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Summary 

Warmer springs advance many phenological events, including flowering time in plants and 

the flight-time of insects [1]. Pollination by insects, an ecosystem service of immense 

economic and conservation importance [2], depends on synchrony between insect activity 

and flowering time. If plants and their pollinators show different phenological responses to 

climate warming, pollination could fail. Information about the effects of warming on specific 

plant/insect mutualisms is difficult to obtain from complex pollination networks [3]. In 

contrast, the extraordinarily specific deceptions evolved by orchids [4] that attract a very 

narrow range of pollinators allow direct examination of the potential for climatic warming 

to disrupt synchrony. Here we show that a sexually deceptive orchid and the solitary bee on 

which it depends for pollination will diverge in phenology with increasing spring 

temperature. Male bees inadvertently pollinate the orchid flowers during pseudocopulation. 

Analysis of museum specimens (1893-2007) and recent field-based records (1975-2009) 

showed that flight date of the solitary bee Andrena nigroaenea is advanced more by higher 

temperatures than flowering date in the deceptive orchid Ophrys sphegodes. Male bees 

emerged slightly earlier than females, which attract male copulatory attentions away from 

the deceptive flowers. Warming by as little as 2° C increased both the probability of male 

flight, and the proportion of females flying in the bee population, before orchid flowering; 

this would reduce the frequency of pseudocopulation and thus lower pollination success 

rate in the orchid. Our results demonstrate a significant potential for coevolved plant-

pollinator relationships to be disrupted by climatic warming. 
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Results 

Using herbarium and field records collected over 159 years, we have already shown that 

peak flowering time of Ophrys sphegodes (early spider orchid) in Britain is advanced by 

warmer springs [5]. O. sphegodes is pollinated almost exclusively by the solitary mining bee 

Andrena nigroaenea, one of the first bees to emerge in spring [6]. We hypothesized that 

flight date of A. nigroaenea would also be advanced by warmer springs.  Although direct 

observations of flight date are available only for recent years, a further hypothesis was that 

they could be used to test for a relationship with mean spring temperature; a significant 

relationship would validate the use of specimen-based records held in various collections 

that have the potential to provide a longer perspective on the effects of climate on flight 

date. Museum specimens also allow male and female bees to be distinguished, and their 

phenological responses to climate to be compared. This is important because female bees 

are expected to be superior to orchid flowers in competing for the copulatory attentions of 

male bees [7, 8], even though orchids may use stronger floral odour signals to attract 

pollinators [9].  

Bees fly earlier in warmer springs 

We examined recent (1975-2009) field records of flight date of A. nigroaenea in the British 

Isles from the database of the Bees, Wasps and Ants Recording Society (BWARS), and 

established relationships with spring temperature in the Central England Temperature (CET) 

record; we also looked for effects of latitude and longitude on flight date (See Experimental 

procedures for details). Flight date was significantly correlated with temperature averaged 

over a range of monthly and 3-monthly periods.  Means for March-May and February-April 

provided the strongest bases for comparison (Table 1). Flight date was earlier in years with 

warmer springs, advancing by a mean of 7.4 days °C-1 increase in mean spring (March-May) 

temperature (Fig. 1A). Adjustment of the regression for latitude and longitude of the 

records made no significant difference to this relationship (7.7 days °C-1).  

We then investigated the same relationships with temperature in the records of 357 

museum specimens of A. nigroaenea held at the Natural History Museum, London, and 

Oxford University Museum of Natural History. Two hundred and eight specimens were male 

bees and 149 were females. On average, museum specimens were flying 3.3 days earlier 
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than those in the BWARS database; they showed a significant advance of flight time with 

mean spring temperature (11.5 days °C-1 mean March-May temperature). This was not 

significantly different from the advance seen in the BWARS data. Again, adjustment for 

latitude and longitude of collection did not significantly alter the advancement (11.3 days °C-

1).  

Temperature responses of male and female bees are different 

Having established the utility of museum specimens for validating flight date responses to 

temperature over the longer timespan, we analyzed the responses of male and female bees 

to temperature separately. Males flew on average 4.05 ± 2.57 days earlier than female bees 

(n.s.). Male flight date responded most strongly to mean temperatures earlier in the season 

(Fig. 1B) than female flight date (Fig. 1C): the best overall predictors for male and female 

flight date were 3-monthly mean temperatures for February-April, and March-May, 

respectively (Table 1). Female bees, however, were more responsive to temperature (flight 

date 15.6 days earlier °C-1 increase in mean March-May temperature) than males (flight date 

9.2 days earlier °C-1 increase in mean February-April temperature).  

Flight dates and flowering dates respond differently to spring warming 

The crucial comparison is between mean flight dates of Andrena nigroaenea, the pollinator, 

and the peak flowering date of Ophrys sphegodes, the recipient of this pollinator activity 

(Table 1). Peak flowering date was estimated using 102 herbarium and field records of 

flowering time between 1848 and 2006 from Robbirt et al.[5]. Advancement of flowering 

was 6.4 days °C-1 mean March-May temperature (Fig. 2). On average, the flight date of male 

bees was significantly earlier (8.0 days, t = 4.1, P < 0.0001) than peak flowering date of the 

orchid, but female flight date was not (4.0 days, t = 1.67, P = 0.096). 

Peak orchid flowering time was predicted for each year for which there was a bee 

record, using the regression model (Fig. 2), and related to recorded bee activity. Male bees 

held in museum collections were collected in 63 different years between 1893 and 2007; 

the probability of the mean collection date of male bees preceding the predicted peak 

flowering date of O. sphegodes increased as mean spring temperature increased (Fig. 3A). In 

the 43 years in which both male and female specimens were collected, the probability of a 
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bee collected on or before the predicted peak flowering date being female was greater in 

years with warmer springs (Fig. 3B). Furthermore, in the 38 years in which bees were 

collected before predicted flowering date, the probability of any individual bee being female 

was greater in years with warmer springs (Fig. 3C). Therefore, following warmer springs, not 

only would more male bees have been flying prior to the flowering of the orchid, but there 

would also have been more female bees attracting the copulatory services of male bees at 

the expense of the orchids. 

Discussion 

This is, to our knowledge, the first clear example, supported by long-term data, of the 

potential for climate change to disrupt critical relationships between species. Long-term 

phenological trends in datasets [10, 11] are easily obscured by inter-annual variation [12]. 

Furthermore, most datasets record the commencement of seasonal events, rather than 

central (peak) values of the events, which are more evolutionarily significant and reliable for 

examining phenological trends [13]. The approach used in this study overcomes both of 

these problems. Recently, specimen-based records held in herbaria and museum collections 

have been recognised as having considerable unexploited potential as a source of reliable 

long-term phenological data on many species [14-18]. For example, the average collection 

date of herbarium specimens of a plant species in any given year accurately reflects its peak 

flowering time in that year [16] . Such data have been shown to be valid proxies for field 

observations of peak flowering date [5], and this study similarly validates the use of 

museum data as proxies for peak date of  flight in bees. It is probable that other types of 

biological specimens can be used to examine other phenological events in a similar way.  

Differing phenological responses of individual species to climate warming may lead 

to the breakdown of co-evolved and incidental interactions between species [19-22], 

because they respond either to different cues or to the same cues at different rates [23]. 

Highly co-evolved insect pollination systems, in which cross-pollination is entirely reliant on 

one or two pollinator species [24], could be particularly susceptible to disruption by climatic 

warming. Many orchid species have evolved visual and olfactory characteristics that attract 

male insects to attempt copulation with the flower, resulting in inadvertent pollination as a 

result of sexual deceit. As seed production in orchids is generally pollinator-limited [25], 
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divergence between the flight date of the insects that are the subject of deception and the 

flowering time of the orchids could dramatically reduce orchid fitness.  

Co-evolved specialist relationships, such as the pseudocopulatory one between 

Ophrys sphegodes and Andrena nigroaenea, are particularly vulnerable to disruption caused 

by climate change. Pollinator interactions generally would be less at risk: where both plants 

and insects have the option of numerous mutualist partner species, differing species 

responses to climate change would be more likely to preserve alternative relationships for 

achieving pollination. However, our relatively simple 2-species system of an orchid and its 

pollinating bee has proved amenable to a thorough examination of the potential for climate 

change to disrupt highly co-evolved relationships between species. It provides strong 

evidence that disruption is very likely to occur. It raises further concerns for the 

conservation of what is already an endangered species of orchid [26], as it does not appear 

to have alternative pollinators whose phenology might respond differently to climate 

change. It also demonstrates that the resources afforded by museum collections have a 

wealth of untapped value that may be exploited by researchers seeking evidence of the 

likelihood of phenological disruptions of co-evolved interactions in the face of changing 

climate. 

Experimental procedures 

Flowering date 

Data for peak flowering time of O. sphegodes were available from two sources: first, 77 fully 

dated herbarium specimens collected between 1848 and 1958 and stored in the herbaria of 

the British Museum and the Royal Botanic Garden, Kew; second, field observations made 

between 1975 and 2006 on a population of O. sphegodes at Castle Hill National Nature 

Reserve, Sussex, UK[26].  

Flight date 

Recent field records of flight time of Andrena nigroaenea in the British Isles, supplied by the 

Bees, Wasps and Ants Recording Society (BWARS) were examined to validate the use of 

museum-specimen records collected over a much longer time-span. Sex was determined for 

almost all of the museum specimens. Records were screened for: adequate dating and 
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legibility; geographical concordance with the CET meteorological record; adequate location 

data; independence; for museum data, reliable sex determination; and, for BWARS, the 

period 1975-2009 to avoid a highly skewed temporal distribution. 2980 (81%) of the 3696 

BWARS records were usable. The museum data comprised 848 specimens of A. nigroaenea 

held at the Natural History Museum, London (BM, 625 specimens), and Oxford University 

Museum of Natural History (OUM, 223 specimens). The final museum data set comprised 

357 (42 %) specimens, with at least one record for each of 81 years within a 115-year period 

from 1893 to 2007.  

Climatic data 

Mean monthly Central England Temperature (CET) records for the period 1848-2010[27] 

were obtained from the UK Meteorological Office 

(http://hadobs.metoffice.com/hadcet/cetml1659on.dat). This is the only complete climate 

record available for the years during which the museum records and BWARS field data were 

collected. Data for Central England are drawn from a triangular area bordered at its apices 

by Bristol, Preston and London[27].  

Analysis 

The orchid flowers in late April or May, and flying period for the bee starts before May and 

continues throughout the flowering time of the orchid. Flowering dates and flight dates 

were analysed to determine whether there were correlations with (a) mean individual 

monthly temperatures in the months December-May, and (b) successive 3-monthly 

temperature means (December-February, February-April, March-May). Relationships with 

individual months were also examined using stepwise (forward) multiple regression, and 

those over longer periods using linear regression. Similarly, we looked for relationships 

between latitude and longitude on flight or flowering time, using the centroid of the 

Watsonian vice-county of collection for each specimen. The sensitivity of temperature 

responses to geographic location was examined using linear regression of residuals after 

controlling for latitude and longitude. 
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Table 1: Correlations of flight date of Andrena nigroaenea, and flowering date of Ophrys sphegodes, 

with mean temperature 

Period of temperature 

mean 

Flight date of Andrena Flowering date of 

Ophrys 

 BWARS 

data 

(1975 – 

2009) 

Museum data  

(1893 – 2007) 

Herbarium and field 

data  

(1848 – 2006) 

  

n = 2980 

Males 

n = 208 

Females 

n = 149 

 

n = 102 

1 month means:     

June  0.030      (4)  0.145* -0.168* -0.146 

May -0.125** (5)  0.039 -0.204** (3)  -0.308** 

April -0.147** (2) -0.135* -0.254** (1)  -0.197* 

March -0.159** (3) -0.272**  (2) -0.245** (2)  -0.430** 

February -0.186** (1) -0.354**  (1) -0.171* -0.215* 

January -0.097** -0.243**  (3) -0.113 -0.114 

     

3 month means:     

March - May -0.210** -0.237** -0.408** -0.477** 

February - April -0.216** -0.396** -0.309** -0.381** 

December - February -0.144** -0.306** -0.154* -0.159 

     

Maximum r2 for 

multiple regression 

 0.054  0.169  0.167  0.232 

 

Temperatures were calculated for different periods: monthly from January to June; and three 3-

month periods. Also shown is the maximum r2 for stepwise forward multiple regressions of flight 

date and flowering date against individual monthly mean temperatures 

** P < 0.01; *P < 0.05 (one tailed)  

 (1) (2) (3) (4) (5) = order of inclusion of monthly mean temperatures in stepwise (forward) regression  
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Figure 1, Relationships between flight date for Andrena nigroaenea (days after 1 March) and 

mean spring temperature.  (A) Data from BWARS, 1975-2009 in relation to mean March-

May temperature (y =140.6 – 7.419x, r2 = 0.044, P < 0.0001, n = 2980);  (B) data from male 

museum specimens, 1893-2004, in relation to mean February-April temperature (y = 122.8 – 

9.168x, r2 = 0.157, P < 0.0001, n = 208); (C) data from female museum specimens, 1900-

2007, in relation to mean March-May temperature (y = 202.3 – 15.64x, r2 = 0.167, P < 

0.0001, n = 149).  
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Fig. 2, 

 

Figure 2. Relationship between flowering date of Ophrys sphegodes (days after 1 March) 

and mean spring (March-May) temperature derived from combined herbarium and field 

data, 1848-2006 (y = 130.0 – 6.423x, r2 = 0.23, P < 0.0001, n = 102). Field records, ○; 

herbarium specimens, ●.  
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Figure 3. Effects of mean spring (March-May) temperature on flight date of Andrena 

nigroaenea relative to the predicted flowering date of Ophrys sphegodes: (A) fraction of 

years in which the mean collection date of male bees preceded the predicted peak 

flowering date (based on 63 years between 1893 and 2007 in which male bees in museum 

collections had been collected); (B) proportion of females amongst bees collected on or 

before the predicted flowering date, in the 43 years in which both males and females were 

collected; (C) the probability of a bee being female in 38 years in which both males and 

females were collected, and any bee was collected before or on the predicted flowering 

date. Parentheses above bars in (A) and (C) refer to number of years of collection; 

parentheses above bars in (B) refer to the combined number of male and female collections, 

on or before predicted flowering date, within the temperature range. 


