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Abstract 

I jointly treat two critical issues in the application of mean-variance portfolios, i.e., estimation 

risk and portfolio instability. I find that theory-based portfolio strategies known to outperform 

naive diversification (1/ N ) in the absence of transaction costs, heavily underperform it under 

transaction costs. This is because they are highly unstable over time. I propose a generic method 

to stabilize any given portfolio strategy while maintaining or improving its efficiency. My 

empirical analysis confirms that the new method leads to stable and efficient portfolios that offer 

equal or lower turnover than 1/ N  and larger Sharpe ratio, even under high transaction costs. 
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1 Introduction 

Mean-variance analysis of Markowitz (1952) is an important portfolio choice model in 

academia and investment practice. However, practical applications suffer from two critical issues. 

First, the parameters that define mean-variance efficient portfolios are unknown and need to be 

estimated in finite samples. Potential estimation errors add risk to the portfolio selection process, 

coined as estimation risk in the literature, and negatively affect out-of-sample portfolio 

performance (e.g., see Michaud, 1989, and Best and Grauer, 1991). Second, estimated portfolio 

weights tend to be very unstable over time. This instability translates into high transaction costs 

and further decreases portfolio returns. The recent work of Kirby and Ostdiek (2012) highlights 

the relation between these two issues: portfolio instability tends to increase with estimation risk. 

In this context, the present paper treats estimation risk and portfolio instability in a joint manner. 

A vast literature has developed around proposing portfolio strategies that are less sensitive 

to estimation risk (Brandt, 2009). This literature has been recently challenged by the influential 

work of DeMiguel, Garlappi and Uppal (2009) who find that most sample-based strategies 

perform worse out-of-sample than the equally-weighted portfolio, also known as 1/ N . In 

response to this finding, DeMiguel, Garlappi, Nogales and Uppal (2009), Tu and Zhou (2011), 

Kirby and Ostdiek (2012) and Kourtis, Dotsis and Markellos (2012) develop more efficient 

strategies that offer significantly higher risk-adjusted returns than 1/ N . 

I find that 1/ N  still outperforms most existing sample-based strategies when transaction 

costs are present. The reason is that most sample-based strategies are very sensitive to small 

changes in the underlying sample. As new observations enter the sample and portfolio is 

rebalanced, portfolio composition tends to change dramatically. As a result, portfolio turnover 

and the associated transaction costs are magnified. An empirical exercise similar to that of 
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DeMiguel, Garlappi and Uppal (2009) shows that the strategies in DeMiguel, Garlappi, Nogales 

and Uppal (2009), Tu and Zhou (2011) and Kourtis, Dotsis and Markellos (2012) can even 

produce negative average returns net of transaction costs. Such results question the practical 

value of mean-variance optimization in the presence of transaction costs. 

My findings motivate the main objective of this paper: to develop sample-based strategies 

that are both efficient and stable. The traditional approach to promote stability is to explicitly 

incorporate proportional transaction costs in the mean-variance framework.
1
 However, the 

nonlinear form of proportional transaction costs does not generally allow a closed-form solution 

to the portfolio problem. As a result, many of the recent advances in the estimation risk literature 

cannot accommodate proportional transaction costs, since they require an analytical 

representation of the optimal weights (for instance, the methods in Kan and Zhou, 2007; Tu and 

Zhou, 2011; Kourtis, Dotsis and Markellos, 2012). Also, a computational algorithm is required 

for the derivation of the optimal portfolio, but such algorithms tend to be inefficient when the 

number of assets is large. 

To resolve these issues, I propose a new stability approach to mean-variance optimization. 

In particular, I directly impose an instability penalty to the mean-variance objective. The penalty 

controls the deviation of the portfolio weights in each period from the weights before 

rebalancing. According to the new portfolio objective, the investor optimizes a trade-off between 

efficiency and stability. The novelty is that stability is measured in terms of the deviation from 

the weights before rebalancing using the t -norm, instead of the 1-norm that is traditionally 

                                                        
1
 Woodside-Oriakhi, Lucas and Beasley (2013) review the recent literature that accounts for transaction 

costs in the mean-variance framework. Alternatively, several studies investigate the problem of portfolio 

choice under proportional transaction costs in a continuous-time setting (see Cvitanić, 2001, for a review). 
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applied in the literature, where 
t  is the covariance matrix of asset returns. Because of this 

differentiation, the stability approach developed here offers several attractive features. 

First, it leads to an intuitive analytical solution of the portfolio optimization problem: the 

stable portfolio weights are a linear combination of a portfolio from the efficient frontier and the 

weights before trading. Since there is no constraint on how one can estimate the first portfolio, 

the stability approach can be easily applied to stabilize any sample-based strategy improving its 

performance under transaction costs. For example, it can be directly used with the strategies from 

DeMiguel, Garlappi, Nogales and Uppal (2009), Tu and Zhou (2011), Kirby and Ostdiek (2012), 

and Kourtis, Dotsis and Markellos (2012). I show that the turnover of the stabilized strategies is 

only a fraction of the turnover of their original counterparts. 

Second, the stability approach may improve the performance of a sample-based strategy 

even in the absence of transaction costs. To understand this, I provide two interpretations of the 

instability penalty. I show that it is equivalent to imposing a norm constraint in the original mean-

variance problem. Jagannathan and Ma (2003) and DeMiguel, Garlappi, Nogales and Uppal 

(2009) show that such portfolio constraints can increase risk-adjusted returns in the presence of 

estimation risk. I further find that the instability penalty promotes investment in a momentum 

strategy. The latter performs well when the serial correlation of asset returns is positive. In this 

case, the stabilized strategy offers higher returns than its original counterpart. 

Third, the investor can control the importance of stability in the portfolio choice process 

through a stability parameter.  I study two selection criteria for this parameter. The first chooses 

the parameter that matches the turnover of the portfolio to that of 1/ N . This is because the latter 

portfolio is known to be relatively stable over time. Given that 1/ N  is the benchmark in this 
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study, it is reasonable to ask if there can be sample-based strategies that offer the same stability 

levels and higher risk-adjusted returns. The second criterion aims to further increase both risk-

adjusted returns and stability by taking into account the positive autocorrelation of portfolio 

returns reported by Campbell, Lo and MacKinlay (1997).
2
 By construction, it leads to portfolios 

with a lower turnover than 1/ N . 

The instability penalty in this paper is inspired by the model of quadratic transaction costs 

studied by Gârleanu and Pedersen (2013). Gârleanu and Pedersen use this special form of 

transaction costs based on the same incentive: to allow analytical solutions to the portfolio choice 

problem. However, there are several important differences between the work of Gârleanu and 

Pedersen and the present paper. First, this paper also deals with estimation risk. Second, this 

paper considers transaction costs that have a proportional form following the standard convention 

in the literature. The instability penalty serves as a mean to reduce portfolio turnover rather than 

to represent transaction costs. Third, the instability penalty in this paper involves a parameter that 

the investor can adjust to achieve a desired level of portfolio stability. Fourth, my analysis is 

carried out in asset returns rather than in price changes considered by Gârleanu and Pedersen. 

To evaluate the stability approach, I apply it to ten sample-based strategies from the 

literature. These include three portfolios from the sample-based mean-variance frontier, a short-

sale constrained mean-variance portfolio, a portfolio based on the shrinkage estimator of Ledoit 

and Wolf (2004) as well as five portfolios from the studies of DeMiguel, Garlappi, Nogales and 

Uppal (2009), Tu and Zhou (2011), Kirby and Ostdiek (2012), and Kourtis, Dotsis and Markellos 

(2012). In this manner, I derive stable versions of all sample-based strategies. I compare their 

                                                        
2
DeMiguel, Garlappi, Nogales and Uppal (2009) and Kourtis, Dotsis and Markellos (2012) use a similar 

criterion for calibrating their strategies. 
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out-of-sample performance to that of 1/ N  and their original counterparts in 5 data sets of real 

asset returns following the approach of DeMiguel, Garlappi and Uppal (2009).  

The results of the empirical analysis confirm that the stability approach proposed in this 

work leads to both efficient and stable portfolios. In all data sets, most of the stabilized sample-

based strategies outperform 1/ N  under transaction costs, with regards to both Sharpe ratio and 

turnover. For example, in a data set of 10 industry portfolios the original strategies by DeMiguel, 

Garlappi, Nogales and Uppal (2009) and Kourtis, Dotsis and Markellos (2012) lead to Sharpe 

ratios of -0.076 and -0.070 under transaction costs of 100 basis points (bp) while the Sharpe ratio 

of 1/ N  is 0.522. I find that the stable versions of these portfolios offer a net Sharpe ratio of 

0.600 and 0.645, respectively, outperforming 1/ N . At the same time, the stable strategies 

generate a turnover equal to or lower than 1/ N  by construction. In most cases considered, the 

stability approach improves Sharpe ratios even in the absence of transaction costs, with the 

improvement mainly coming from an increase in portfolio return. The conclusions from my 

empirical analysis are robust to alternative assumptions about the level of transaction costs, the 

size of the sample available and the frequency of rebalancing. 

2 The mean-variance framework 

I consider a mean-variance investor in a market of N  risky assets and a risk-free asset. 

The returns on the risky assets in period t  are denoted by tR  while f

tR  stands for the risk-free 

return. In each period, the investor chooses the portfolio weights tw  that minimize the 

conditional variance of the portfolio excess returns   

 min ,'
t

t t t
w

w w   (1) 

subject to the constraints 
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 0't t tw     (2) 

 '1 1.t Nw    (3) 

In the above, t  and 
t  are respectively the conditional mean and covariance matrix of the 

excess returns 
1 1 1

f

t t tr R R    . 1N
 is an N -dimensional vector of 1’s. The first constraint sets the 

level of return ( 0

t ) that the investor requires. Solving (1), (2) (3) for different values of 0

t  

generates the minimum variance frontier. The second constraint ensures that the investor only 

holds risky assets. I impose this constraint to perform comparisons between different portfolio 

strategies without the need of accounting for a risk aversion parameter. My analysis though can 

be easily modified to allow investment in the risk-free asset.
3
 

The above investment setting has two attractive features. First, it allows time-varying 

moments for the asset returns as well as time-varying target return. As such, it can accommodate 

changes in the set of investment opportunities while the investor can adjust the amount of risk to 

take in each period. Second, it enables the analytical expression of the optimal portfolios. 

Following Kirby and Ostdiek (2012), I express the solution of the problem (1), (2), (3) as a linear 

combination of two special portfolios. The first is the global minimum variance portfolio, i.e., the 

portfolio of minimum risk. Its weights are defined as:  

 
1

1

1
.

1 ' 1

MIN t N
t

N t N

w








  (4) 

The second portfolio is the tangency portfolio defined as the point where the Capital Market Line 

is tangent to the efficient frontier. Its weights are given by  

                                                        
3
The conclusions in this work are valid in the case that investing in the riskless asset is allowed. The 

corresponding results are available upon request. 
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1

1
.

1 '

TP t t
t

N t t

w












  (5) 

Applying first order conditions to the mean-variance problem gives the optimal portfolio MV

tw  as 

a linear combination of the global minimum variance portfolio and the tangency portfolio  

  1 ,MV MIN TP

t t t t tw x w x w     (6) 

where 
0 MIN

t t
t TP MIN

t t

x
 

 





. 'MIN MIN

t t tw   and 'TP TP

t t tw   are the expected excess returns on the 

global minimum variance portfolio and on the tangency portfolio, respectively. 

If short sales are not allowed, the constraint 0tw   should be added in the optimization 

problem to ensure the positivity of the weights. The short-sale constrained optimization problem 

cannot be solved analytically, but there are fast quadratic optimization algorithms available that 

can be used to obtain the solution. 

3 Estimation risk and portfolio instability 

The framework in the previous section does not incorporate estimation risk and 

transaction costs, both inevitable in practice. This section shows that these two issues combined 

can largely deteriorate portfolio performance.  

Τhe optimal mean-variance portfolio is a function of the first two moments of the excess 

returns, t  and 
t . In practice, t  and 

t  are unknown and the investor has to estimate them. 

The estimation is usually performed using a sample from the history of the asset excess returns 
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 1,....,t T tr r  , where T  is the sample size.
4
 For example, the traditional practice employs the 

Maximum Likelihood (ML) estimators:  

 
1

ˆ
1 t

t j

j t T

r
T


  

    (7) 

  
1

1
(ˆ ˆ ˆ) '

t

t j t j t

j t T

r r
T

 
  

      (8) 

and applies them to estimate the portfolio weights in (6). Using estimates instead of the true 

values of the parameters introduces estimation risk in the portfolio choice process and tends to 

produce low or even negative risk-adjusted portfolio returns. 

Kirby and Ostdiek (2012) show that the effects of estimation risk can be more prominent 

in the presence of transaction costs, because estimation errors lead to unstable portfolios over 

time. To understand why estimated portfolio weights tend to be unstable, consider a sample-

based portfolio strategy p  that at each time t  uses the available sample to produce the portfolio 

weights ˆ p

tw . Let also p

tw  be the portfolio of the investor before rebalancing to ˆ p

tw . The 

instability of the strategy can be measured using the portfolio turnover metric: 

 
, ,

1
1

,ˆ ˆ
N

p p p p p

t t t i t i t

i

w w w w


      (9) 

where 
1
  is the 1-norm. Since the weight for an asset i  before rebalancing is given by 

 
 , 1 ,

,

, 1 ,1

1
,

1

ˆ

ˆ

p

i t i tp

i t N p

i t i ti

w R
w

w R









  (10) 

the turnover for asset i  is 

                                                        
4
For exposition purposes, I assume that T  does not change with t , but my analysis also holds when T  

varies with time. 
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  
 
 

, 1 ,

, , , , 1

ˆ
ˆ

1
ˆ ˆ

p p

i t i t tp p p p

i t i t i t i t p

t

w R R
w w w w

R






   


  (11) 

where 
, 1 ,

1

ˆ
N

p p

t i t i t

i

R w R



  is the portfolio return from strategy p  at time t . 

The above equation implies that the turnover for an asset for a sample-based strategy may 

be larger by 
, , 1

ˆ ˆp p

i t i tw w   compared to a constant-weights strategy, such as 1/ N . Given that the 

samples used for the estimation of ,
ˆ p

i tw  and , 1
ˆ p

i tw   differ by just one observation, the magnitude of  

, , 1
ˆ ˆp p

i t i tw w   depends on the sensitivity of the strategy in small sample changes. In particular, 

, , 1
ˆ ˆp p

i t i tw w   can be large for strategies that are very sensitive to estimation risk or have a large 

dependence on the most recent observation. Such strategies are expected to produce a large 

turnover.
5
 

Turnover determines the magnitude of transaction costs. Given transaction costs that are 

proportional to the trade, the return of the strategy net of transaction costs is given by 

  1 1 1p p p

t t tR R     , where   stands for the proportional transaction cost.
6
 As a result, 

sample-based strategies that are very sensitive to sample changes may be subject to a large 

decline in portfolio returns when transaction costs are present. I explore this argument by 

studying the out-of-sample efficiency and stability of several popular sample strategies from the 

                                                        
5
Other factors that have a significant contribution to the portfolio turnover are the risk of the portfolio and 

of the individual assets, as Kourtis (2014) shows. 

6
While several alternative different models of transaction costs have been considered in the literature such 

as fixed or quadratic, I adopt the most common form of proportional transaction costs used by Magill and 

Constantinides (1976), Davis and Norman (1990), and Balduzzi and Lynch (1999), among many others. 

This form directly corresponds to brokerage fees and bid-ask spreads. 
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literature. In the following, I present each considered strategy and summarize the findings from 

previous studies with regards to its performance. Table 1 reports all strategies employed in this 

work. 

3.1 Naive diversification (1/ N ) 

Naive diversification stands as the benchmark strategy in this paper, similarly to 

DeMiguel, Garlappi and Uppal (2009). This simple strategy assigns the same weight to each 

asset. Despite the lack of a theoretical foundation, naive diversification is not subject to 

estimation risk which explains its favorable performance compared to several strategies in the 

literature, reported by DeMiguel, Garlappi and Uppal (2009). Other attractive features of this 

strategy include the positivity of the weights and the low turnover due to the constant weights. 

3.2 Sample tangency portfolio (TP) 

The sample tangency portfolio results from replacing t  and 
t  with ˆ

t  and ˆ t  in (5). 

This portfolio results in the worst performance in DeMiguel, Garlappi and Uppal (2009), 

associated with negative Sharpe-ratios in several cases and with very high levels of turnover. 

Kirby and Ostdiek (2012) attribute this performance to the form of the denominator in the 

tangency portfolio weights formula. In particular, 
1ˆ ˆ1 'N t t
  can take values close to zero. As a 

result, the sample tangency portfolio tends to have extreme weights leading to poor out-of-sample 

performance. 

3.3 Sample global minimum variance portfolio (MIN) 

The means t  are generally considered more challenging to estimate than variances-

covariances (see, Merton, 1980; Chopra and Ziemba, 1993). Motivated by this, several authors 
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propose the use of the sample global minimum variance portfolio computed using ˆ
t . In 

particular, Jagannathan and Ma (2003) and DeMiguel, Garlappi and Uppal (2009) find that the 

global minimum variance portfolio outperforms the sample tangency portfolio in several data sets 

of real returns. Kourtis, Dotsis and Markellos (2012) analytically confirm these findings. The 

sample global minimum variance portfolio is more stable than the tangency portfolio over time 

for two reasons. First, it is less sensitive to estimation risk, since it does not involve expected 

returns. Second, the denominator does not attain values close to zero because ˆ
t  is positive 

semidefinite. 

3.4 Sample mean-variance portfolio (MV, MVC) 

The sample-based mean-variance portfolio is the sample counterpart of  (6), estimated 

using ˆ
t  and ˆ t . Besides defining the target return, the choice of 0

t  in practice controls the 

estimation risk and the stability of the sample mean-variance strategy. In particular, as 0

t  

decreases towards ˆMIN

t , then ˆtx  decreases towards 0 and the portfolio weights ˆ MV

tw  become less 

sensitive to estimation errors in ˆ
t . This in turn improves stability. In this study, following Kirby 

and Ostdiek, I choose 0

t  to be equal to the maximum sample mean return between 1/ N  and the 

global minimum variance portfolio. As shown by Kirby and Ostdiek, this setting produces more 

efficient portfolios than the tangency portfolio and 1/ N . I further consider the short-sale 

constrained version of this portfolio denoted by MVC. 

3.5 Ledoit-Wolf minimum variance portfolio (LW) 

All sample-based portfolios discussed above employ the ML estimators of t  and 
t . 

Ledoit and Wolf (2004) develop an improved estimator of the covariance matrix based on the 
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shrinkage methodology of James and Stein (1961). The estimator is a convex combination of ˆ t  

and the identity matrix I. I use this estimator to compute the global minimum variance portfolio 

and denote the resulting portfolio with LW. 

3.6 2-norm-constrained portfolio (NC) 

Portfolio constraints such as the no short-sales constraint are known to improve 

performance in the presence of estimation risk (Jagannathan and Ma, 2003). In this context, 

DeMiguel, Garlappi, Nogales and Uppal (2009) augment (1), (3) with the constraint t tw  , 

where   can be the 1-norm, 2-norm or a matrix norm. They use two criteria to select the 

parameter t . The first involves a cross-validation method for computing the parameter that 

minimizes out-of-sample portfolio variance. The second chooses the value of t  that maximizes 

the last period’s portfolio return on the basis of the positive autocorrelation in monthly portfolio 

returns reported by Campbell, Lo and MacKinlay (1997). DeMiguel, Garlappi, Nogales and 

Uppal find that the resulting norm-constrained minimum variance portfolios can outperform 

1/ N  out-of-sample in terms of risk and risk-adjusted returns. In my analysis, I only include the 

2-norm constrained portfolio (NC) that maximizes last period’s return on the basis of the 

empirical results in DeMiguel, Garlappi, Nogales and Uppal. 

3.7 Three-fund strategy of Tu and Zhou (2011) (3F) 

Tu and Zhou (2011) propose a strategy that diversifies among the tangency portfolio, the 

global minimum variance portfolio, 1/ N  and the risk-free. Their strategy produces higher risk-

adjusted returns than 1/ N . To make the performance of this strategy independent of the risk-free 
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asset and comparable to the remaining strategies in this work, I divide the portfolio weights by 

their sum in order to end up with a portfolio of risky assets only. 

3.8 Volatility timing strategy (VT) 

Kirby and Ostdiek (2012) propose several strategies that mimic some of the attractive 

features of 1/ N , while they take into account the information contained in past asset returns. 

Among these strategies, I use the global minimum variance portfolio that comes for using the 

sample diagonal covariance matrix, i.e., a matrix with the asset variances in the main diagonal 

and zeros elsewhere. This volatility timing strategy is particularly attractive since it offers a very 

low turnover and positive weights. 

3.9 Portfolios based on shrinking the inverse covariance matrix (ICV, ICR) 

The two remaining strategies I include in my analysis are derived by Kourtis, Dotsis and 

Markellos (2012) who apply the shrinkage methodology of James and Stein (1961) directly to the 

inverse covariance matrix and use the resulting estimator to compute the global minimum 

variance portfolio. Kourtis, Dotsis and Markellos propose the use of a linear combination of the 

identity matrix and the inverse covariance matrix from a 1-factor model as a shrinkage target. 

They further calibrate their portfolio strategies in two ways, similar to DeMiguel, Garlappi, 

Nogales and Uppal (2009); the first uses the cross-validation technique to reduce out-of-sample 

variance (ICV) and the second maximizes last period’s return (ICR). They find that the first 

approach offers low levels of risk and turnover while the second results in higher Sharpe Ratio 

and turnover compared to 1/ N  and other strategies from the literature. 
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3.10 Empirical analysis of portfolio efficiency and stability 

3.10.1 Methodology 

I now study the stability of the sample-based strategies presented above along with their 

out-of-sample efficiency in the presence of transaction costs. For this purpose, I employ 5 data 

sets of real monthly excess returns that include 3 data sets that have been used in several previous 

studies. These are the 3 Fama-French factors (3FF), the 10 industry portfolios (10Ind) and the 25 

size and book-to-market portfolios (25SBM). The fourth data set (8Int) consists of US-dollar 

denominated returns on 8 international market portfolios (Australia, Canada, France, Germany, 

Japan, Italy, UK, USA). Finally, I consider a data set of returns on 50 stocks that are constituents 

of S&P500 for the period 01/1981-09/2012.
7
 As a risk-free rate, I adopt the 1-month T-bill rate. 

All data sets are obtained from Kenneth French’s website, except for the stocks data set which is 

obtained from Thomson-Reuters. My selection of data sets allows the evaluation of portfolio 

performance for different numbers and types of assets at both US and international level. Table 2 

includes a list of these data sets along with their respective time periods.  

In each data set, I study how the strategies perform using the rolling window approach of 

DeMiguel, Garlappi and Uppal (2009). In particular, for each month t T , I use the returns for 

the months 1t T  ,..., t  to compute the portfolio weights ˆ p

tw  for each strategy p . In this 

manner, I obtain a time series of monthly excess returns {
1 1 ' ˆp p

t t tr r w  } for all strategies and data 

sets. To assess the out-of-sample efficiency of a particular strategy p , I compute the associated 

mean ˆ p  and variance 2ˆ( )p   of each strategy returns as well as the Sharpe ratio given by:  

                                                        
7
While it is customary to use randomized samples of stocks to avoid survivorship bias, it is more 

appropriate for this work to keep the set of stocks fixed. Changing the stocks periodically would 

correspond to large transaction costs which would not reflect the stability of the considered strategies. 
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ˆ

.
ˆˆ

p
p

p





   (12) 

The latter is my main measure of out-of-sample portfolio efficiency in this work, following the 

literature. To study the statistical significance of the difference between the Sharpe ratio of each 

sample-based strategy p  and 1/ N , I test the hypothesis “
ˆ ˆ

1/0 : 0p NH SR SR  ”. For this test, I 

follow the circular block bootstrap approach discussed by Ledoit and Wolf (2008) with 10,000 

trials and with an average block size of 10 to obtain the respective p-value for the difference. I 

further evaluate the stability of each strategy by computing the average turnover 

1

1

1
,

1
ˆ

M
p p

t

t TM T
 



 


 

  where M  is the total number of observations in the data set. Finally, I 

study how the strategies perform in the presence of transaction costs by estimating the Sharpe 

ratio of the portfolio returns net of proportional transaction costs. 

I present in Panel A of Tables 3-7 the mean, variance, Sharpe ratio in annual terms, and 

the average monthly turnover for each portfolio strategy in absence of transaction costs, as well 

as the Sharpe ratio in the presence of transaction costs (
p ) of 100 bp ( 0.01  ).

8
 One, two and 

three ’*’ next to the Sharpe ratios reflect the statistical significance of the difference from the 

Sharpe ratio of 1/ N  at 10%, 5% and 1%, respectively. I compute all performance measures for a 

                                                        
8
I choose this relatively high value for the proportional transaction cost in most of this work on the basis 

of three reasons. First, this value is close to the actual average trading cost that an investor would 

encounter if she invested in the US equity market directly in the period spanned by the data sets 

considered. This is based on the estimates of Stoll and Whaley (1983), Bhardwaj and Brooks (1992), and 

French (2008). Second, even though transaction costs in the US market have declined over time, they can 

still be very high in an international diversification setting or in other countries according to the findings 

of Domowitz, Glen and Madhavan (2001). Third, a high transaction cost allows testing the value of the 

stability approach for the small investor. To ensure that this value does not affect the validity of my 

conclusions, I further consider the more typical value of 50 bp, also assumed in Balduzzi and Lynch 

(1999), DeMiguel, Garlappi and Uppal (2009) and Kirby and Ostdiek (2012). My conclusions remain 

unchanged. 
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sample size T  of 120 months. Since the computation of the portfolio weights of the 3-fund 

strategy from Tu and Zhou (2011) requires the input of a risk aversion parameter, I have set 3 as 

that parameter.
9
 

3.10.2 Discussion of efficiency under no transaction costs 

When there are no transaction costs, the results are generally in line with the literature. 

With regards to portfolio risk, the strategies based on the shrinkage estimator of the covariance 

matrix or its inverse (LW and ICV, respectively) offer lower variance than the remaining 

strategies, including MIN. The tangency portfolio is the worst performer in terms of Sharpe ratio. 

It offers a higher Sharpe ratio than 1/ N  only for the 3FF and 25SBM data sets while it even 

results in a negative average return of -0.025 for the 50SP set. The Sharpe ratio for the sample 

mean-variance portfolio MV is higher than that of 1/ N  and of the global minimum variance 

portfolio in all data sets, except for the set of 50 stocks. In the latter set, 1/ N  achieves a Sharpe 

ratio of 0.703 compared to a Sharpe ratio of 0.232 for the MV portfolio justifying the need for 

more efficient treatment of estimation risk. 

The five recent strategies that aim to outperform 1/ N  (NC, 3F, VT, ICV, ICR) are indeed 

more efficient, in most cases. In the 10Ind and 25SBM portfolios all five sample-based strategies 

lead to higher risk-adjusted returns. In the 3FF set, the norm-constrained portfolio and the 3-fund 

rule of Tu and Zhou (2012) offer the highest Sharpe ratios, namely, 0.961 and 0.946. However, 

all sample-based strategies are challenged in the sets of international portfolios and 50 S&P 

stocks. In the 8Int data set, none outperforms 1/ N  statistically significantly. In fact, all lead to 

                                                        
9
I have also considered alternative values for the risk aversion parameter that defines TZ without 

important changes in the results. 
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lower Sharpe ratio except for the volatility timing strategy and the ICV portfolio. In the 50SP 

data set, only NC, VT and ICR achieve a higher Sharpe ratio than 1/ N . 

3.10.3. Discussion of stability and efficiency under transaction costs 

Examining the turnover for the strategies reported in Panel A of Tables 3-7 leads to four 

observations. First, all sample-based strategies apart from the volatility-timing portfolio produce 

significantly higher turnover than 1/ N . The tangency portfolio is the most unstable strategy 

producing up to 2000 times the turnover of 1/ N .
10

 Setting the target mean equal to the return of 

1/ N  (as for MV) and adding a short-sale constraint (as for MVC) helps improve stability. For 

example, in the 25SBM data set (Table 6) the turnover for the tangency portfolio (TP), the mean-

variance portfolio (MV), and its short-sale constrained counterpart (MVC), is 38.19, 0.862, 

0.501, respectively. However, 1/ N  is still significantly more stable with a turnover of 0.017. 

Second, the turnover for most strategies is higher in the larger data sets (25SBM and 

50SP). For example, the turnover of the sample mean-variance portfolio MV is 0.036 in the 3FF 

data set, 0.165 in the 8Int set, 0.216 in the 10Ind set and 0.862 in the 25SP set. To understand this 

finding, note that when the number of assets is large, the estimation risk is higher which increases 

the turnover. 

Third, the strategies LW, VT, ICV that focus on reducing the risk of the sample global 

minimum variance portfolio (MIN) also reduce its turnover. This is because these strategies use 

more stable estimators of the covariance matrix or its inverse than the ML estimators. 

                                                        
10

The turnover for the TP strategy takes very high values in some of the datasets (e.g., 25SBM). The 

reason is that the denominator in the formula of the TP weights (
11 ˆ ˆ

N t t
  ) takes values close to 0 in some 

cases, resulting in very high absolute weights that, in turn, magnify the turnover. This problem of the TP 

strategy is also reported by Kirby and Ostdiek (2012, pp. 442). In the same fashion, 3F attains a very high 

turnover in the 8Int dataset. 
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Indicatively, in the set of 10 industry portfolios (Table 5), the turnover for MIN is 0.157 while the 

turnover for LW, VT and ICV is 0.107, 0.025 and 0.114, respectively. 

Fourth, the strategies NC, 3F and ICR from the recent literature that are known to 

outperform 1/ N  in terms of Sharpe ratio are highly unstable over time. In fact, they generate 

higher turnover than all remaining strategies apart from the tangency portfolio. For instance, in 

the 25SBM data set, NC, 3F and ICR respectively have a turnover of 3.794, 1.372 and 3.738, 

while the turnover for all remaining strategies, except TP, is less than 0.863. 

Why are strategies that are known to effectively treat estimation risk so unstable? The 

reason is that strategies such as NC, 3F and ICR aim to improve out-of-sample performance by 

using the available sample more efficiently. Therefore, they tend to be very sensitive to sample 

changes. Especially, NC and ICR are primarily determined by last month’s returns. As a result, 

when a new month of returns enters the sample, the portfolio associated with those strategies may 

have a significantly different composition from the previous period. This difference corresponds 

to a large increase in the turnover. 

A high turnover can heavily affect portfolio efficiency in practice as the results in the last 

column of Panel A in Tables 3-7 indicate. This column reports the Sharpe ratio for each strategy 

adjusted for proportional transaction costs of 100 bp. The results confirm that sample-based 

strategies that generate high levels of turnover can be very inefficient in the presence of 

transaction costs. As expected, the tangency portfolio is again the most inefficient strategy 

leading to negative average return in all data sets besides 3FF. 

More importantly, even strategies that are very effective in dealing with estimation risk 

also lead to negative returns under transaction costs. The Sharpe ratio for 3F is negative in 2 out 
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of 5 data sets. The two strategies that make use of the autocorrelation in portfolio returns (NC, 

ICR) generate negative average return in 4 out of 5 data sets. The sample-based strategies 

perform worse in the data sets of 8 international portfolios (Table 4) and 50 stocks (Table 7). In 

the international data set, NC, 3F and ICR lead to a Sharpe ratio of -0.472, -0.527 and -0.642, 

respectively, while the Sharpe ratio for 1/ N  is 0.327. In the stocks data set, the sample-based 

strategies perform even worse due to the large number of assets and the magnitude of estimation 

risk. In this set, all strategies apart from VT produce a lower Sharpe ratio than 1/ N . In fact, six 

out of ten sample strategies lead to negative average return out-of-sample. I observe that only the 

volatility timing strategy outperforms 1/ N  and this result is not statistically significant. 

Overall, the results in Panel A of Tables 3-7 indicate that most of the sample-based 

strategies that are known to effectively deal with estimation risk tend to be highly unstable over 

time. This instability can even lead to negative returns in the presence of transaction costs. In this 

setting, 1/ N  is superior than most theory-based strategies in both turnover and risk-adjusted 

returns. These findings highlight the need for both stable and efficient sample-based portfolios. 

The next section provides a method for constructing such portfolios. 

4 A stability approach to mean-variance optimization 

The natural approach to promote stability is to penalize turnover in the portfolio 

optimization problem. This can be achieved by modifying the constraint (2) to accommodate 

proportional transaction costs:  

 0

1
't t t t tw w w       (13) 

The resulting portfolio choice problem involves a nonlinear constraint. As a result, the derivation 

of an analytic representation of the optimal weights is no longer feasible and their calculation 

may be hard for a large number of assets. It is also uncertain to what extent the constraint (13) 
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improves the stability and efficiency of the mean-variance portfolio under transaction costs. In 

this context, I study the out-of-sample performance of the sample-based mean-variance portfolio 

(and its short-sale constrained counterpart) that use (13) to account for transaction costs. 

Following the same procedure as in the previous section, the target return is set equal to the 

maximum sample mean return between the 1/ N  and the MIN portfolio. In Table 8, I present the 

turnover and Sharpe ratio net of transaction costs of 100 bp for both portfolios for the 5 data sets 

considered. I include the corresponding statistics for the original portfolios and 1/ N , taken from 

Table 3-7, for comparison purposes. I find that the penalty (13) reduces portfolio turnover to the 

levels of 1/ N . As a result, the net Sharpe ratio increases. However, 1/ N  still outperforms the 

sample-based mean-variance portfolio in 2 out of 5 sets and the short-sale constrained portfolio in 

3 out of 5 sets. 

The results in Table 8 indicate the need for more effective treatment of estimation risk 

under transaction costs. However, the constraint (13) cannot be efficiently applied to many of the 

recent advances in the estimation risk literature for two reasons. This is because the analytical 

form of the portfolio weights, required, for example, by the strategies of Tu and Zhou (2011) and 

Kourtis, Dotsis and Markellos (2012), is not feasible here due to the nonlinearity of (13). Second, 

the constraint (13) involves a term that depends on the unknown means and a term that is 

independent of any unknown parameter. Because of this, DeMiguel, Nogales and Uppal (2013) 

show that potential errors in the estimation of t  may lead to suboptimal portfolios. Therefore, 

when estimation risk is high, (13) can be inefficient in improving portfolio performance under 

transaction costs. The results in Table 8 for the MV strategy in the 50SP data set confirm this 

argument. 



22 

 

To resolve these issues, I propose an alternative method to produce efficient portfolios 

under transaction costs. I explicitly introduce an instability penalty in the mean-variance 

objective function as:  

    min ' ' .
t

t t t t t t t t t
w

w w c w w w w       (14) 

According to (14), the investor aims to minimize both the portfolio variance and the deviation of 

the portfolio weights from the weights before trading ( tw ) at the same time. In this manner, the 

new investor’s objective represents a trade-off between efficiency and stability, controlled by the 

stability parameter tc . To better expose this trade-off, I rewrite (14) as:  

 
2 2

min ,
ttt

MIN

t t t t t
w

w w c w w


     (15) 

where 
t

  is the 
t -norm defined by '

t
tx x x


  .

11
 Then, the higher the stability parameter 

tc , the smaller the deviation of the optimal weights is from tw  and the larger the deviation is 

from the global minimum variance portfolio. 

The main difference between the instability penalty proposed here and the constraint is 

that the deviation from tw  is measured by the 
t -norm instead of the 1-norm. In this manner, the 

instability penalty offers two comparative advantages. First, all terms in the objective function are 

now subject to estimation error in 
t . As a result, there is not an interaction between error-free 

terms and terms subject to errors. Second, the optimal portfolio weights can be expressed in 

closed form for any number of assets, as the next proposition shows: 

                                                        
11

This norm is well defined, because 
t  is positive semidefinite. 
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Proposition 1. Let 
t t tw   be the expected excess return of the portfolio of the investor before 

rebalancing. The solution to the portfolio choice problem defined by (14) and the constraints 

0't tw    and Nw 1 1t
   can be expressed as 

 
1

1 1

MV MV t
t t t

t t

c
w w

c c
 

 
  (16) 

where MV

t  is the solution of the original mean-variance problem (1)-(3) when the target return 

is  0 0 0

t t t t tc      . 

Proof. The first order conditions for this optimization problem are: 

   1 22 1 1 2 0,t t t t N t tt wc w c           (17) 

where 1 , 2  are respectively the Lagrange multiplies for the two constraints. Solving for tw  

gives: 

 
     

1 11 2 1
2 1 2 1 1

t
t t t t N t

t t t

c
w w

c c c

 
     

  
  (18) 

Substituting the above to the constraints (2), (3) results in a linear system of two equations: 

 
     

1 1
0

1 2

' ' 1

2 1 2 1 2 1

t t t t t N t t
t

t t t

c

c c c

   
  

  
  

  
  (19) 

 
1 1

1 2

' 1 1 ' 1
1

2 2

t t N N t N
 

  
    (20) 

Solving the system for 1  and 2  and substituting in (18) gives (16). 

The optimal portfolio is a linear combination of a portfolio in the efficient frontier and the 

portfolio of the investor before trading. This result illustrates the impact of the instability penalty 

on portfolio rebalancing. At each time t , instead of rebalancing the whole investment to MV

tw , the 
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investor will move only 
1

1 tc
 of her investment to the efficient portfolio MV

t  and leave the 

remaining amount intact. This practice can help treat both estimation risk and instability.  

4.1 Treating estimation risk 

The main advantage of the stability approach developed here is that it leads to a simple 

closed-form expression of the portfolio weights. In this manner, it can be effectively combined 

with the recent developments in the portfolio choice literature to treat estimation risk under 

transaction costs. This is because the estimation of the mean-variance weights MV

t  in (16) can 

be performed using any portfolio strategy. Then, for a sample-based strategy p  with weights ˆ p

tw

, there is a stable counterpart given by 

 ˆ
1

1 1

p
p p pt
t t tp p

t t

c
w w w

c c
 

 
  (21) 

If p  is known to be efficient out-of-sample, the stable analogue of p  may also lead to good 

performance. I illustrate this in Section 5 by studying the out-of-sample performance of the stable 

versions of the sample-based strategies considered in this work. 

The imposition of the instability penalty may improve the efficiency of sample-based 

strategies even in the absence of transaction costs. To better understand this argument, I provide 

two interpretations of the instability penalty. First, note that p

tc  can be thought of as the Lagrange 

multiplier of the constraint 
2

t

w w 


  , for some constant   when this constraint is added to 

the original mean-variance problem (1)-(3). In this sense, applying the instability penalty is 

equivalent to imposing a norm constraint. While this constraint has not been considered in the 

literature, Jagannathan and Ma (2003) and DeMiguel, Garlappi, Nogales and Uppal (2009) show 
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that portfolio constraints generally improve portfolio performance under estimation risk. 

Therefore, strategies which are subject to significant estimation errors, such as the tangency 

portfolio may benefit from the instability penalty, irrespective of the presence of transaction 

costs. 

Second, the stable portfolio p

tw  results from diversifying the original sample-based 

strategy p  with a buy-and-hold strategy defined by p

tw . On one hand, typical sample-based 

strategies assume rebalancing in each period and they tend to be contrarian exploiting potential 

stock reversals. On the other hand, the buy-and-hold strategy p

tw  is a momentum strategy 

offering high returns when the asset returns are positively autocorrelated between consecutive 

periods. Therefore, the stable strategy diversifies between a contrarian and a momentum strategy. 

As a result, it improves the performance of the original strategy when serial correlations in the 

market are positive. 

4.2 Treating portfolio instability 

It is straightforward to verify that the turnover of the stable version of a strategy p  given 

in (21) is 

 
1

.
1

p p

t tp

tc
 


  (22) 

Hence, the turnover of the stable portfolio is decreasing with p

tc  being less than the turnover of 

the original portfolio for 0p

tc  . The larger p

tc  is, the more stable the portfolio is and the less the 

proportional transaction costs ( ˆ p

t ) are. In the special case that p

tc  goes to infinity, the investor 

will tend to not trade at all and transaction costs will approach 0 . 
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The selection of the parameter p

tc  is critical for the application of the stability approach. 

In this work, I study two alternative selection criteria. First, in each period t , I set the value of p

tc  

that matches the turnover of the stable strategy to that of 1/ N . This is because 1/ N  is known to 

offer very low levels of turnover, compared to sample-based strategies, while it is the benchmark 

in this paper.
12

 The stability parameter is then given by 

 
1/

1/
ˆ

p N
p t t
t N

t

c
 




   (23) 

which leads to 1/p N

t t  . 

The natural incentive for using the instability penalty is to reduce turnover and the 

associated transaction costs. This also motivates the first selection criterion for the stability 

parameter. However, it is interesting to examine whether p

tc  can be chosen in such a way so that 

it also improves risk-adjusted returns. In this context, I propose a second selection criterion for 

p

tc  that aims to further increase the returns of a given portfolio strategy while keeping the level of 

turnover and the associated transaction costs lower than 1/ N . This criterion uses the reported 

positive autocorrelation of monthly portfolio returns similarly to the works of DeMiguel, 

Garlappi, Nogales and Uppal (2009) and Kourtis, Dotsis and Markellos (2012). In particular, I 

choose the value of p

tc  that lies in the interval , inˆ fp

tc  , so that the resulting stable portfolio 

maximizes the return of the previous month. This is because when portfolio returns are positively 

autocorrelated, the resulting stable portfolio is expected to generate a high return for the current 

month as well.  

                                                        
12

In a similar context, the good performance of 1/ N  has motivated Tu and Zhou (2011) to combine it 

with other portfolio strategies to improve out-of-sample performance. 
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The form of the stable portfolio weights p

tw  implies that in each period, the investor will 

rebalance to the stable portfolio for ˆp p

t tc c  if ˆ' 'p p

t t t tR w R w  or otherwise she will not trade. 

Setting the lower bound for p

tc  equal to ˆ p

tc  ensures that the average turnover will not overcome 

the turnover of 1/ N , keeping transaction costs low. In the case that the investor does not trade, 

the turnover will be zero, further reducing the average turnover and transaction costs over time. 

5 Performance of the stable portfolios 

I evaluate the stability approach by applying it to the sample-based strategies presented in 

Section 3. Panels B and C of Tables 3-7 contain the mean, variance, and turnover of the resulting 

stable strategies as well as their Sharpe ratio in both the absence and presence of transaction 

costs. For Panel B, the stability parameter is selected to match the turnover of the sample-based 

strategy to that of 1/ N  while in Panel C the stability parameter maximizes last month’s portfolio 

return. For direct comparison with Panel A, all performance metrics are derived following exactly 

the same procedure as in Section 3 and under the same assumptions.  

5.1 Performance in the 3FF data set 

This data set contains the returns for only 3 assets leaving less room for estimation risk 

and portfolio instability. As a result, transaction costs have a smaller impact except for the norm-

constrained portfolio and the ICR strategy from Kourtis, Dotsis and Markellos (2012), which 

generate a relatively high turnover. According to the last column of Panel A these two strategies 

produce an annual Sharpe ratio of 0.626 and 0.270 net of transaction costs of 100 bp and they are 

outperformed by 1/ N  which has a net Sharpe ratio of 0.798. It is interesting to see whether the 

instability penalty can improve the efficiency of these strategies under transaction costs. 
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The last column of Panels B and C shows that the stability approach leads to an increase 

in the net Sharpe ratio and stability for all sample-based strategies. The improvement is more 

noticeable for NC and ICR. As shown in Panel B, the transaction costs-adjusted Sharpe ratio for 

the stable counterparts of NC and ICR is 0.840 and 0.846, respectively, higher than that of 1/ N . 

At the same time their turnover decreases to match that of 1/ N  according to the first selection 

criterion for the stability parameter. Most of the remaining stabilized sample-based strategies also 

outperform 1/ N , with the 3F strategy offering the highest Sharpe ratio (0.944). The results in 

Panel C indicate that when the stability parameter is selected, according to the second criterion, 

portfolio performance is further improved to the point that all sample-based strategies, apart from 

the volatility timing strategy, outperform 1/ N . I also observe a large decrease in the turnover 

which is less than 0.016 for all sample-based strategies, while 1/ N  has a turnover of 0.023. 

Another observation made is that the instability penalty appears to improve the Sharpe 

ratio of most sample-based strategies, even in the absence of transaction costs. This finding is 

consistent with the discussion in Section 4. The most significant improvement is observed for the 

ICR strategy where the Sharpe ratio increases from 0.784 to 0.918, exceeding that of 1/ N . I find 

that the increase in the Sharpe ratio mainly comes from an increase in the mean return rather than 

a decrease in the variance. 

5.2 Performance in the 10Ind and 25SBM data sets 

Because the findings are similar, I discuss the results for both data sets (Tables 5 and 6). 

The Sharpe ratios under no transaction costs confirm the findings of previous studies, since all 

sample strategies apart from the tangency portfolio outperform 1/ N . The largest Sharpe ratio is 

observed for the ICR strategy in the 10Ind set (0.908) and for the 3F strategy in the 25SBM set 
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(1.183). However, once I account for transaction costs of 100 bp these strategies result to 

negative risk-adjusted returns. In this setting, 1/ N  offers higher Sharpe ratio than most sample-

based strategies. 

In panels B and C of Tables 5 and 6, I report the Sharpe ratios for the stable counterparts 

of all strategies. In the absence of transaction costs, the results are mixed with some strategies 

performing slightly better and others somewhat worse than their original analogues. However, 

under transaction costs of 100 bp, all stable strategies, but TP, offer higher Sharpe ratios than 

1/ N . The most significant improvement is observed for TP, NC, and ICR that are very unstable. 

For example, in the 25SBM data set the Sharpe ratio of ICR increases from -1.538 to 0.585 when 

the turnover is equal to that of 1/ N  and increases to 0.589 when the stability parameter 

maximizes last month’s portfolio return. In most cases, the two selection criteria for the stability 

parameter lead to similar levels of Sharpe ratio. 

The potential of the stability approach in improving portfolio performance is best 

illustrated by examining the results for the tangency portfolio in the 10Ind data set. As discussed 

in Section 3, this portfolio is very sensitive to estimation errors and very unstable. This is clear by 

the results in Panel A; the Sharpe ratio is comparatively the lowest (0.289) and the turnover is 50 

times higher than that of 1/ N . As a result, the tangency portfolio generates a negative Sharpe 

ratio net of transaction costs of -0.295. However, imposing the instability penalty largely 

improves both the Sharpe ratio and the turnover. Notably, under the second criterion for selecting 

the stability parameter, the tangency portfolio is more stable and efficient than 1/ N , offering a 

Sharpe ratio of 0.524 net of transaction costs and a turnover of 0.014. 
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5.3 Performance in the 8Int and 50SP data sets 

The data set of 8 international portfolios (Table 4) and the data set of 50 stocks (Table 7) 

are the most interesting environment for testing the stability approach. According to the results in 

the first set, none of the sample strategies significantly outperforms 1/ N , while most of the 

strategies are very unstable. The highest turnover comes from the TP, 3F, NC and ICR portfolios 

and leads to negative average returns. Only the VT strategy outperforms 1/ N  in the presence of 

transaction costs. In the 50SP set, the sample-based strategies perform even worse due to the 

large number of assets that increases the magnitude of estimation risk. Apart from VT and NC, 

all strategies perform worse than 1/ N  in terms of both Sharpe ratio and turnover. Due to 

instability, most strategies result in negative Sharpe ratio under transaction costs of 100 bp. 

Therefore, it is interesting to examine to what extent the stability approach improves performance 

in such a challenging setting. 

As Panels B and C of Tables 4 and 7 indicate, the stability approach manages to 

drastically increase the Sharpe ratio of the sample-based strategies while reducing their turnover. 

For the 8Int data set, I find that the Sharpe ratio for all stable portfolios except from TP and 3F is 

higher than that of 1/ N . This holds in both the presence and the absence of transaction costs. 

The Sharpe ratio of TP and 3F still gains a large increase from 0.071 and 0.147 to 0.304 and 

0.324, respectively. The highest Sharpe ratios here are offered from the stable analogues of the 

portfolios based on shrinking the inverse covariance matrix (ICV, ICR). Again, the improvement 

in the Sharpe ratios can be attributed to an increase in average return. Also, as in the 3FF data set, 

the second criterion for the stability parameter is more successful in improving the Sharpe ratio 

than the first criterion. 
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Similar conclusions can be drawn by studying the results for the 50 stocks data set (Table 

7). The stability approach improves all strategies in terms of Sharpe ratio and turnover, even 

under no transaction costs. The improvement is more impressive when the stability parameter is 

selected according to the second criterion. In this case, the Sharpe ratio under transaction costs 

for NC, 3F, and ICR increases from -0.718, -0.035 and -0.707 to 0.704, 0.675 and 0.767, 

respectively. The corresponding turnover decreases from 1.630, 0.577 and 1.680 to less than 

0.048. These three sample-based strategies outperform 1/ N  which has a Sharpe ratio of 0.664 

and a turnover of 0.050. 

5.4 Summary of the results and robustness checks 

The results in this section lead to five conclusions. First, the instability penalty improves 

the Sharpe ratio and shrinks the turnover of all strategies under transaction costs in all data sets. 

The improvement is more prominent for the strategies that tend to produce higher rates of 

turnover. Second, in most cases, Sharpe ratios also improve under no transaction costs. This 

finding indicates the effectiveness of the stability approach in dealing with estimation risk, as 

well. Third, the stability approach increases Sharpe ratios mainly by increasing out-of-sample 

portfolio returns while maintaining similar levels of risk. Fourth, calibrating the stable portfolio 

strategies on the basis of last month’s return is more effective than the first criterion for choosing 

the stability parameter. Fifth, the stable counterparts of most sample-based strategies outperform 

1/ N  under transaction costs in all data sets, in contrast to the original strategies. 

In this work, I assume that (1) the proportional transaction cost is 100 bp; (2) the sample 

size is 120 months; and (3) rebalancing is performed at the end of each month. To study the 

sensitivity of my conclusions to these assumptions, I also consider proportional transaction costs 

equal to 50 bp per trade, a sample size to 60 months and daily rebalancing instead of monthly. I 
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find that my conclusions about the performance of the stability approach are not significantly 

sensitive to the assumptions (1)-(3). As expected, the merits of the stability approach are more 

prominent under a small sample size and daily rebalancing where portfolio instability is higher. 

These results are available from the author upon request. 

6  Conclusions 

In this paper, I jointly deal with two critical obstacles in the application of mean-variance 

portfolios, i.e., estimation risk and instability. I find that most existing sample-based strategies 

underperform 1/ N  in the presence of transaction costs. This is because they are very unstable 

over time leading to high portfolio turnover and transaction costs. Motivated by this finding, I 

propose a new method to promote stability in mean-variance optimization: I augment the 

standard mean-variance objective with a new instability penalty that controls the deviation from 

the portfolio before rebalancing. Compared to traditional approaches in the literature, the main 

advantage of this method is that it leads to intuitive analytical representations of the portfolio 

weights for any number of assets. Therefore, it can be easily applied to stabilize any sample-

based strategy. 

In my empirical analysis I apply the stability method to several sample-based strategies 

from the literature and evaluate their performance in five data sets of real asset returns. I find that 

the stabilized portfolio strategies outperform 1/ N  under most scenarios, even in the presence of 

high transaction costs. At the same time, they offer a turnover which is equal or less than the 

turnover of 1/ N . Overall, my analysis confirms that the new stability approach enables the 

effective application of sample-based mean-variance portfolios under both estimation risk and 

transaction costs. 
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Table 1 

List of portfolio strategies 

This table reports the portfolio strategies considered in the paper.  

Abbreviation  Description 

 1/N  Equally-weighted portfolio 

 TP  Sample tangency portfolio 

 MIN  Sample global minimum variance portfolio 

 MV  Sample mean-variance portfolio with a required return equal to the maximum return between 1/N 

and MIN 

 MVC  Short-sale constrained mean variance portfolio with a required return equal to the maximum return 

between 1/N and MIN 

 LW  Minimum variance portfolio that results from shrinking the covariance matrix to the identity matrix 

(Ledoit and Wolf, 2004) 

 NC  2-norm constrained minimum variance portfolio that exploits positive autocorrelation in portfolio 

returns (DeMiguel, Garlappi, Nogales and Uppal, 2009) 

 3F  The linear combination of MEAN, GMV and 1/N portfolios proposed in Tu and Zhou (2011) 

 VT  Minimum variance portfolio that results from using a diagonal covariance matrix (Kirby and 

Ostdiek, 2012) 

 ICV  Minimum variance portfolio that results from shrinking the ML estimator of the inverse covariance 

matrix to a linear combination of the identity and the inverse covariance matrix from a 1-factor 

model. The estimation minimizes out-of-sample variance (Kourtis, Dotsis and Markellos, 2012) 

 ICR  Minimum variance portfolio that results from shrinking the ML estimator of the inverse covariance 

matrix to a linear combination of the identity and the inverse covariance matrix from a 1-factor 

model. The estimation maximizes last month’s return (Kourtis, Dotsis and Markellos, 2012) 

Table 2 

List of data sets 

This table lists the data sets of monthly excess returns that I use in my empirical analysis. It also reports the time 

period each data set spans. All data are obtained from Kenneth French’s website 

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html), apart from the stocks data set which is 

obtained from Thomson-Reuters. I use the 30-day T-bill rate, also taken from Kenneth French’s website, for the 

derivation of excess returns.  

Abbreviation  Time period  Description 

3FF  07/1969-09/2012  3 Fama-French factors 

8Int  01/1981-12/2011  8 international market portfolios (Australia, 

Canada, France, Germany, Japan, Italy, UK 

and USA)  

10Ind  07/1969-09/2012  10 industry portfolios 

25SBM  07/1969-09/2012  25 size and book-to-market portfolios  

50SP  01/1981-12/2012  50 S&P 500 stocks  

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 3 

Results for the 3 Fama-French factors data set 

This table summarizes the out-of-sample performance of the strategies described in Table 1 in the 3 Fama-French 

factors data set. Panel A reports the average ˆ p , variance 2( ˆ )p  and Sharpe ratio ˆ p  of a strategy’s excess returns 

in annual terms as well as the average monthly turnover ˆ p . It also reports the annualized Sharpe ratio in the 

presence of proportional transaction costs of 100 basis points ( p ). The returns for the strategies are derived using a 

rolling window approach with a sample size of 120 months. The first 120 observations in the data set are held out for 

the initial estimation of the portfolio weights. Panels B and C report the same metrics as in Panel A for the stable 

counterparts of the strategies of Table 1 derived using the approach developed in this work. For Panel B, stability is 

enforced by setting the turnover of the strategy equal to the turnover of 1/ N , as described in the text. For Panel C, 

stability is enforced by maximizing last month’s portfolio return (see text for more details). 

               No transaction costs   Transaction Costs 

Strategy          ˆ p  

 

 2( ˆ )p  

 

 ˆ p  

 

 ˆ p  

 

 p  

1/N         0.0547         0.0042         0.8405         0.0229         0.7983 

Panel A: Original strategies 

TP         0.0651         0.0051         0.9143         0.0509         0.8289 

MIN            0.0415         0.0032         0.7336*          0.0243         0.6833*  

MV             0.0518         0.0033         0.8966*          0.0358         0.8232 

MVC            0.0518         0.0033         0.8966*          0.0358         0.8232 

LW             0.0424         0.0032         0.7473*          0.0237         0.6983*  

NC             0.0562         0.0034         0.9613**          0.1609         0.6263**  

3F             0.0608         0.0041         0.9455*          0.0360         0.8795*  

VT             0.0348         0.0034         0.5956***          0.0231         0.5492***  

ICV            0.0404         0.0032         0.7150*          0.0252         0.6627*  

ICR            0.0473         0.0036         0.7840         0.2553         0.2704***  

                                                                                  

Panel B: Stable strategies (criterion 1) 

TP         0.0678         0.0053         0.9283         0.0229         0.8910 

MIN            0.0419         0.0032         0.7380*          0.0229         0.6899*  

MV             0.0538         0.0034         0.9280*          0.0229         0.8809*  

MVC            0.0527         0.0033         0.9148         0.0229         0.8674 

LW             0.0432         0.0033         0.7543*          0.0229         0.7066*  

NC             0.0547         0.0038         0.8841         0.0229         0.8401 

3F             0.0650         0.0043         0.9850**          0.0229         0.9438**  

VT             0.0352         0.0035         0.5985***          0.0229         0.5520***  

ICV            0.0405         0.0032         0.7146*          0.0229         0.6664*  

ICR            0.0554         0.0039         0.8891         0.0229         0.8456 

 

Panel C: Stable strategies (criterion 2)  

TP         0.0744         0.0057         0.9810         0.0091         0.9666 

MIN            0.0498         0.0035         0.8398         0.0059         0.8278 

MV             0.0611         0.0038         0.9939**          0.0113         0.9720**  

MVC            0.0584         0.0038         0.9542*          0.0073         0.9399*  

LW             0.0503         0.0035         0.8525         0.0059         0.8404 

NC             0.0569         0.0040         0.9008*          0.0142         0.8737*  

3F             0.0698         0.0048         1.0101***          0.0079         0.9963***  

VT             0.0438         0.0037         0.7188**          0.0070         0.7050**  

ICV            0.0486         0.0035         0.8223         0.0061         0.8099 

ICR            0.0586         0.0041         0.9178*          0.0158         0.8881*  

***, **, * indicate that the difference from the Sharpe ratio of 1/ N  is statistically significant at the 0.01, 0.05 

and 0.10 level, respectively.  
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Table 4 

Results for the 8 international market portfolios data set 

This table summarizes the out-of-sample performance of the strategies described in Table 1 in the 8 international 

market portfolios data set. Panel A reports the average ˆ p , variance 2( ˆ )p  and Sharpe ratio ˆ p  of a strategy’s 

excess returns in annual terms as well as the average monthly turnover ˆ p . It also reports the annualized Sharpe ratio 

in the presence of proportional transaction costs of 100 basis points ( p ). The returns for the strategies are derived 

using a rolling window approach with a sample size of 120 months. The first 120 observations in the data set are held 

out for the initial estimation of the portfolio weights. Panels B and C report the same metrics as in Panel A for the 

stable counterparts of the strategies of Table 1 derived using the approach developed in this work. For Panel B, 

stability is enforced by setting the turnover of the strategy equal to the turnover of 1/ N , as described in the text. For 

Panel C, stability is enforced by maximizing last month’s portfolio return (see text for more details). 

               No transaction costs   Transaction Costs 

Strategy          ˆ p  

 

 2( ˆ )p  

 

 ˆ p  

 

 ˆ p  

 

 p  

1/N         0.0577         0.0282         0.3438         0.0241         0.3265 

Panel A: Original strategies 

TP         0.0956         1.8203         0.0708*          8.3554          -0.6725*  

MIN            0.0432         0.0203         0.3031         0.1190          0.2026*  

MV             0.0553         0.0248         0.3512         0.1650          0.2250*  

MVC            0.0569         0.0256         0.3556         0.0939         0.2850 

LW             0.0453         0.0204         0.3171         0.0833         0.2469 

NC             0.0438         0.0231         0.2881         0.9667          -0.4722***  

3F             0.5332         13.2279         0.1466**          20.4056          -0.5265***  

VT             0.0596         0.0265         0.3660         0.0242         0.3482 

ICV            0.0500         0.0205         0.3486         0.0992         0.2652 

ICR            0.0372         0.0230         0.2453         1.1273          -0.6416***  

                                                                                  

Panel B: Stable strategies (criterion 1) 

TP         0.2236         0.5427         0.3035         0.0241         0.2995 

MIN            0.0528         0.0225         0.3525         0.0241         0.3332 

MV             0.0570         0.0237         0.3704         0.0241         0.3516 

MVC            0.0595         0.0264         0.3660         0.0241         0.3482 

LW             0.0509         0.0221         0.3427         0.0241         0.3232 

NC             0.0599         0.0265         0.3681         0.0241         0.3503 

3F             0.0544         0.0283         0.3237         0.0241         0.3065 

VT             0.0598         0.0266         0.3670         0.0241         0.3493 

ICV            0.0570         0.0227         0.3784         0.0241         0.3592 

ICR            0.0635         0.0262         0.3924*          0.0241         0.3745*  

 

Panel C: Stable strategies (criterion 2)  

TP         0.1056         0.2580         0.2080         0.0157         0.2043 

MIN            0.0606         0.0251         0.3825         0.0094         0.3754 

MV             0.0646         0.0258         0.4017*          0.0122         0.3926*  

MVC            0.0601         0.0262         0.3709         0.0124         0.3617 

LW             0.0602         0.0253         0.3785         0.0090         0.3717 

NC             0.0602         0.0265         0.3700         0.0203         0.3551 

3F             0.0549         0.0280         0.3277         0.0102         0.3204 

VT             0.0602         0.0269         0.3670         0.0060         0.3627 

ICV            0.0650         0.0258         0.4050*          0.0098         0.3977*  

ICR            0.0635         0.0263         0.3916*          0.0227         0.3748*  

***, **, * indicate that the difference from the Sharpe ratio of 1/ N  is statistically significant at the 0.01, 0.05 

and 0.10 level, respectively.  
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Table 5 

Results for the 10 industry portfolios data set 

This table summarizes the out-of-sample performance of the strategies described in Table 1 in the 10 industry 

portfolios data set. Panel A reports the average ˆ p , variance 2( ˆ )p  and Sharpe ratio ˆ p  of a strategy’s excess 

returns in annual terms as well as the average monthly turnover ˆ p . It also reports the annualized Sharpe ratio in the 

presence of proportional transaction costs of 100 basis points ( p ). The returns for the strategies are derived using a 

rolling window approach with a sample size of 120 months. The first 120 observations in the data set are held out for 

the initial estimation of the portfolio weights. Panels B and C report the same metrics as in Panel A for the stable 

counterparts of the strategies of Table 1 derived using the approach developed in this work. For Panel B, stability is 

enforced by setting the turnover of the strategy equal to the turnover of 1/ N , as described in the text. For Panel C, 

stability is enforced by maximizing last month’s portfolio return (see text for more details). 

               No transaction costs   Transaction Costs 

Strategy          ˆ p  

 

 2( ˆ )p  

 

 ˆ p  

 

 ˆ p  

 

 p  

1/N         0.0804         0.0220         0.5418         0.0240         0.5223 

Panel A: Original strategies 

TP         0.0774         0.0718         0.2889         1.3037         -0.2954*  

MIN            0.0865         0.0148         0.7107*          0.1570         0.5557 

MV             0.0848         0.0159         0.6734*          0.2160         0.4665 

MVC            0.0766         0.0156         0.6130         0.1143         0.5032 

LW             0.0849         0.0143         0.7114*          0.1066         0.6044 

NC             0.1053         0.0164         0.8221***          0.9483         -0.0755***  

3F             0.0817         0.0170         0.6257         0.1797         0.4613 

VT             0.0818         0.0189         0.5945*          0.0249         0.5727*  

ICV            0.0868         0.0146         0.7191*          0.1142         0.6058*  

ICR            0.1188         0.0171         0.9082***          1.0547         -0.0698***  

                                                                                 

Panel B: Stable strategies (criterion 1) 

TP         0.1476         0.1201         0.4260         0.0240         0.4178 

MIN            0.0897         0.0153         0.7251*          0.0240         0.7017*  

MV             0.0896         0.0173         0.6806**          0.0240         0.6586**  

MVC            0.0781         0.0163         0.6115         0.0240         0.5889 

LW             0.0844         0.0146         0.6997*          0.0240         0.6757*  

NC             0.0820         0.0178         0.6150*          0.0240         0.5933*  

3F             0.0798         0.0172         0.6083         0.0240         0.5863 

VT             0.0819         0.0190         0.5946*          0.0240         0.5736*  

ICV            0.0857         0.0148         0.7044**          0.0240         0.6806**  

ICR            0.0863         0.0167         0.6678*          0.0240         0.6454*  

 

Panel C: Stable strategies (criterion 2)  

TP         0.1231         0.0537         0.5314         0.0141         0.5241 

MIN            0.0901         0.0168         0.6956*          0.0112         0.6853*  

MV             0.0896         0.0185         0.6580*          0.0120         0.6474*  

MVC            0.0789         0.0177         0.5936         0.0124         0.5824 

LW             0.0866         0.0158         0.6885*          0.0116         0.6774*  

NC             0.0823         0.0177         0.6181*          0.0205         0.5996*  

3F             0.0795         0.0179         0.5940         0.0127         0.5826 

VT             0.0817         0.0191         0.5906*          0.0058         0.5855*  

ICV            0.0877         0.0158         0.6964*          0.0115         0.6854*  

ICR            0.0854         0.0169         0.6561*          0.0228         0.6351*  

***, **, * indicate that the difference from the Sharpe ratio of 1/ N  is statistically significant at the 0.01, 0.05 

and 0.10 level, respectively.  
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Table 6 

Results for the 25 size and book-to-market portfolios dataset 

This table summarizes the out-of-sample performance of the strategies described in Table 1 in the 25 size and book-

to-market portfolios data set. Panel A reports the average ˆ p , variance 2( ˆ )p  and Sharpe ratio ˆ p  of a strategy’s 

excess returns in annual terms as well as the average monthly turnover ˆ p . It also reports the annualized Sharpe ratio 

in the presence of proportional transaction costs of 100 basis points ( p ). The returns for the strategies are derived 

using a rolling window approach with a sample size of 120 months. The first 120 observations in the data set are held 

out for the initial estimation of the portfolio weights. Panels B and C report the same metrics as in Panel A for the 

stable counterparts of the strategies of Table 1 derived using the approach developed in this work. For Panel B, 

stability is enforced by setting the turnover of the strategy equal to the turnover of 1/ N , as described in the text. For 

Panel C, stability is enforced by maximizing last month’s portfolio return (see text for more details). 

               No transaction costs   Transaction Costs 

Strategy          ˆ p  

 

 2( ˆ )p  

 

 ˆ p  

 

 ˆ p  

 

 p  

1/N         0.0893         0.0304         0.5123         0.0173         0.5004 

Panel A: Original strategies 

TP         0.4869         0.5918         0.6329         38.1853         -5.3242**  

MIN            0.1448         0.0177         1.0882***          0.8140         0.3462*  

MV             0.1428         0.0177         1.0722***          0.8623         0.2870**  

MVC            0.1282         0.0344         0.6919*          0.5008         0.3595*  

LW             0.1212         0.0159         0.9617***          0.3197         0.6552**  

NC             0.1416         0.0197          1  1.0098***          3.7935         -1.8537***  

3F             0.2010         0.0289         1.1826***          1.3717         0.1968**  

VT             0.0915         0.0279         0.5481*          0.0182         0.5351*  

ICV            0.1267         0.0169         0.9754***          0.5659         0.4488 

ICR            0.1589         0.0250         1.0059***          3.7375         -1.5378***  

                                                                                  

Panel B: Stable strategies (criterion 1) 

TP         0.2561         0.3141         0.4570         0.0173         0.4533 

MIN            0.1158         0.0208         0.8025**          0.0173         0.7881**  

MV             0.1175         0.0219         0.7950**          0.0173         0.7809**  

MVC            0.0845         0.0255         0.5291         0.0173         0.5160 

LW             0.1094         0.0201         0.7707**          0.0173         0.7560**  

NC             0.0978         0.0271         0.5941         0.0173         0.5814 

3F             0.1121         0.0288         0.6607*          0.0173         0.6484*  

VT             0.0914         0.0279         0.5473*          0.0173         0.5348*  

ICV            0.1117         0.0202         0.7865**          0.0173         0.7718**  

ICR            0.0958         0.0257         0.5982         0.0173         0.5853 

 

Panel C: Stable strategies (criterion 2)  

TP         0.2526         0.3162         0.4491         0.0117         0.4466 

MIN            0.1106         0.0211         0.7610**          0.0094         0.7533**  

MV             0.1120         0.0219         0.7573**          0.0095         0.7496**  

MVC            0.0847         0.0248         0.5376         0.0102         0.5299 

LW             0.1037         0.0203         0.7274*          0.0101         0.7189*  

NC             0.0984         0.0270         0.5986*          0.0157         0.5872*  

3F             0.1071         0.0290         0.6286*          0.0115         0.6205*  

VT             0.0919         0.0279         0.5502*          0.0043         0.5471*  

ICV            0.1061         0.0201         0.7486**          0.0093         0.7407**  

ICR            0.0960         0.0255         0.6009*          0.0166         0.5885*  

***, **, * indicate that the difference from the Sharpe ratio of 1/ N  is statistically significant at the 0.01, 0.05 

and 0.10 level, respectively.  
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Table 7 

Results for the 50 S&P 500 stocks dataset 

This table summarizes the out-of-sample performance of the strategies described in Table 1 in the 50 S&P 500 stocks 

data set. Panel A reports the average ˆ p , variance 2( ˆ )p  and Sharpe ratio ˆ p  of a strategy’s excess returns in 

annual terms as well as the average monthly turnover ˆ p . It also reports the annualized Sharpe ratio in the presence 

of proportional transaction costs of 100 basis points ( p ). The returns for the strategies are derived using a rolling 

window approach with a sample size of 120 months. The first 120 observations in the data set are held out for the 

initial estimation of the portfolio weights. Panels B and C report the same metrics as in Panel A for the stable 

counterparts of the strategies of Table 1 derived using the approach developed in this work. For Panel B, stability is 

enforced by setting the turnover of the strategy equal to the turnover of 1/ N , as described in the text. For Panel C, 

stability is enforced by maximizing last month’s portfolio return (see text for more details). 

               No transaction costs   Transaction Costs 

Strategy          ˆ p  

 

 2( ˆ )p  

 

 ˆ p  

 

 ˆ p  

 

 p  

1/N         0.1074         0.0233         0.7031         0.0501         0.6638 

Panel A: Original strategies 

TP         -0.0253         0.1658         -0.0621         2.7254         -0.8265**  

MIN            0.0352         0.0223         0.2353***          0.5227         -0.1862***  

MV             0.0346         0.0222         0.2323***          0.5326         -0.1991***  

MVC            0.0726         0.0135         0.6245         0.1284         0.4919*  

LW             0.0661         0.0135         0.5685*          0.2133         0.3475**  

NC             0.0992         0.0174         0.7518         1.6295         -0.7181***  

3F             0.0641         0.0220         0.4319         0.5765         -0.0352***  

VT             0.0970         0.0178         0.7270         0.0479         0.6841 

ICV            0.0698         0.0134         0.6039         0.2033         0.3921**  

ICR            0.1072         0.0178         0.8031*          1.6804         -0.7076***  

 

                                                                           

Panel B: Stable strategies (criterion 1) 

TP         0.5950         12.7863         0.1664         0.0501         0.1647 

MIN            0.0764         0.0328         0.4215*          0.0501         0.3883*  

MV             0.0842         0.0479         0.3849***          0.0501         0.3574***  

MVC            0.0748         0.0139         0.6342         0.0501         0.5831 

LW             0.0737         0.0154         0.5943*          0.0501         0.5457*  

NC             0.0934         0.0162         0.7342         0.0501         0.6868 

3F             0.0923         0.0184         0.6802         0.0501         0.6358 

VT             0.0972         0.0179         0.7260         0.0501         0.6810 

ICV            0.0751         0.0138         0.6381         0.0501         0.5868 

ICR            0.0929         0.0135         0.7982*          0.0501         0.7463*  

Panel C: Stable strategies (criterion 2)  

TP         0.1822         5.2951         0.0792         0.0293         0.0777 

MIN            0.1018         0.0606         0.4138*          0.0237         0.4022*  

MV             0.1169         0.0909         0.3879***          0.0268         0.3772*** 

MVC            0.0752         0.0146         0.6232         0.0216         0.6018 

LW             0.0765         0.0204         0.5354*          0.0226         0.5164*  

NC             0.0938         0.0161         0.7405         0.0385         0.7040 

3F             0.0953         0.0186         0.6982         0.0265         0.6749 

VT             0.0967         0.0172         0.7371*          0.0081         0.7297*  

ICV            0.0775         0.0150         0.6337         0.0196         0.6145 

ICR            0.1001         0.0152         0.8132*          0.0472         0.7672*  

***, **, * indicate that the difference from the Sharpe ratio of 1/ N  is statistically significant at the 0.01, 0.05 

and 0.10 level, respectively. 
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Table 8 

Performance of mean-variance portfolios that directly account for proportional transaction costs 

This table reports the out-of-sample Sharpe ratio in annual terms (Panel A) and the average monthly turnover (Panel 

B) for the equally-weighted portfolio (1/N), the sample mean-variance portfolio (MV) and its short-sale constrained 

counterpart (MVC) under proportional transaction costs of 100 basis points. The statistics for the sample-based 

portfolios are reported for the case that the portfolios do not account for transaction costs (original) and when they 

directly account for proportional transaction costs (tcs), as described in Section 4. All performance measures are 

derived using a rolling window approach for a sample size of 120 months. The required level of return net of 

transaction costs for the mean-variance portfolios is set equal to the maximum return between 1/N and the global 

minimum variance portfolio. 

Strategy   3FF 

 

8Int 

 

10Ind 

 

25SBM 

 

50SP 

           Panel A: Sharpe Ratio 

1/N   0.7983    0.3265   0.5223   0.5004    0.6638 

MV (original)      0.8232    0.2250*     0.4665   0.2870   -0.1991***  

MVC (original)    0.8232   0.2850    0.5032   0.3592*    0.4919*  

MV (adjusted for tcs)     0.8658    0.3020     0.7065*     0.9132***    0.2052**  

MVC (adjusted for tcs)     0.9096*    0.3241    0.6120*    0.4739   0.6016 

           Panel B: Turnover 

1/N   0.0229         0.0241         0.0240         0.0173         0.0501 

MV (original)      0.0358         0.1650         0.2160         0.8623         0.5326 

MVC (original)    0.0358         0.0939         0.1143         0.5008         0.1891 

 

MV (adjusted for tcs)       0.0100         0.0236         0.0329         0.0382         0.1423 

MVC (adjusted for tcs)     0.0083         0.0156         0.0165         0.0239         0.0651 

***, **, * indicate that the difference from the Sharpe ratio of 1/ N  is statistically significant at the 0.01, 0.05 

and 0.10 level, respectively. 


