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We consider Radon measurgsand pairs(k, A) of cardinals such that among evetymany 19

positive measure sets there armany whose intersection is nonempty. Such families are connect&t
with the cardinal invariants of the ideal pfnull sets and have found applications in various subject&
of topological measure theory. We survey many of such connections and applications and give $dme
new ones. In particular we show that it is consistent to have a Corson compact space carrying a Radon
measure of type > X1 and we partially answer a question of Haydon about measure precalibres24
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Combinatorial properties of families of sets and their intersections are a well studied
subject in set theory and topology, starting from the Delta-System Lemma to numersus
chain conditions of topolical spaces. The general ilk of such investigations is that ose
is given a large family of sets with a certain common property, for example, a family
of k many sets of some fixed size, and one looks for a large subfamily with strosag
intersection properties: being centred, independent, et cetera. In addition to its intrigsic
40
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- 41
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combinatorial interest, theotion has become very central to independence proofs because
of its applications to chain conditions in forcing. 2

Calibres and precalibres form a fruitful area of interest in general topology. The
monograph by Comfort and Negrepontis [9] is a very general reference, of particdlar
relevance to the present paper is its Chapter 6; Tl [41] gives an excellent recent 5
survey; see also Turaaki [42] and Juhasz and Szentmikléssy [27]. 6

The present paper studies precalibres of measure algebras or, equivalently, calibrés of
Radon measures on topological spaces. The exact notions we work with are definéd in
Section 2, but for the sake of this introduction the reader may concentrate on the situatién in
which one is given a family of many positive elements in some measure algebra and facéd
with the question of the existence of a subfamily.ahany whose all finite intersections are'*
nonzero. Given the relevance of chain conditions in mathematics it is not at all surprising
that this and similar notions have found their way into a number of applications regardihg
measure algebras and topological measure theory. We give some of them in the referéhces
and explain some in the paper, whilst including some new applications in Section 5. *°

In contrast with the general theory in the context of pure sets or the one of topologlcal
spaces, where extensive literature existsialseems to be a lack of the similarly generai
treatment of the concept of precalibres in measure algebras. We hope that this paper “will
narrow that gap. We of course hasten to add that many authors have already c0n5|égered
precalibres of measure algebras within various contexts and we include their results here
in particular the list includes Cichon et al. [6], Cidhand Pawlikowski [8], Cichid [7],

Fremlin [16,17]. In the fifth volume of his extensive monograph on Measure Theory in
preparation as [24]), D.H. Fremlin surveys selerardinal invariants related to measures,,
In particular, Chapter 524 of [24] contains many of the facts we discuss here.

Our intention is to present a unified treatment of the subject including some of gge
results mentioned in the references above and some new results, while avoiding as much
as possible an unnecessary repetition of what is already available in the literature. Striking
the right balance has not always been easy and we apologise in advance to the authors
of the many related theorems that have lpeén mentioned for the lack of space. Among,
new results presented here there are two results on cardinal numberswhich are
precalibres of measure algebras; see Sectidindorem 4.3 partially answers a question of,
Haydon about measure precalibres; Theorenw&d inspired by Shelah’s result from [40] 55
on independent families in measure algsbia turned out that the methods developed,
in the proof of Theorem 4.7 could be used to give a somewhat easier proof of Shelgh’s
theorem which also has slightly weaker assumptions than the original; see Section & In
Section 5 we prove that it is consistent to have a Corson compact space carrying a Radon
measure of type > N. 38

The paper is organised as follows: Section 1 gives all the necessary backgroundsand
is divided into the following subsections: Radon measures, measure algebras, ideals of
null sets and combinatorics. Section 2 introduces the main notions, those of calibres
and precalibres and shows that for our purposes they are more or less equivaient.
Section 3 studies the connections between precalibres and the ideals of null sets, mestly
concentrating on the situation below and at the continuum. The situation aiostidied 44
separately in Section 4. In Section 5 we give some applications. Section 6 is devoted testhe
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independent families in measure algebras and in particular to Shelah’s theorem mentioned
above. Finally, Section 7 gives some open questions. 2

3
4
1. Background and the notation 5
6

In the interest of clarity we include a section giving our notation and some basic facts

that will be used later. 8
9
Notation 1.1. 10
11

(1) Greek letters, A andd always stand for infinite cardinals. 12

(2) x4 denotes the characteristic function of the detFor a setA contained in some =
universal setB which is clear from the context, we writé® for A and A° for the
complement ofA. o

(3) For a sefX of ordinals X denotes the set2 endowed with the product topology. The

. 17
subbasic clopen sets here are s

def 19

ClLx={fe*2 f=1} forie{01).

20

If X is clear from the context then we wri@,ﬁ for Cfx,x. We also write (following (2)) 2
C, for C1. 2

(4) ForZ C X we denote byrz : 2X — 27 the coordinatewise projection. zj

25

1.1. Radon measures »

27
We remind the reader of some basic concepts from topological measure theory ang3 fix

the notation concerning product measures on Cantor cubes. 2

30
Definition 1.2. We say thafu is a Radon measuren a (Hausdorff topological) spade 5,

wheny is a complete finite measure defined on semalgebraX of subsets of", and 2

33

(i) every open subset df is in X' (so thatX contains the Bores-algebra ofT); 2
(i) w(A)=sudu(K): K C A, K compac} for everyA € X. 35

36
Such a measure is calladRadon pobability measuréf u(7) = 1. 37

38

Notation 1.3. For an arbitrary sex, by the measuren 2¥ we mean the completed productss
measure on? induced by giving each subbasic clopen set meas(eliwill be denoted 4o
by ux, and its domain by 41
42

We shall now recall some basic propertiesof; more facts on measurgsy can be 43
found in Fremlin [16, 1.15-1.16]; see also Fremlin [22, 254]; [23, 416]. The following
definition is crucial in understanding product measures. 45
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Definition 1.4. A set A c 2X depends only on the coordinates in or is determined by the

coordinatesirZz C X iff A=m [n’Z[A]] 2
3

In other words, ifA € 2¥ is determined by the coordinates#hC X thenx € A and 4
yiz = x|z imply y € A for y € 2X. Clearly every clopen subset of 2s determined by the 5
coordinates in some finite set. 6
;

Fact 1.5. Let X be an infinite set and let us writE = Xy andu = wx for simplicity. 8
9

(1) Every compacG; set in2X is the intersection of countably many basic clopen sef§
and hence is determined by the coordinates in a countable subXet of

(2) For everyA e ¥ we have 12

13
n(A) =sup{u(K): K C A, K is acompacGs}. (¥) 14

15
(3) Every open subset @ is in ¥, sou is a Radon pobability measure o2*.

(4) For every subse# of 2X of positive measure there is a compazt set F which is
determined by countably many coordinates and satigfiesA and u(F) > O. 18

(5) For every A € X there is B € X such thatB is determined by countably many
coordinatesB C A andu(A \ B) =

(6) ForeveryA € X ands$ > Othere is a clopen seaf such thatu(A A C) < §.

16
17

20
21

22
Proof. (1) LetC be a compaa;-set such tha€ =, _, O, where eact0, is open.By .

compactness we can find for eacla basic clopen set, such thatC € C, € 0,. Hence ,
C= ﬂn <w C” 25
(2) Let F be the family of thoset € X for which (x) holds. ThenF contains all clopen
sets andF is a monotone class (i.e., is closed under increasing unions and countgple
decreasing intersections). SB contains the smallest monotone class generated by the
clopen sets; i.e. contains the product-algebra, and hence its (measure-theoretic),
completionX'.
(3) This follows from the fact that the measure is completion regular, which is a weﬂ
known theorem of Kakutani from [28]. 2
(4) and (5) follow immediately from (1), (2). To check (6) first find a comp&ict A ,,
such thafu(A \ K) < §/2; next find a clopen s&f O K with (C \ K) <48/2. ThenCis ,,
as required. O 35
36
Fact 1.5(4) will be in frequent use, which is why we state it explicitly above. Actually
we do not use Kakutani’s theorem anywhere—we may think gfas the usual product sg
measure, but it seems to be worth recalling thatis really Radon. 29
40
1.2. Measure algebras a1
42
Concerning measure algebras we generally follow Fremlin [16] but again we tacidy
assume that all measures are finite, soabyneasure algebrave mean as-complete 44
Boolean algebra equipped with a finite strictly positive and countably additive functionéd.
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Throughout this subsection assume thas a (finite) complete (i.e., all subsets of any:
set of measure 0 are measurable) measure with doXand®l is its measure algebra. 2
For A € X we denote byA’ the corresponding element 2f Recall that difting of uis 3
a Boolean homomorphisgm: 2 — X such thatp(0) = ¥ andgp(a)' = a for everya e 2. 4
Part (2) of the following Fact is one of the most useful properties of liftings. 5

6

Fact 1.6. 7
8

(1) Every(finite) complete measure admits a lifting. 9
(2) If p:A — X is alifting then for every familyas: £ < «} C A the unionU$<K @(ag) 10
is measurable, and in fact there is a countableC « such that the measure of 11

Ug <« ®(ag) is the same as that ¢f); . ; ¢ (ag). 12
13
Proof. For (1), which is a celebrated result with a long proof and a long history see [186,
Theorem 4.4]. 15
To check (2) let 16
17
7= U(p(as), r:sup{,u(Uw(aQ): IG[K]RO}. 18
E<k tel 19

Then there is a sef € [k]™ such that writingA = Uees ¢(ag) € ¥ we haveu(A) =r. 0

Therefore for every < « the setp(ag) \ A is null. This implies thatiz = ¢(az)" < A',
andg(ag) C9(A’). HenceA € Z C ¢(A"); asg(A’) \ A is of measure zero this gives that*

Z € X and that/ is as required. O z
24

21

The Maharam type (2() of 2 (or of a measure itself) can be defined as the density®
of the metric spacé, p), wherep(a, b) = iu(a A b). In other words 26

27
@) =min{|C|: C< ¥, Cis A-denseinX}, 28

whereC is said to beA-dense inY if for every E € X and every > 0 there isC € C such 29
thatu(E A C) <&. 30
A measureu is Maharam homogeneous justhomogeneous it has the same type 31
on every E C ¥ with u(E) > 0, and then we also say ahits measure algebra is 32
homogeneous. 33
34

Notation 1.7. For everyx we denote by, the measure algebra pf.. The set of positive 35
elements of a Boolean algebtiaendowed with the induced operations is denote@ibly 36
37

Recall that for every, 2, is a homogeneous measure algebra of typ€he essence s3s

of the Maharam theorem (see [16, p. 908, Paragraph 1]) states that & homogeneous s9
probability measure of type then its measure algeb®ais isomorphic t®(,.. Recall also 4o
the following (see [16, Corollary 3.12]): 41
42

Fact 1.8. If (2, ) is a probability measure algebra of typethen there is a measure 43
preserving homomorphisrfi: A — 2, (SO uk[f(a@)] = n(a) for everya e A and f is
necessarily injective 45
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1.3. Ideals of null sets

Let V be a proper ideal of subsets of a spacwith | JA = X. Recall that the cardinal
numbers addV'), covV') and no\V') of A/ are defined as follows

add\') = min{|€]: 5gN,U8 ¢ N},

cov(N') = min{[€][: Sg/\/,US:X},
nonN) =min{|Y|: Y ¢ N}.

It is clear that adg\V') < cow(V'), and addV ) < non(N'). The ordering of cog\')  1©
and nor\N') depends on the model. See, e.g., the proof in [4] that Mathias forcitg
increases naiV') and leaves intact cgw’) where) is the ideal of Lebesgue null sets, 12
while [4] also gives a model (Model 7.5.5, pg. 384) in which &) < cow(\). In fact 13
a fundamental example of such a model is provided by Solovay’s random real mode¥! If
V &= GCH and V[G] is the extension obtained by addirgrandom reals fok > &; 15
regular, then iV [G] there is a Sierpiski set of siz&¥; and 2° is not a union of fewer than 16
« null sets. SAR1 = addN') = nonN') < covN') = «. This may be found in Kunen’s 17
exposition [30], including Theorem 3.18 where one takédor S, and Theorem 3.19 18
where the notation BAIREV) is used to say that c@¥) = «; see also Remark 1.10(6) 1°
below. We shall consider these cardinal functions on the ideals @full sets. 20

21

Notation 1.9. For everyx we denote byV, theo-ideal{N C 2¢: 1, (N) = 0}. 22
23

© 0O N O a b~ W N B

Basic facts concerning ideals, and their cardinal functions, as well as furtheP4
references, may be found, e.g., in Fremlin [16]; Vaughan [43] surveys many other cardihal
functions related to combinatorics, measure and category; Kraszewski [29] offers a detéfled
discussion on cardinal functions on a larger class-ideals in Cantor cubes. 27

A useful fact is that ifu is a Radon measure then the cardinal functions of the ideal #f
u-null sets can be expressed in terms of the measure algebraeé Fremlin [16], Section 2°
6 (in particular, Theorem 6.13). This implies that if two Radon measures have isomorhic
measure algebras, then the cardinal invariants agree on their corresponding ideals oftnull
sets. 32

33

Remark 1.10. 34
35

(1) If NV is ac-ideal, in particular if\/ is the ideal of null sets for a non-trivial measure 36
then add\') > Rg (hence coyNV'), non(N') > Rg as well). 37

(2) The functiornx - cov(N,) is nonincreasing; in particular cQVy,) > cov(Ny,) and 38
the equality need not hold (addityy, random reals over a model of GCH produces &°
model of this; see [29, Remark after Theorem 5.5]). 40

(3) The functione — non(N,) is nondecreasing; however, 41

non(Ny,) = non(Ny,) = non\y,), s

where the first equality is standard while the latter is a striking result due to Kraszewski
(see [29, Corollary 3.11]). 45

43
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(4) nonNVy,) < cov(NVy,) is relatively consistent (adding,, random reals over a model 1
of GC H produces a model of this; see [29, Remark after Theorem 5.5]).

(5) The existence of an atomlessly measurable cardinal implies= non(Ny,) <
cov(Ny,) (see [17, 6G and 6L]).

(6) Bartoszyiski et al. [5] (see also [4, Theorem 3.2.57]) construct a madelf set
theory such that adding a random real over it produces a mwp&] that satisfies
addNy,) < cov(Ny,).

© 0O N o g b~ W N

1.4. Combinatorics
10

When dealing with calibres and precalibres one often encounters the combinatorial:

System Lemma. We quote the instances of it that we need. The complete references, proofs
and a historical discussion can be found in [9]. We note only that Theorem 1.12 has a meich

simpler proof than 1.13 and was proved about thirty years earlier (1940s versus 19703).
15

Definition 1.11. We say thak is X1-inaccessibland writeR1 < « iff foreveryt <« also 16
™0 < . 17
18

In particular forR-inaccessiblg we haveR; < ¢ = 2% < ., 19

20

Theorem 1.12. If « is regular and®; <« « then for every familyfJ:: & < «} of countable 5
sets there is{ € [«]* such that the familyJe: & € X} forms aA-system with some rodt, 5,
meaning that for ever§ # n € X we haveJ: N J, = J. 23
24

Theorem 1.13. Suppose thad is a singular cardinal satisfyingt1 < 6. Then for every 5
family {J,: @ < 6} of countable sets and for any increasing sequence of regtjar ,4
inaccessible cardinalg;: i < cf(9)), converging tod, there are(l;: j < cf(d)) and

(R;j: j <cf(9)) such that 28
29

(i) 1; €[01% are pairwise disjoint 20

(i) JuNnJg=R;fora+#pel;;and a1
(i) JunJg<SRyforael;,pelypandj< . 2

33
Another fact abouk-inaccessible cardinals that wilk useful to us is contained in the ,,

following simple Lemma, which we give with a proof. 35

36
Lemma 1.14. Let« be an®i-inaccessible cardinal ofauntable cofinality. Then there is .
an increasing sequenge,,: n < w) of regularfXi-inaccessible cardinals with limit. 28

39

Proof. Let (p,: n < w) be any sequence of cardinals increasing t8y induction onn

definer,, «, as follows. a
. def .
Let rg = Ro. For anyn, assuming that, < « let «, =(r,§°)+. Thenk, <k is regular, 4

. . def
and ift < k, thent < 7,° S0T™0 < 7,° < k,,. We definer, 1 = max oy, kp}. O 43
44

We shall also use the following Theorem of Engelking and Kartowicz from [15]. 45
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Theorem 1.15. Suppose that = 6™°. Then there is a family of functiong,: y < 2’} in
9 such that for all sequenceés,: n < w) in 2’ and (¢,: n < w) in 6, there is¢ < 6 such
that f,, (¢) = ¢, holds for alln.

1
2
3
4
5
2. Calibresand precalibres 6
;
In this section we introduce the definitiofi the precalibre of a measure algebra and
note some elementary properties. With only a few exceptions, the facts given beloweare
either basic, from the literature or belong to the mathematical folklore. 10
11
Definition 2.1. If « > A are cardinal numbers aftlis a Boolean algebra we say that ) 12
is aprecalibre of 2 iff for every family {as: & < «} of (not necessarily distinct) elements13
of 2T, there isX € [k]* such thatias: & € X} is centred, i.e./\gej ag # 0 for any finite 14
J C X. Inthe case = A we simply say that is a precalibre ofl. 15
16
We shall consider this concept mainly foreasure algebras. Notdso that there is 17
interesting combinatorics involving calibke, «, n) for measure algebras, see 6.12—-6.17
of [9] but we shall not go into it for reasons of space. It will be convenient to use tkre
following notation. 20
21
Notation 2.2. We write pg («, 1) to say thai(x, 1) is a precalibre ofly (i.e., the measure 22
algebra of the usual product measpgeon 2'). Let pax, A) mean that pg(«, 1) holds for 23
every cardinal numbe. 24
25
We shall use some obvious conventions in the ¢asec. In particular, we say thatis 26
a precalibre oRly iff pc, («x, ) holds. 27
Notice that if 20 is any nonatomic Boolean algebra th@ncontains a sequence of 28
pairwise disjoint nonzero elements, 8¢ is trivially not a precalibre ofl. HenceRg is 29
not a precalibre of any honatomic measure algebra. One can similarly check that)pc 30
does not hold for any with countable cofinality. The ftowing version of the notion of a 31
precalibre enables us to avoid such trivialities when dealing mitlith cf(x) = Ro. twas 32
suggested by R. Haydon. 33
34
Definition 2.3. If ¥ and A are cardinal numbers an@, 1) is a measure algebra we 35
say that(x, A) is a measure precalibre ofl iff for every {as: & < «} C U satisfying 36
infe u(ag) > 0 (and again not necessarily consisting of distinct elements), theresis
X € [«]* such thafas: & € X} is centred. 38
39
Note that(Rg, Ro) is a measure precalibre of everyeasure algebra (see the remarko
after the proof of Lemma 2.5), and also that as opposed to the notion of precalibres which
has a well-known analogue in the theory a@ihtpact ccc spaces, the notion of a measure
precalibre seems to be restricted to the context of measures. 43
Our notation for measure precalibres follows the one we use for precalibres, so4wve
write mpg, («, A) to say thatx, ) is a measure precalibre &, and mp¢x, 1) means that 45
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mpg («, ) holds for every cardinal numbeér In a similar manner we define wheritself 1

is a measure precalibre. 2
It is often convenient to use the languageraasure spaces rather than that of measuse
algebras. 4

5
Definition 2.4. If ¥ anda are cardinal numbers and, X, n) is a finite measure space wes
say that(x, A) is acalibre of w iff for every subfamily{A¢: & < «} € X of (not necessarily 7
distinct) sets of positive measure thereXse [«]* such that{As: & € X} # 0. The s
definition of ameasure calibre of is similar, but the setfAs: & <} € X we start with o
are required to have measure bounded away from 0. 10

11

In our context it turns out that precalibres and calibres express the same property in

slightly different languages: 13

14
Lemma 2.5. Let 2 be the measure algebra of a measure spéteX, 1). Then the 15

following are equivalent 16
17

(i) (x,2) is a precalibre of; 18
(i) for every family{Es: & < «} C X of not necessarily distinct sets of positive measurey
there isX € [«]* such that the familyEe: & € X} is centred. 20

21
Consequently, ifc is a Radon measure thgr, 1) is a precalibre of2( if and only if 2
(x, ) is a calibre of . A similar statement holds for measure precalibres and measure
calibres. 04
25
Proof. The implication from (i) to (ii) follows immediately from the fact that{if:": £ € 2
X} CcAis acentred family then so {£:: £ e X} C X. 27
To prove the reverse implication, notice first that without loss of generality we can
assume that7, X, u) is a complete measure space. let2l — X, be a lifting (SO 2
@(a) = a for everya € 2; see Fact 1.6(1)). Now ifas: & < «} is any family in2A+ 5
then{p(as): &€ <k} is a family of sets of positive measure so ther&ig [«]* such that 3
{p(ag): & € X} is centred. This implies that the familye: & € X} is centred (agp isa 3
homomorphism ang(0) = ¢). a3
If 1 is a Radon measure anfds: & < «} is a family of sets of positive measure then,
by 1.2(ii) we may assume that eagl is compact, and hence every centred subfamily hag
nonempty intersection. 0 6
37
As one can notice from the above, the fact that in the definition of calibres apd
precalibres the family we start with does not necessarily consist of distinct elemegts
appears rather often, so we shall take it for granted in every such instance. To contigue,
it is a classical fact from measure theory that is a measure calibre of every finite ,;
measurg(T, X, u). Recall the proof: writing for a given sequen¢g,: n < w) of sets ,,
whose measures are bounded away from @ by 43

E:ﬂ UEk, 44

45
n<w k}n
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we haveu(E) > &, so E is nonempty. Anw € E is in infinitely many sets, so we are
done. It is also easy to verify the following.

Observation 2.6. Suppose that ¢£) > RXg and letl be any measure algebra.

1
2
3
4
5
(a) Forevery. < k of uncountable cofinality, A) is a measure precalibre 2fiff («, 1) 6
is a precalibre of!. !
(b) (k, Ro) is a precalibre ofl. 8
9
We now collect some implications about various calibre pairs and note some cases when

basic cardinal arithmetic af anda leads to a conclusion about the calibre fairi). E

13

Lemma 2.7. For infinite cardinal numbers, A, 6 the following are satisfied ”
15

(i) if pcy(x, 1) thenpgy(x’, ') whenevek’ >k and1’ < A; 16
(i) if pg (x, 1) thenpgy (x, 1) whenevep’ < 0; 17
(iii) if © > 6%0 thenpg, (i, k). 18

19
Proof. (i) is obvious; (ii) follows from the fact thaly: is embeddable as a subalgebra of,

2y wheng’ < 6. Part (iii) follows from Fact 1.5 (4), because there are aily compact ,,

Gs setsin g (see Fact 1.5(1)). O 2
23

The following fact is very useful; it has been noted by D.H. Fremlin (unpublished). 24

25

Theorem 2.8. If k¥ > A > R then the following are equivalent 2
27
28
29

() (x,7) is a precalibre of every measure algebra
(i) pc(x, A);
(ili) pc, (k. 4).

30
31

The analogous equivalence holds when we replace ‘precalibre’ by ‘measure precallbr% .
33

Proof. Trivially, (i) implies (ii), and (ii) implies (iii). z:

Assume now pg(k, A) and suppose thdt:: £ < «} is a family of nonzero elements .
in some measure algeb®a Let B be the complete subalgebra 2f generated by the ,,
family {ag: & < «}. Then®B is a measure algebra of Maharam typer, and there is a 44
homomorphic measure preserving embedding — 2, (see Fact 1.8). Since pGc, A) 5
holds, there isX € [«]* such that{¢ (az): & € X} is a centred family. Thetfug: & € X} 4
is centred too. The same argument d@napplied to measure precalibresgapreserves ,;
measure. O 2

43

Finally we note an obvious connection with topological calibres, which follows
immediately from the Stone representation theorem. 45
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Remark 2.9. Assume thatx, A) is a calibre of all ccc compact spaces (i.e., whenever we
havex many nonempty open sets in a compact ccc space then we can chobgem 2
having a nonempty intersection). Theésn 1) is a precalibre of all measure algebras. 3
4
5
6

3. Precalibresand ideals of null sets
;
In this section we analyse calibre-like properties in terms of suitable properties of idéals
of null sets. This enables us to discuss whealsmmcountable cardinals are precalibres of
measure algebras. The discussion is based on €fghand Fremlin [17]. 10
11
Definition 3.1. Suppose thalV is ac-ideal of subsets of . A family R = {N:: & <«} C 12
N is a(k, »)-Rothberger family fop\” if for every X € [«]* we haveUSGX Ne=T.

The following theorem combines Theorem 7.1 from Ciclif] and Lemma A2U from
Fremlin [17].

Theorem 3.2. Suppose thatT, X, n) is a finite complete measure spadé;s its ideal of
null sets and is the corresponding measure algebra.

@) If « > A, cf(k) > Rg and (k, A) is not a precalibre of then there is a seft € X of z;
positive measure and @, A)-Rothberger family for the ideadl’s = {N e N: N C A} s
of subsets oA. )

(ii) If « is regular uncountable and is not a precalibre 2%fthen there is an increasing 25

sequenceéN;: & < «) of elements oV such thal J; _, Ne € Z\ V. "

Proof. (i) Take a family{E:: & <k} C X witnessing thatk, 1) is not a precalibre of.
We define inductively a sequen¢k,: a < k) of pairwise disjoint countable subsetsxof

such that for everw 22

\/ E&'=\/ E whereR, =« \ ] Is. 31
fely E€Ry B<a 32
33

Since cfx) > Ro, there iswg < k¥ anda € A+ such that a4
35

\/ E: =a foreverya > ao. "

§€Ry
37
Now we takeA € X with A" =a and for everyx < « put 38
39
Ny = A\ U Ee. 40
Eely 41
Then we claim thafN,: « < «} is a(k, A)-Rothberger family forVy,. 42

Indeed, it is clear that/, € N4 for everya < «; suppose that), .y No # A for some 43
X e [k]". Takingr € A\ Uyex No» We haver € Uge,a E; foreverya € X, hence isiny 44
many set¥¢, a contradiction. 45
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(i) Take a family {ag: & < «} € 2 witnessing thatc is not a precalibre ofl. Let
¢ A — X be alifting. For everg < « we put
Fe= | o).
E<n<k

Then Fr € ¥ by Fact 1.6(2). Since ¢f) > Ro there isng such thatu(F;) = n(F,,)
wheneveng < n < k.

It is clear that the setd,, = F,, \ F; form an increasing family of null sets. We claim

that{J, _, Ny = Fy,. Otherwise, there is a pointe Fy, such that € (", _, F;,. Then the
setX = {&: t € p(ag)} is cofinal ink, so|X| =« ask is regular. But therdas: & € X} is
centred, a contradiction.O

Lemma 3.3. If (T, X, ) is a nontrivial Radon measure space and there igcal)-
Rothberger family for the ideal/ of ..-null sets, therik, 1) is not a calibre ofu.

Proof. Let {N¢: & <k} €N be a(x, A)-Rothberger family. We have(T) > 0, so for
every¢ < « there is a compact sé¢ such thatFy C T \ Ng andu(F:) > 0. Itis clear that
no point of 7 belongs to. many among the set&. O

Part (1) of the following result is due to Cicho[7].

Corollary 3.4. Suppose thatg < cf(x) andx > A.

(1) For any9, pg(k, 1) holds if and only if there is nd«, A)-Rothberger family for the

ideal V; of the null subsets & .

(2) pak, ») if and only if there is ndk, A)-Rothberger family fopV,.

(3) There is6 such that there is d«, »)-Rothberger family for\; iff there is in fact a
(«, A)-Rothberger family fopV,.

© 0O N O a b~ W N B
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17
18
19
20
21
22
23
24
25
26
27
28
29

Proof. (1) follows from Theorem 3.2 and Lemnta3; (2) is a consequence of (1) andso

Theorem 2.8. (3) is a consequence of (1) and (2).

Corollary 3.5. Let 1 be a totally finite Radon measure on a spdteand let A be the
ideal of u-null sets

(1) If « =add ') = cov(N') thenk is not a calibre ofu.
(2) If «k =non(\V') = |T| thenk is not a calibre ofj.
(3) If « is regular,u is homogeneous and> non(\) thenk is a calibre ofu.

Proof. If either« =add ') = cov(N') or k =non(N') = |T| then we can writd" as an
increasing union of many null sets. This gives @&, «)-Rothberger family for\V so« is
not a calibre ofx by Lemma 3.3.

We can argue for (3) as follows. First note that the assumptions imply«that

31
32
33
34
35
36
37
38
39

uncountable. I is not a calibre ofu then (it is not a precalibre of the measure algebra
of u by Lemma 2.5 and) by Lemma 3.2(2) there is aset 3 of positive measure which 45
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is an increasing union of many null set§Neg: & < «}. Sinceu is homogeneous we can 1
assume that in fact = T (indeed, the measure restricted toA has the same non, seez
Section 1.3).

Take a seZ C T which is not null and Z| = non(\V). Since no\') < « there must
be& <« suchthatZ C N, which is impossible. O

Recall that for any uncountable we have ad@V,) = X1, see, e.g., Theorem 2.1.
in [29]. Therefore part (1) of Corollary 3.5 is interesting mostly whea R;.

© 0o N o o b W

Corollary 3.6.

(1) If x is regular andnon(\V,) < « thenk is a precalibre of all measure algebras.

(2) N1 is a precalibre of all measure algebras if and onlgdv(Ny,) > R1. "
Proof. (1) follows from Corollary 3.5 (3) and Theorem 2.8; (2) is a consequence i(if

Corollary 3.5(1), Theorem 2.8 and Theorem 3.2 combined with the homogeneity, of
ur. O 18
19

In connection with the above considerations we mention the following result due,§o
D.H. Fremlin. 21
22
Theorem 3.7. If k¥ < cov(N,) thenk is a measure precalibre of all measure algebras. 23
24

Note that forx of uncountable cofinality the resulbifows directly from Theorem 3.2. 2°

The case ak) = o requires an additional nontrivial argument, see 524M of [24] fof®
details. Combining (the easier part of) Theorem 3.7 with Corollary 3.6 and Corollary 3’5

we can obtain the following: 8
29

Corollary 3.8. If « is regular andnon(\,) < cov(N,) then zi
32
33

34

(a) « is a precalibre of all measure algebraasnd
(b) every regulan. is a calibre ofy,.

The next result (with two different proofs) can be found in Argyros and Tsarpalias Eé
Theorem 4.1] (see also [9, Theorem 6.18], and Shelah [40, Theorem 1.3]). It i§7a
generalisation of the fact that under CH the cardiralis not a precalibre of measure

algebras. 30

40
Theorem 3.9. If « is a strong limit cardinal of countable cofinality and™ = 2¢ thenk* 4
is not a calibre ofu, . 22
43
Proof. The point is that under such assumptions gy = 2 see [16, 6.17¢] and the 44
argument for 6.18d. Hence we can apply Corollary 3.5(2). 45
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We can now discuss what the possibilities forge.) are wheni <« <c¢. The 1
following theorem is due to Cictinand Pawlikowski and was proved as a claim withirz
the proof of Theorem 3.1 of [8].

Theorem 3.10. Suppose tha¥ is any universe of set theory, amds a Cohen real over
V. Then inV|[c] there is a(c, 81)-Rothberger family for the idealy, (and hence, by
Lemma3.3 (¢, R1) is not a calibre of the Lebesgue meagure

The following corollary will be useful in Section 5.

Corollary 3.11. It is consistent that > X1 and (¢, 1) is not a calibre of the Lebesgue 1,
measure. 13

14
Proof. Start withV which fails CH and add a Cohen real owr HenceV[G] will fail 15
CH and satisfy-~pcy, (¢, R1), by Theorem 3.10. O 16

17

Theorem 3.10 suggests a consideratiorhefsituation when a Cohen subset is addetf
to a regular cardinal > Ro. Must—pc, (2%, A7) hold in the extension? The proof in [8] *°
uses the Borel structure of2but there are alternative proofs for which it is not immediaté’
if one needs to be ab. However, it turns out that™ is always a precalibre of measure®
algebras (see Section 4), hence if we add a Cohen subsetdeer a model of GCH we %
shall not obtain &2, R,)-Rothberger family ofVy, in the extension and we shall even®
have pg, (2%, 81H). 2

To finalise this section let us consider the possibilities wheaX,. Employing the
fact that noi\,) = Non(NVy,) = non(\y,) (see Remark 1.10(3)), Corollary 3.5(2) and®
Corollary 3.6 we can draw the following conclusions. They show that all combmanoﬁs
between p@1, X1) and pgRo, R2) follow from various assumptions about cov and non
See Table 1.

The assumptions of the second line of the table hold in the iterated Sacks model, see
e.g.,[4]. In Chapter 7.3.B [4] presents a forcing with perfect trees whose countable sup ort
iteration of lengthw, over a model of GCH gives a model of the third line of the table
Adding &, random reals to a model of GCH gives a model satisfying the a:ssumpnonsé “of
the last line of the table (see the remark after Theorem 5.5 of [29]). However we do spot
know of a model in which the assumptions of the first line hold. This also leaves open | t%e
problem of the “mixed types”, see Problem 7.4.

25

37
38
39

Table 1
40
Assumptions pa1,81)  pcRo, Rp) "
CoV(Ny,) =Rp and noriNy,) =Ry yes no 42
cov(J\/’NO) =N7 and nom/\/'Ro) =81 no yes 23
COV(Ny,) = R1 and noriNy,) =Rz no no

44
45

COV(Ny,) =Rz and noriNy,) =81 yes yes
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4. Whenk > ¢ 1

2

There are many cardinals above the continubat are precalibres of every measure
algebra. For instance; is such a cardinal and in fact it is a calibre of all ccc compaet
spaces (the latter statement follows using Rea®.9). This a particular case of a results
due to Argyros and Tsarpalias [2], Theorem 2.5 see also [9], Theorem 6.21). We formudate
their theorem in the (less general) measure-theoretic terms. 7

8
Theorem 4.1. Supposex is a cardinal such that botlk and cf(x) are Ri-inaccessible. o
Thenk is a precalibre of measure algebras. 10
11

The proof we give of Theorem 4.1 is simpler than that of the original. First, we prove
it for « regular, using a well-known method. Then, taking advantage of the regularityref
cf(x), Theorem 4.1 follows from the more general Theorem 4.3 below. 14

15
Lemma 4.2. If « is a regulariki-inaccessible cardinal ther is a precalibre of measure 16
algebras. 17

18
Proof. The proof uses Theorem 2.8 and Lemma 2.5. We consider positive measure subsets
Fr of 2° (¢ < «), so we can assume that evdry is a closed set depending only on thego
coordinates in a countable s&t C «. Having a family{Je: & < «} of countable sets and 21
using the assumption on tkg-inaccessibility ofc, we can apply Theorem 1.12 to get a22
A-system of size contained in{J:: £ < «}. Letus then assume th&tC « is a set of size 23
k such that/: N J,, = J for some fixed seff whenevei # n € X. SinceJ is countable 24
there are only< ¢ many closed subsets of 2so, using the fact that 6f) > ¢, we can find 25
aclosed seH C 2/ and a set C X still of sizex such thatr;[Fz] = H foreveryé e Y. 26

It follows that(;.y Fz # . Indeed, to find an element in this intersection, take aryy
s € H and choose; € F; with 7, (t;) = s. Definet € 2 so that it iss on J and#; on 28
Je \ J, which is possible since the sefs\ J for £ € Y are pairwise disjoint. Thene F;y 29
forevery¢ eY. O 30

31

As an example of the use of Lemma 4.2, combining it with the fourth line of the talske

at the end of Section 3, we obtain thatcif= X2, cOMNy,) = V2, nonNy,) = 81 and 33

2% =R, 1 for everyn > 2 then peR,, R, for everyn < w. 34
The following Theorem 4.3 has been independently proved by Fremlin [24], see 524K,
and it is likely to be known otherwise as well. 36

37

Theorem 4.3. Suppose that is an®¥1-inaccessible cardinal andf(x) is a precalibre of 38
measure algebras. Then sads 39
40

The converse of Theorem 4.3 is easily seen to be true even without the assumption of
N1-inaccessibility ofc, see Observation 4.5. 42
Our proof of the next theorem, with minimal changes, gives another proof of
Theorem 4.3. We state Theorem 4.4 in teraf measure precalibres in order to give a4
explicit partial answer to a question of Haydon (Problem 7.3). 45
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Theorem 4.4. Suppose that is an®Xj-inaccessible cardinal acfountable cofinality. Then 1

k IS a measure precalibre.

2
3

Proof. We shall apply Theorem 1.13, starting by an application of Lemma 1.14« Let4

be given as in the assumptions of the theorem and«gt n < w) be as provided by
Lemma 1.14. Suppose that- 0 and we are given a familyB,: « < «} of subsets of
2¢ each of which has measute . Without loss of generality eacB, is a closed set
determined by a countable set of coordinakgs

By Theorem 1.13 there are sequen¢gs n < w) and(R,: n < w) such that

(i) I, € [xk]*» and the sets if],: n < w) are pairwise disjoint,
(i) if «# B e, thenJ, NJg =R, (hence eaclR, is countable) and
(i) if n <m anda € I,, B € I, thenJ, N Jg € Ry.

Forn < w let , : 2 — 2% pe the natural projection. Fix for a momenk » and for
a e, let F} =m,[B,]. Hence eaclhF} is a closed subset off2. There are at most
closed subsets of®2, asR, is countable. Since= 2" < «, = cf(x,) by the choice ok,
and this holds for any, we may in addition assume that

(iv) for eachn < w the setF? (« € 1,) is a fixed closed sef, in 2%,

As u, (By) > € for everya we have in particular that, (nn—l[Fn]) > ¢ foreveryn < w.
SinceRg is a measure precalibre we may without loss of generality assume that

(v) the family (= 1[F,]: n < w} is centred.
Let us again fix: < w and consider any: > n. For any;j € R, \ R, we have that (by (ii))

Haeel,: jeld| <L

By throwing away from eacH, thosew« for which there ism > n such that for some
Jj € Ry \ R, we havej € J, (so countably many suah) we may further assume

(vi) if n <m anda € I,, thenJ, "R, CR,.

We claim that (the many times trimmed by now) familg,: « € |

which suffices to prove the theorem.
By (v) we may choose and fixe (), _,, nn‘l[Fn]. We now try to definer € 2 so that
R,,. Consider now

x € B, foreverya € |, _,, In. We putx (§) = y(§) wheneveg € | J
n < w andua € I,,. By our choice ofy

I} is centred,

n<w

n<w

7711()’) € F, =mu[Byl,
so we can find, € B, such thatr, (y) = 7, (x4). Our intention is to let

x(§) =xq(§) foreveryé e Jy (%)
and to havec (¢) = 0 for all other¢.

5

6

7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
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If such an element really exists therx € B, for everya € | J,_,, In (by (x), as every 1
B, is determined by the coordinates jp) and the proof is complete. So we check the

consistency of the above definition .of 3
If & ¢ U, R then by (i) & € J, for at most onex andx (£) is well defined. Consider 4
nowé € |, _, R, and letm be the firstn < o for which& € R,,,. 5

Suppose there is < m andw € I, such that € J,. Then by (vi),é € Jy "Ry, CR,, ©

a contradiction. If there i& > m and« € I, such thatt € J, then by (vi)§ € R, so 7
x(8) =y (&) =xq(8). 8
9

In conclusionx (&) is well defined for everg. O
10

The reader has probably noticed that by starting with a family of sets of positive meas}l;lre
and replacing the fact thatp is a measure precalibre by the assumption that)ck a
precalibre of measures, the above proof gives the proof of Theorem 4.3. As a final note

about singular cardinals we give the following simple observation. s

16
Observation 4.5. Suppose that is a precalibre of measure &lgras (measure precalibre).,;

Then so is cfi). 18
19
Proof. The proof in both instances is along the same lines, so we concentrate2on
precalibres of measure algebras. Suppose for contradiction that the claim is not truezand
thatx demonstrates this. Clearkyis singular, let? = cf(k) < « and let{k,: o < 6) be 22
an increasing sequence of regular cardinals converginguwath kg > 6. Let{F,: « <6} 23
exemplify that is not a precalibre of measure algebras, so without loss of generality eath
F, is a subset of 2 of positive measure an@),_, Fo = 9. We now form a family ofc 2
many subsets of“2by taking for eachr «, many copies of the inverse projection 8f 26

in 2¢. This family contradicts the assumption tkas a precalibre of measure algebrass 27
28

A small twist on the above proof gives a family efistinctsets that show that is not 2

a precalibre of measure algebras, in case one wishes to insist in having distinct sets in the
definition of precalibre. The distinction between these notions seems to be blurred in ﬁhe
literature and we have not found another instabat the above where the difference coul
matter.

Under suitably simple assumptions on the cardinal arithmetic (GCH) the results
presented so far enable us tongaletely classify which cardals are precalibres of measure

algebras.
37

38
Corollary 4.6. Under GCH exactly one of the following holds for any uncountablgg

cardinalk: 40

41
(1) x =t for somer and thenpo(x, k) <= cf(r) > Ro; or 2
(2) « is alimit cardinal andcf(x) = Ko, in which casempdx, ) and— pc(«, «); or 43
(3) « is weakly inaccessible, in which cage(x, «); or 44

(4) « is a singular limit cardinal withd = cf(x) > 8¢ and thenpc(9, 6) <= pc(k, «). 45
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Proof. (1) If cf(r) = R then—pc(k, k) by Theorem 3.9. If aft) > Rg then from GCH 1
implies thatx is X1-inaccessible and we have(gpck) by Lemma 4.2. 2
(2) follows from Theorem 4.4 since under GCH every limit cardinatisnaccessible. 3
(3) follows similarly from Lemma 4.2 and (4) from Theorem 4.3 and Observa-
tion4.5. O 5
6

We now move away from GCH and present a nmeagheoretic version of a theorem?

due to Shelah [40]. Shelah’s original assumptions were 8

9

<=6 <cf() <k <2 g

and conclusion that for every family of positive measure sets in‘“2there is an 11
independent subfamily of size. Consequently p&, «). It turns out that the conclusion 12
about the precalibres can be obtained undeaiker assumptions, as we do in Theorem 4.1
below. Itis in fact also possible to slightly weaken the assumptions of the original theorem,
and in fact one can view Shelah’s proof (or our rendition of it) as consisting of two pans:
onein which one uses a part of the assumptions to get the conclusions about the precalibres,
and the other where the rest of the assumptions are used to get the full independenge. It
seems also that the original proof is somewhat harder to read than what we make of it here,
so we decided to present it as well, in Section 6. It will build on the proof we give belows

20

Theorem 4.7. Suppose that and« are cardinal numbers such that 21
22

0 =0 <cf(x) <k <2. s
Thenk is a precalibre of measure algebras. 24
25

Note 4.8. Clearly, the assumptions of Theorem 4.7 imply that 2% < cf(«). 26

It might also be worthwhile to compare the assumptions of this theorem with these

of Lemma 4.2. If = ™0 then for anyn < w we have(@™)% =9+ so if 9 and 28
« of Theorem 4.7 are close to each other in the sensextkap*” for somen, then 29
the assumptio® = 6% implies that cfx) = « is ®1-inaccessible, hence the conclusiorso
already follows by Lemma 4.2. However, movingaway fromo it is perfectly possible 31
that for somei € (9, «) we have, for example, that*o > «. By Kénig's lemma this will 32
happen any time that is the successor of a singular cardinal of countable cofinality. /s
an example, we could have 34

35
— 8o _ N1 __ o+t — ot
g=2%=r;, 2M=RIT  =R], .

which is the situation obtained whergfr Cohen subsets are added\p over a model 37
of GCH. In this situation Lemma 4.2 and Theorem 4.3 do not apply but Theorem 4.7 dees.
We also observe that many, even regular, cardinals might not satisfy either 3he
assumptions of Lemma 4.2 or the assumptions of Theorem 4.7. For instance, successors
of singulars of countable cofinality in a moddl@CH will fail both sets of assumptions, 41
as is to be expected from Theorem 3.9. The assumptions of Theorem 3.9 may also#fail.
Magidor [32] proved starting from the existence of an infinite sequence of supercompact
cardinals that for every & n < w there is a model of ZFC in whicR,, is a strong limit 44
cardinal but 8¢ = &,,,, hence fom > 3, x = & in such a model does not satisfy thess
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assumptions of any of Lemma 4.2, Theorem 4.7 or Theorem 3.9. We do not keasvaf 1
precalibre of measure algebras in such a model. 2
We note that there are many later and more refined consistency results about the failure
of the singular cardinal hypothesis, of which Magidor’s theorem is the first instance. Gne
may consult the introduction to Shelah’s book [39] for a survey. See also the comments
about Problem 7.1 below. 6
;
Proof. We consider a family{B,: « < «} of subsets of0, 1} with positive measure. We 8
can assume that evel, is a closed set determined by the coordinates in a countable

set J, C «. Further assume that every, is infinite and has a 1-1 enumeratidp = 10
{i(e,n): n < w}, as the situation o many among the/,s being finite can be handled 11
in a much easier manner usinglasystem argument. 12

Sinced = 6% we can apply the Engelking—Kartowicz lemma to find a fanpify: y < 13
29} of functions fromy into 6, with the property that for every sequengg: n <w) €20 14
and(¢,: n < w) C 0 there is¢ < 0 such thatf,, (¢) = ¢, for everyn. 15

Using the above functions we define fox 6 16
X;:{oz<fc: f,-(a,n)(g)znforalln}. i;
We havel J,_, X; = « by the choice off,s. Sincet < cf(k) there is¢ <« such that 19
|X;| =K. 20

For everya < k we define a mapping,, where 21
22
23
Then F, = ny[By] is a closed subset g0, 1}*. Using ¢ < cf(x) we can as well assume 24
that F, = F for everya < k. Thus we haver,[B,] = F; note also thatra—l[F] =B, 2
for everya < k. Namely if 7, (x) € F thenm, (x) = m,(y) for somey € By; asB, IS 26
determined by the coordinatesJp this implies thatc € B,,. 27

We claim thatﬂaex: By, # . Indeed, take any e F and attempt to define € {0, 1}*  2s
so thatx (i (o, n)) = t(n) for everyn and everye € X, (andx (&) = O for other£). Note 29
thatif o, B € X, andi(a, n) =i(B, k) thenn = k, so the definition is consistent and henceo
we can fix such aw. For everyx € X, we haver,(x) =t € F sox € na‘l[F] =B, and 31
we are done. O 32

33

34
5. Some applications 35
36

We now mention some applications of precalibres. Although the applications are mosstly

in topological measure theory, we start by a purely combinatorial notion isolated 3y

7 {0, 1}¥ — {0, 1}°, o (x)(n) =x(i(a,n)) foreveryn.

Fremlin. 39
A family D of finite subsets of is said to bes-dense operfor ¢ € (0, 1) if D is closed 40
under subsets and for any finikeC « there isF’ C F with F’ € D and|F’| > ¢|F]|. 41

We say thatc is a A-Fremlin cardinaliff wheneverD is a 1/2-dense open family of 42
finite subsets of, there isA e [«]* such that all finite subsets df are inD. By a result of 43
Fremlin [20], the definition ok being ar-Fremlin cardinal does not change if2in the 44
above is replaced by anye (0, 1). 45
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There is a connection with precalibres which can be explained as follows, see [20];
other properties of Fremlin cardinals are discussed in Apter and DZamonja [1]; see also

DZamonja and Plebanek [14]. 3
4

Theorem 5.1. If cf(x) > R and« is A-Fremlin thenpc(x, 1). 5
6

Proof. Suppose that the familyF,,: o < «} witnesses that e, 1) fails, where cfx) > 7
Ro. We can assume that theresis- 0 such that allF, have measure at leastLet D be s
given by 9
def 10
D:e{dfinitegx: ﬂFa;«é@}. 1

aed 12

ThenD is e-dense open. Indeed, for any finitec « we have 13
14

‘ZXFg >/ZXFEd/’LK >8|6l|, 15

Eea £ea 16

which implies that there i8 C a, |d| > ¢|a| such thaﬂSEd Fr # ¢ (here] - || denotes the i

supremum norm). By the choice ®fit follows that« is noti-Fremlin. 0O 10

20

For any setl”, the Corson spacE (R!) is defined as the set "

E(RF):{xERF: {y e ' x(y) # 0} < Ro} 9
23
24

endowed with the subspace topology. A topological sgaégcalled aCorson compactum
if K is homeomorphic to a compact subset BfR*) for some«. The following
Theorem 5.2 was proved by Kunen and van Mill [31] in the special easel1; the result
shows that precalibres of measure algebrasksely related to the question of what the®®
Maharam types of measures defined on Corson compacta are. The proo&ofii)is '

standard and well known; the argument foe tieverse implication is taken from [36]. 8
29

25

Theorem 5.2. The following are equivalent for any cardinal 30

31
(i) thereis a Corson compact spakecarrying a Radon measure of Maharam tyge 82
(i) pc(k, ¥1) does not hold. 33

34
Proof. (i) = (ii). Let u be a probability Radon measure of typen a Corson compact 3%
spacek. We can assume that is a subset of2(R”) for somerI". Fory e I' let 3

Cy={xeK: x(y)#0}. s7
38
Claim5.3. LettingG ={y € I'": u(C,) > 0} we haveG| > «. 39
40
Proof. Let 4

42
KG:{xeK: x(y):OforallyeF\G}.

Note thaty € I \ G means thaj.({x € K: x(y) =0}) =1 and soK is an intersection 44
of a family of closed sets of full measure and therefo(& ;) = 1, since the measure is 45

43
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Radon. Sinceu is of typex, the topological weight oK is at least, so|G| > k. Here 1
we use the following simple observationfis a topological space of weightthen every 2
Radon measure oki has Maharam type at mast O 3
4

Take anyy € G. We haveu(C,) > 0 and 5

6

Gy =J{rek: [x»|=>1/n}, 7
n>1 8

so there isyy, > 1 such that lettind), = {x € K: |x(y)| > 1/n,} we haveu(D,) > 0. jo
Now the family {D,: y € G} witnesses that. does not have calibréc, 81), which )

suffices by Lemma 2.5.

(i) = (i). We shall again use Lemma 2.5, as well as Theorem 2.8. Hence %,II’
assumptions allow us to choose a fanfifit: £ < «} of compact positive measure subsets
of {0, 1} witnessing thatx, X1) is not a calibre of the product measuyre= .

Using the fact thatt has Maharam type on every set of positive measure, we may use

induction oné < « to find compact sets; such that for everg we haveF: C C¢ and =

inf{u(AA Fe): Ae A} >0, (x) 18
19
where A is the Boolean algebra of sets generated by the fafily o < £}. 20

We take the algebral = U$<K Ag and show that its Stone spaée is the required 5,
space. The measugerestricted tad uniquely defines a Radon measuwren K whichis ,,
generated by letting for every € A, V(A) = u(A), whereA C K is the clopen subset of 4
K induced byA. Then it follows from(x) above that is of type at least. The fact that ,,
K is Corson compact and has type at most (hence exactkyfollows from the fact that 5
the mapping 26

g K — {0, l}K, g(p):(x;;;(p))gﬂc,

is 1-1, hence by its definition a homeomorphic embedding, wfik] € X' (R*) since 20

there is no uncountable centred subfamilyf Bf: £ <«}. O 30
31

27
28

Corollary 5.4. It is consistent that > 83 and there is a Corson compact space carrying &2

Radon measure of type 3
34

Proof. Apply Corollary 3.11 and Theorem 5.20 %

36
Note that by Theorem 5.2, since(p¢, ¢*) by Lemma 4.2, every Radon measure on &

Corson compactum is of type at mastWe might generalise Theorem 5.2 to the case of

an arbitrary paiKx, A) (wherei < «), replacing Corson compacta hyCorson compacta. %
Let us also mention another interesting and simple construction of a Corson compact

space resulting from a family that withesses thakpg) does not hold. Let, u) be a

measure algebra and suppose tfaat ¢ < «} € 2" is a family without an uncountable 42

centred subfamily. Then one obtains a Corson compact space by letting P

K ={x €{0,1}*: {as: x(§) =1} is centred. 45
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See e.g., Plebanek [35] for some applications of this construction, where it is showntfor
instance, that such a spakeadmits a strictly positive measure. Earlier such a constructien

was used by Marciszewski [33] to prove the following. 3
4
Theorem 5.5. The following are equivalent. 5
6
(i) Thereis compack C X' (R*?) such thattonu K) Z X (R“?). 7
(ii) N1 is nota precalibre of measure algebras. 8

9

The following theorem summarizes sometloé remarks above and results from Kuneno
and van Mill [31], Marciszewski [33] and Plebanek [35]. 11
12

Theorem 5.6. pc(R1, R1) is equivalent to each of the following 13
14

(i) Every Radon measure on a Corson compact space has a separable support. 15

(i) Every Radon measure on a Corson compactum is of countable type. 16
(iii) conuK) C X (R¥) for everyx and every compadt € X' (R"). 17
(iv) Every Radon measure on a first countable space is of countable type. 18

19

The class of compact spaces on which every measure is of countable type waszalso
investigated by Dzamonja and Kunen [12,13]. 21

Calibres are also crucial in understanding the so-called Haydon problem about2the
equivalence between the existence of continuous surjection$®rifs and homogeneous 23
measures of type. The question originated in R. Haydon’s results on the isomorphism

structure of Banach spaces, see [25,26]; cf. Fremlin [18,19] and Plebanek [36,38].2%e
recall here just one result along these lines, see [38] for details. 26
27

Theorem 5.7. The following are equivalent for any> Ro: 28
29
(i) there is a continuous surjection froi onto [0, 1] iff K carries a homogeneous 30
Radon measure of type 31
(i) « is a measure precalibre. 32
33
Finally, let us mention that calibre-like properties of measure algebras are even relevant
to a question on Pettis integrability of Banach-valued functions with respect to Raden

measures, see, e.g., Plebanek [37]. 36
37

38

6. Shelah’stheorem on independent families 39

40

A theorem we were inspired by when worgion this paper is Shelah’s theorem orst
independent sets in measure algebras from [40], as we explained in the introduction to
Theorem 4.7. As we mentioned before, it also turned out that one can use the metkrods
developed here to give a somewhat simpler proof and slightly weaken the assumptions of
the original theorem of Shelah. The first part of the argument necessary to do this is almsost



© 0O N O g b~ W N B

A D D D DD WOWW W WWWWWWN DN DNDNDNDNNDNDNDNRER PR P B P P P PR
a b W N P O © 00 N O O b W N P O ©W 0 N O O M W N P O O 0N O 00 b W N B O

S0166-8641(04)00116-6/FLA AID:2463 Vol.eee(eee) t 2463 P.23 (1-28)
ELSGMLTM(TOPOL) :mla v 1.201 Prn:10/05/2004; 15:27 Op by:violeta p. 23

M. DZamonja, G. Plebanek / Topology and its Applicatione (eeee) see—see 23

the same as the one already familiar from the proof of Theorem 4.7. We decided to give
also the rest of the argument for the sake of ptateness, and this is what this section i
devoted to. 3
4
Definition 6.1. A subfamily of a Boolean algebr is said to be independent iff every s
nontrivial finite Boolean combination of its elements is nonzero. 6
;
Recall that by the Balcar—Franék theor [3] every complete Boolean algeb®a s
contains an independent family of siy#|. If 21 is a measure algebra this fact followss
easily from the Maharam theorem. The result discussed below says that for Jandact 10
every family ofx many distinct elements of some measure algebra contains an independent
subfamily of full size. Note that every nonatomic measure algebra contains a linearly
ordered subfamily of cardinality so it is not always possible to choose an independerit
subfamily among many elements of a measure algebra. Shelah’s original assumptionsifor
Fact 2.1 from [40] were 15
2 <0 =0 <cfe) <x <2 -
and conclusion that for every family of many distinct elements ifl,, there is an 1s
independent family of size. We shall see that the assumptions may be somewhat relaxed.
Prior to the main theorem we enclose the following technical lemma from [40]. For
everyY C x we write2(, [Y] for the family of all B* € 2. for which B € X is determined 21
by the coordinates ifr. 22
23
Lemma 6.2. Suppose thafa,: a < «} is a family of distinct elements &,, where 24

ay € AlJy], with J, C « countable for every. Then for every C A, denoting 25
26

ind(Y) ":ef{a €Y: =@m < )3Po, ..., Buot €Y Na)aq € QLK[ U Jﬂk} } 2

k<m 28

we havegind(Y)|+c¢ > |Y]. 29

30
Proof. The lemma follows easily from the fact thi,[J]| < ¢ wheneverJ C x is 31

countable. O 32
33
Theorem 6.3. Suppose that andx are cardinals satisfying 34
35
(i) 0 =6% <cf(x) <k <2, 36
(i) 3z < cf(x). 37

38

Then for every family of many distinct elements of some measure algebra there is &n
independent subfamily of size 40
41
Example 6.4. An example of a situation covered by Theorem 6.3 but not the originsl
Shelah’s theorem is wher'@= Ry, § = 28 = Rg7, Jp = 2%2 = Rgg, while 2 =R, ;1. 4
Then anyx < R, +1 with cofinality Rsg will satisfy the assumptions of Theorem 6.3 bui4
not of the original theorem. 45
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Proof. (1) By Maharam’s theorem we can suppose that we are given a féailyr < «}
of distinct elements dll,, and we need to find an independent subfamily of si2&/e shall
work in the space2rather than in the algebfd, itself. Let us fix a liftingey : A, — X,
and putB, = ¢(ay) for everya < «. Next we choose measurable sB&andBO% so that

BYCB,,  BiC2°\ B,
B =a,, Bl=1-a,,
B2 and B! depend only on the coordinates in a countable/set «.

To chooseB? we apply Fact 1.5(5) t#,, and we similarly chooss_.
(2) For the rest of the proof we consider disjoint pa(i@, B‘}). We shall prove that
there isX e [«]“ such that the paireB?, B) for « € X are independent, i.e.,

() Bi® #0 foreveryfinitel C X and every &:1 — {0,1}.

ael

This will prove the theorem sind@), ., B5* = ¢ implies that

ae[
(/7< /\ a;(a)) = /\ (p(aé(a)) ;é @,
ael ael
henceA,; do 5 =0, and therefore the familja,: « € X} € 9, is independent.

(3) Using Lemma 6.2 we can assume that for every « andfo, ..., fr—1 < @ we
havea, # B* wheneverB depends on the coordinatedify, _,, /g, -

(4) Now we use the same argument as in the proof of Theorem 4.7, using the assumf)‘hon

thatg = 6% to obtainX, as there. Hence thanks to the assumpfiencf(x) we can now
pass to a subfamily of the original family if necessary and assum&that« . This implies
the following:

if i(a,n)=1i(B,k) thenn=k. (%)
(5) Again, for everyr < « we define a mapping,, where
e . {0, 1} — {0, 1}*, T (x)(n) = x(i (o, n)) for everyn.

ThenF? = [ B%] andF} = [ BL] are Borel subsets db, 1}°. Usingc < cf(x) we can
as well assume tha‘tf FO andF1 F1forfixed FO, F! and every < .

(6) We now come to the point ofthe argumentwhere we shall need to use the assumpgion

© 0O N O a b~ W N B
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26
27
28
29
30
31
32
33
34
35

Jo < cf(x). For eachy < « we define an idealV, on w. It is the ideal generated by the 3,

sets

Zg déf{n <w: i(B,n) = i(oz,n)} for B <a.
By (3) the idealV, is proper. Namely suppose that for sopig. .., Bn_1 < @ we have
U,<m z5 = o. Thena, belongs todB[{i (8, n): | <m, n < w}], contradicting (3).
As the number of possible ideals anis at mostd,, by our assumption ¢) > 3, for
the rest of the proof we can fix a sktC « of sizek, such that for everg € X Ny =N,
whereN is a fixed proper ideal on.

38
39
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(7) We can at last prove that our family of pa'(rBS, B(}), a € X, is independent as 1

defined in (2) above. So let us fix a finite gde€ X and a functiore: 7 — {0, 1} andtryto 2
definex € 2¢ such thate € (., B5. Let 3
4

N:{n<a): i(a,n):i(ﬁ,n)forsomea,ﬂel,a;«éﬂ}, 5

6

Raz{i(oe,n):neN}, R:URa. ;

aEs 8

Let us denote byry : 2 — 2V the usual projection. For the sef®, F1 C 2 defined in 9
(5) we put 10
11

F_e :n&lnN[Fo], Fi :n&lnN[Fl]. 12

13

Claim 6.5. Fd N F1 #4. 14

15

Proof. Indeed, otherwise taking = max(7) andC = =, 1[F?] we would haveC' = a,. 1
HenceC is determined by the coordinates Ry. But N is in the ideal\ fixed in (6) Y7
and we have\' = A\, so there arefo, ..., fr—1 < o such thatN € |, _;_; Zg.. Then 18

Re € U; 11 /g, and we get a contradiction with (3) 0 19
20

21
22
23
24

Fix an element e FE N Fi; we define a desired elementx — {0, 1} as follows:

— onR we letx(i(a, n)) =t(n) whenever € I andi(«a, n) € R. Note that by(x) of (4),
this definition is consistent.

— Take anyr € I with (er) = 0 (so that we want in BY). Sincer € F?, there iss € F°
such thats)y = fjx. We can putc(i(a, n)) =s(n) for n ¢ N. Thenx (i (o, n)) = s(n)
for everyn < w, sox € 7, }[F°] = B?, as required.

— Fora € I with (@) = 1 we proceed analogously.

25
26
27
28
29
30
Thusx is defined so that € ,; B, and this finishes the proof.0 -
32
Analysing the argument above we can see that the requirement (ii) of Theorem 6.3 was
applied only once, in (6) to make Claim 6.5 work. This enables us to derive the followiag
conclusion (which is, in a sense, motivated by Claim 2.4(2) of [40]). Say that a family
{aq: o <k} inameasure algebi@l, n) is separatedf there is a constarit > 0 such that 3
wlag Aag) > 8 whenever # g. 37
38
Corollary 6.6. Suppose thaf and « are cardinals satisfying = 6% < cf(k) <« <20 30
and let§ be a family ofc many distinct elements of some measure algebra. If either 40
41
(i) « isN1-inaccessiblgor 42
(i) §is separated 43
44
thenF contains an independent subfamily of size 45
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Proof. We again deal with measurable setg0nl1}”. Recall first that for a measurable sett
B C {0, 1}* there may be no minimal sétC « of indices with the property tha&® depends 2
only on the coordinates iti. However, there is a (countable) sgt such that whenever 3
C’ = B" andC depends only on the coordinated/ithenJ* C I, see Fremlin [21]. 4
Now we proceed as in the proof of Theorem @ish the following changes. First we s
shall note that if either (i) or (ii) hold then we can replace (3) of the proof of Theorem 6.3

by the requirement 7
(3 aq # B" wheneverB depends on the coordinatesif}, _, Js- 8
Indeed, for the seY¥ = Uﬂ<a Jg we havelY| <k, so if Xy < « then2[Y] has only ¢

|Y ™ <« elements. Similarly, if (ii) holds the®l, [Y] contains at mosY | elementsie . 10

Next we replace (6) from the proof of Theorem 6.3 by the following. For ewegyx !
let J be the minimal set of coordinates fag, in the sense explained above. B)’ we 12

have for everyx < « 13
14

J; < U Jp- 15

B<a 16

Now passing to a suitable subfamily we can assume that there is a natural minsbeh 17
that for everyx < « we have 18
19

i.n®) e\ s 20

B<a 21

Having this property we can verify Claim 6.5 in the same way. 22
23

24

7. Open problems 25
26

We list some open problems and partial solutions. 27

28

Problem 7.1 (Fremlin). Is it consistent that every regularis a precalibre of measure 29
algebras? 30
31

Theorem 3.9 shows that if this is consistent then GCH fails at every strong limit3f
cofinality Xo. (Recall that3,, is such a strong limit). A positive answer to Problem 7.3
also implies the existence of QJensen showed (see [11]) that ffdbes not exist then the 34
singular cardinal hypothesis (SCH) is true, that is, for any singular carditred value of 35
2¢ is the least cardinal > 2=* with cf(1) > «. In particular, Z = «™* for every singular 3¢
strong limit cardinal and so we obtain 37
38

Remark 7.2. If 0% does not exist then there is a regular cardinal which fails to besa
precalibre of measure algebra. 40
41

Assuming various large cardinal hypotheses, many models make SCH false. Onesthat
seems particularly relevant given Theorem 4.1 and Theorem 3.9 was constructeds by
Cummings in [10], where (assuming the existence @?;a&-hypermeasurable cardinal) 44
a model is constructed in which 2= « T if « is a successor and 2= « T if « is alimit 45
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cardinal. One may consult [10] for further references. Calling Cummings’s niode¢ 1
may perform inV a forcing to collaps&; followed by a forcing to adek, random reals 2
to obtainV[G] in which ¢ = X3 = cov(Ny,) while nonAy,) = 81. Then by the table at 3
the end of Section 3 the only regular cardinals that may fail to be precalibres of meagure
algebras iV [G] are successors of singulars of countable cofinality, and Theorem 3.9 does
not rule out that these cardinals are precalibres as well. 6
Theorem 4.4 gives a partial solution of the following 7

8

Problem 7.3 (Haydor). Let x = sup,_,, k», Where every, is a measure precalibre of 9

measure algebras. Doesave the same property? 10
11

The table at the end of Section 3 suggests the following problem: 12

13

Problem 7.4. Is it consistent that &2, R1) but—pc(R2, R2) and—pc(R1, R1)? 14

15

Proofs of Lemma 4.2 and Theorem 4.7 show that there is a combinatorial property that
suffices for a cardinat to be a precalibre of measure algebras, namely that for evary
family {I¢: & < «} of countably infinite subsets af there isX € [«]* and enumerations 18
I ={i(§,n): n < w} for & € X with the property that(&,n) =i(n, k) impliesn =k. It 19
might be interesting to see if this combinatorial property isolates a useful class of cardirrals,

and understanding how to force this property might be useful for Problem 7.1. 21
22

23
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