstrate the utility of our approach through experiments using 31 bench-
mark multi-class datasets from UCR [10] and UEA repositories [1]. In common
with the vast majority of research in this field, we present results on the stan-
dard train/test split. The min and max size of the shapelet transform are found
through a train set cross validation described in [9]. As a sanity check, we have
also evaluated the binary shapelets on two class problems to demonstrate there
is negligible difference. On 16 two class problems, the full transform was better
on 7, the binary transform better on 7 and they were tied on 2. All the results
and the code to generate them are available from [1].

4.1 Accuracy improvement on multi-class problems

Table 1 gives the results for the full shapelet transform, the binary shapelet
transform and standard benchmark classifiers on problems with 3-50 classes.
Overall, the binary shapelet transform is better on 19 data sets, the full transform
better on 10 and on two they are equal. The difference between the full and the
binary shapelet transform is significant at the 5% level using a paired T test
and at the 10% level using the binomial and signed rank test. Although neither
the binary nor full shapelet transform is significantly more accurate than 1-
nearest neighbour with dynamic time warp distance measure (1-NN DTW) and
1-NN DTW with window size set through cross validation (1-NN DTWCV), in
a larger study, we have shown that the shapelet transform is significantly better
than both 1-NN DTW and 1-NN DTWCV [8]. The main point of including
the nearest neighbour results is to highlight the wide variation in accuracy. For
example, the shapelet approach is clearly superior on the FacesUCR, fish and
CBF problems, but much worse on MiddlePhalanxTW, CricketX and FaceAll.

Algorithm 4 sDist(shapelet S,series Ti)

1: subSeq ← getSubSeq(Ti, S.startPos, S.length)
2: bestDist← euclideanDistance(subSeq, S)
3: i← 1
4: while leftExists || rightExists do
5: leftExists← S.startPos− i ≥ 0
6: rightExists← S.startPos + i < Ti.length
7: if rightExists then
8: subSeq ← getSubSeq(Ti, S.startPos + i, S.length)
9: currentDist← earlyAbandonDistance(subSeq, S, bestDist)

10: if currentDist > bestDist then
11: bestDist← currentDist
12: if leftExists then
13: subSeq ← getSubSeq(Ti, S.startPos− i, S.length)
14: currentDist← earlyAbandonDistance(subSeq, S, bestDist)
15: if currentDist > bestDist then
16: bestDist← currentDist
17: i← i + 1
18: return bestDist

This demonstrates the importance of finding the correct transformation space
for a given problem.

Figure 3 shows the plot of the difference in accuracy of the full and binary
shapelet transform plotted against the number of classes. There is a clear trend of
increasing accuracy for the binary transform as the number of classes continues.
This is confirmed in Table 2, which presents the same data grouped into bins of
ranges of number of classes.

4.2 Accuracy comparison to other shapelet methods

Our goal is to improve the enumerative shapelet transform. Nevertheless, it is in-
formative to compare performance against alternative shapelet based techniques.
Table 3 presents the results on 22 multiclass problems for logical shapelets [12],
fast shapelets [15] and learning shapelets [5]. We present two sets of results for
learning shaplets: those presented on the website (LST1) and those we have
recreated using the code available on the website (LST2). Differences between
the two may be down to random variation. Overall, there is no significant differ-
ence between the classifiers (as tested with Friedman’s rank sum test). A more
extensive study is required to determine whether any one of the approaches
outperforms the others in terms of accuracy.

4.3 Average case time complexity improvements

One of the benefits of using the binary transform is that it is easier to use
the shapelet early abandon described in [12]. Early abandon is less useful when
finding the best k shapelets than it is for finding the single best, but when it can

Table 1. Test errors for 5 classifiers on 31 multi class data sets. The binary shapelet
and full shapelet both use the weighted ensemble described in Section 2.1. The three
nearest neighbour classifiers use Euclidean distance (1NN-ED), dynamic time warping
(1NN-DTW) and dynamic time warping with window size set through cross validation
(1NN-DTWCV).

dataSet #classes Binary Shapelet Full Shapelet 1NN-ED 1NN-DTW 1-NNDTWCV
fiftywords 50 0.262 0.281 0.63 0.623 0.584

Adiac 37 0.322 0.435 0.369 0.31 0.235
WordSynonyms 25 0.346 0.403 0.253 0.096 0.132

SwedishLeaf 15 0.062 0.093 0.526 0.539 0.539
FaceAll 14 0.246 0.263 0.101 0.05 0.062

FacesUCR 14 0.085 0.087 0.467 0.5 0.5
CricketX 12 0.221 0.218 0.086 0.066 0.065
CricketY 12 0.246 0.236 0.217 0.166 0.166

MedicalImages 10 0.337 0.396 0.35 0.352 0.351
MALLAT 8 0.087 0.06 0.148 0.003 0.006

fish 7 0.006 0.023 0.267 0.267 0.233
Lightning7 7 0.301 0.26 0.183 0.429 0.217

Plane 7 0 0 0.25 0.179 0.214
DistalPhalanxTW 6 0.367 0.367 0.474 0.506 0.506
MiddlePhalanxTW 6 0.409 0.461 0.127 0.137 0.127

ProximalPhalanxTW 6 0.195 0.229 0.087 0.093 0.027
Symbols 6 0.073 0.114 0.121 0.165 0.134

SyntheticControl 6 0.003 0.017 0.127 0.137 0.127
Beef 5 0.1 0.167 0.382 0.351 0.251

Haptics 5 0.497 0.523 0.216 0.17 0.114
Car 4 0.1 0.267 0.231 0.095 0.092

DiatomSizeReduction 4 0.118 0.124 0.425 0.274 0.288
FaceFour 4 0.091 0.057 0.12 0.007 0.017
OliveOil 4 0.067 0.1 0.4 0.35 0.35

Trace 4 0 0.02 0.325 0.105 0.101
ArrowHead 3 0.257 0.229 0.389 0.396 0.391

CBF 3 0.018 0.003 0.426 0.223 0.236
ChlorineConcentration 3 0.311 0.3 0.356 0.208 0.197

DistalPhAgeGroup 3 0.252 0.259 0.038 0 0
MiddlePhAgeGroup 3 0.396 0.37 0.252 0.245 0.201

ProximalPhAgeGroup 3 0.156 0.146 0.252 0.245 0.201
total wins 13 5 2 4 10

Average Rank 2.613 3.06 3.66 3.08 2.58

Table 2. Number of data sets the binary shapelet beats the full shapelet split by
number of classes.

Number of classes Binary Better Full Better

10 and above 7 2
6 to 9 5 2
3 to 5 7 6

All 19 10

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30 35 40 45 50

F
u

ll
 E

rr
o

r
-

B
in

a
ry

 E
rr

o
r

Number of Classes

Fig. 3. Number of classes plotted against the difference in error between the full
shapelets and the binary shapelets. A positive number indicates the binary shapelets
are better. The dotted line is the least squares regression line.

Table 3. Test errors for 6 shapelet based classifiers on 22 multiclass data sets.

Problem Binary Full Logical Fast LST1 LST2
Adiac 0.322 0.435 0.414 0.514 0.437 0.737
Beef 0.1 0.167 0.433 0.447 0.24 0.433
CBF 0.018 0.003 0.114 0.053 0.006 0.006

ChlorineConcentration 0.311 0.3 0.382 0.417 0.349 0.406
CricketX 0.221 0.218 0.528 0.209 0.328
CricketY 0.246 0.236 0.52 0.249 0.346

DiatomSizeReduction 0.118 0.127 0.199 0.117 0.033 0
FaceAll 0.246 0.262 0.341 0.411 0.218 0.24

FaceFour 0.091 0.057 0.511 0.09 0.048 0.034
FacesUCR 0.085 0.086 0.338 0.328 0.059 0.092
fiftywords 0.262 0.281 0.489 0.232 0.25

fish 0.006 0.023 0.223 0.197 0.066 0.091
Haptics 0.497 0.519 0.624 0.532 0.5286

Lightning7 0.301 0.26 0.452 0.403 0.197 0.233
MALLAT 0.087 0.06 0.344 0.033 0.046 0.038

MedicalImages 0.337 0.396 0.413 0.433 0.271 0.33
OliveOil 0.067 0.1 0.167 0.213 0.56 0.6

SwedishLeaf 0.062 0.093 0.187 0.269 0.087 0.102
Symbols 0.073 0.114 0.357 0.068 0.036 0.086

SyntheticControl 0.003 0.017 0.53 0.081 0.007 0.023
Trace 0 0.02 0 0.002 0 0

WordSynonyms 0.346 0.401 0.563 0.34 0.409
total wins 8 3 1 1 9 3

Average Rank 2.48 3 4.97 4.73 2.205 3.38

0

5

10

15

20

25

30

35

40

45

Adiac MedImg ChlCon Car MidTW fish ProxTW DistAgeG

Full Binary

Fig. 4. Number of sDist measurements that were not required because of early aban-
don (in millions) for both full and binary shapelet discovery on seven datasets.

be employed it can give real benefit. Figure 4 shows that on certain datasets,
using the binary shapelet discovery means millions of fewer sDist evaluations.

We assess the improvement from using Algorithm 4 by counting the number
of point wise distance calculations required from using the standard approach
and the alternative enumeration. For the datasets used in our accuracy experi-
ments, changing the order of enumeration reduces the number of calculations in
the distance function by 76% on average. The improvement ranges from negligi-
ble (e.g. Lightning7 requires 99.3% of the calculations) to substantial (e.g. Adiac
operations count is 63% of the standard approach). This highlights that the best
shapelets may or may not be phase independent, but nothing is lost from chang-
ing the evaluation order and often substantial improvements are achieved. Full
results, all the code and the datasets used can be downloaded from [1].

5 Conclusion

Shapelets are useful for classifying time series where the between class variabil-
ity can be detected by relatively short, phase independent subseries. They offer
an alternative representation that is particularly appealing for problems with
long series with recurring patterns. The downside to using shapelets is the time
complexity. The heuristic techniques described in recent research [15, 6] offer
potential speed up (often at the cost of extra memory) but are essentially dif-
ferent algorithms that are only really analogous to shapelets described in the
original research [17]. Our interest is in optimizing the original shapelet finding
algorithm within the context of the shapelet transform. We describe incremen-
tal improvements to the shapelet transform specifically for multi-class problems.
Searching for shapelets assessed on how well they find a single class is more
intuitive, faster and becomes more accurate than the alternative as the number
of classes increases.

References

1. A. Bagnall. UEA time series classification website.
http://www.uea.ac.uk/computing/tsc.

2. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
3. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–

297, 1995.
4. D. Gordon, D. Hendler, and L. Rokach. Fast randomized model generation for

shapelet-based time series classification. arXiv preprint arXiv:1209.5038, 2012.
5. J. Grabocka. Learning time series shapelets.

http://fs.ismll.de/publicspace/LearningShapelets/.
6. J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Invariant time-

series classification. In Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2014.

7. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The
WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter,
11(1):10–18, 2009.

8. J. Hills. Mining Time-series Data using Discriminative Subsequences. PhD thesis,
School of Computing Sciences, University of East Anglia, 2015.

9. J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classification of
time series by shapelet transformation. Data Mining and Knowledge Discovery,
28:851–881, 2014.

10. E. Keogh and T. Folias. The UCR time series data mining archive.
http://www.cs.ucr.edu/ eamonn/TSDMA/.

11. J. Lines and A. Bagnall. Alternative quality measures for time series shapelets.
In Intelligent Data Engineering and Automated Learning, volume 7435 of Lecture
Notes in Computer Science, pages 475–483. 2012.

12. A. Mueen, E. Keogh, and N. Young. Logical-shapelets: an expressive primitive for
time series classification. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2011.

13. J. R. Quinlan. C4. 5: programs for machine learning, volume 1. Morgan kaufmann,
1993.

14. T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu,
J. Zakaria, and E. Keogh. Searching and mining trillions of time series subse-
quences under dynamic time warping. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2012.

15. T. Rakthanmanon and E. Keogh. Fast shapelets: A scalable algorithm for discov-
ering time series shapelets. Proceedings of the 13th SIAM International Conference
on Data Mining, 2013.

16. J.J. Rodriguez, L.I. Kuncheva, and C.J. Alonso. Rotation forest: A new classi-
fier ensemble method. IEEE Trans. Pattern Analysis and Machine Intelligence,
28(10):1619–1630, 2006.

17. L. Ye and E. Keogh. Time series shapelets: a novel technique that allows accu-
rate, interpretable and fast classification. Data Mining and Knowledge Discovery,
22(1):149–182, 2011.

